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Abstract

We propose the Model Quality Network, MQ-Net in
short, for predicting the quality, e.g. the pose error of es-
sential matrices, of models generated inside RANSAC. It
replaces the traditionally used scoring techniques, e.g., in-
lier counting of RANSAC, truncated loss of MSAC, and
the marginalization-based loss of MAGSAC++. Moreover,
Minimal samples Filtering Network (MF-Net) is proposed
for the early rejection of minimal samples that likely lead
to degenerate models or to ones that are inconsistent with
the scene geometry, e.g., due to the chirality constraint. We
show on 54450 image pairs from public real-world datasets
that the proposed MQ-Net leads to results superior to the
state-of-the-art in terms of accuracy by a large margin. The
proposed MF-Net accelerates the fundamental matrix es-
timation by five times and significantly reduces the essen-
tial matrix estimation time while slightly improving accu-
racy as well. Also, we show experimentally that consen-
sus maximization, i.e. inlier counting, is not an inherently
good measure of the model quality for relative pose estima-
tion. The code is at https://github.com/danini/
learning-good-models-in-ransac.

1. Introduction

The RANSAC (RANdom SAmple Consensus) algo-
rithm proposed by Fischler and Bolles [12] in 1981 has be-
come the most widely used robust estimator in computer
vision. RANSAC and its variants have been successfully
applied to a wide range of vision tasks, e.g., short baseline
stereo [40, 42], wide baseline matching [23, 24, 28], motion
segmentation [40], detection of geometric primitives [35],
pose-graph initialization for both incremental and global
structure-from-motion pipelines [3, 33, 34], image mosaic-
ing [14], and to perform [2, 19, 46], or initialize general
multi-model fitting algorithms [17, 27].

In brief, RANSAC repeatedly selects, typically, minimal
subsets of the data points and fits a model, e.g., a 3D plane
to three points, an essential matrix to five 2D point corre-
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Figure 1. MQ-Net: quality prediction of model hypotheses.

spondences, or a 6D pose to three 2D-3D correspondences.
The quality of the model is measured as the cardinality of
its support, i.e., the number of inlier data points. Finally,
the model with the highest quality, polished, e.g., by least-
squares fitting or numerical optimization on all inliers, is
returned. In this paper, first, we focus on improving the
RANSAC scoring by a learning-based approach. Second,
we accelerate the robust estimation by learning to reject
minimal samples that likely lead to degenerate solutions.

Since the publication of RANSAC, a number of modi-
fications have been proposed replacing components of the
original algorithm. To improve the accuracy by better mod-
elling the noise in the data, different model quality calcula-
tion techniques have been investigated. For instance, MLE-
SAC [41] estimates the quality by a maximum likelihood
procedure with all its beneficial properties, albeit under
certain assumptions about point distributions. In practice,
MLESAC results often are superior to the inlier counting of
plain RANSAC, and they are less sensitive to the manually
set inlier-outlier threshold. In MSAC [41], the loss is for-
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mulated as a truncated quadratic error by assigning constant
loss to the outliers (i.e., points with residuals larger than the
inlier-outlier threshold) and a quadratic one to the inliers.
In MAPSAC [39], the estimation is formulated as a process
that estimates both the parameters of the data distribution
and the model quality in terms of maximum a posteriori. In
the recently proposed MAGSAC++ [6], the model quality
calculation is formulated as a marginalization over a range
of noise scales. The inlier residuals are assumed to have χ2

distribution. This allows MAGSAC++ to be significantly
less sensitive to the inlier-outlier threshold than other robust
estimators. According to a recent survey [22], MAGSAC++
is currently the most accurate robust estimator.

Finessing to interpret inlier and outlier distributions, tra-
ditional scoring techniques usually consider the data as a
mixture with the outliers being uniformly distributed in
the scene. However, this assumption is rarely satisfied in
real scenes, where the outliers tend to form spatially co-
herent structures invalidating the assumption of uniformity
and misleading the scoring function [18]. While consen-
sus maximization is an actively researched area in com-
puter vision [20,29,38], maximizing the inlier number does
not necessarily lead to finding the sought model parame-
ters [41]. To demonstrate this, Fig. 2 shows the Sampson
distance distributions of relative poses estimated from real
image pairs from [36]. Each curve shows the average resid-
ual distribution of 10 000 poses whose errors fall within the
interval shown in the legend. For instance, the green curve
shows the distribution calculated from poses with errors in-
between [1◦, 5◦]. Its value at 0.75 is approx. 0.04%. Conse-
quently, the 0.04% of the points has 0.75 Sampson distance
for poses with such errors. Basically, the area under the
curve is the inlier ratio. Notice that almost perfect mod-
els (red curve) have, on average, fewer inliers than the ones
that are reasonably accurate but not perfect (green). This
suggests that inlier maximization is not an inherently good
measure of the model quality, at least, when estimating rel-
ative poses and using Sampson distance.

To better model the inlier distributions, we propose a new
scoring technique that is trained to predict the model qual-
ity from point-to-model residuals without making explicit
assumptions about the actual distributions. To build resid-
ual histograms that are then learned, we use a reasonably
large inlier-outlier threshold that works on a wide range of
scenes without further hyper-parameter tuning. Since this
threshold is too large for selecting a final set of inliers, we
also propose a data-driven strategy for inlier selection. The
method straightforwardly replaces the scoring function in
modern RANSAC frameworks, e.g., VSAC [18].

In modern RANSACs, the model estimation often con-
tinues with degeneracy and chirality testing to reject models
that are incompatible with the scene geometry, e.g., as in
DEGENSAC [11]. Some models, e.g. homography, allow
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Figure 2. Consensus maximization does not favor the best
model. Average residual distributions over 10 000 image pairs.
Each curve shows the residual distribution of relative poses with
error falling in the interval shown in the name of the curve. The
vertical axis shows the percentage of points that has a particular
point-to-model residual (Sampson distance; horizontal axis).

to perform checks directly on minimal samples, thus, accel-
erating the robust estimator significantly by skipping both
the model estimation and quality calculation if the sample
does not pass a test. Besides the speed-up, rejecting de-
generate models improves the accuracy as well since such
models often have high inlier counts [8, 18]. For epipolar
geometry estimation, there are, however, no such checks
that can be applied to minimal samples before the funda-
mental or essential matrix is estimated.

We propose a network to predict the probability of a min-
imal sample leading to a degenerate model when estimating
the epipolar geometry. We train an extremely light-weight
network that is invariant to both the point and image or-
dering. It efficiently rejects minimal samples prior to the
model estimation, thus, leading to a significant speed-up
while slightly improving the accuracy as well. The train-
ing data is naturally synthesized from explicit post-model
degeneracy checks on the available training images.

The algorithms are tested both on fundamental and es-
sential matrix estimation on 54 450 image pairs from the
PhotoTourism dataset. The proposed scoring and sample fil-
tering techniques, together, improve the accuracy by a large
margin compared to the state-of-the-art (e.g., the median er-
ror is the half of the MAGSAC++ error) while running faster
or at a comparable speed, in real-time.

2. Model Quality Network

In this section, we describe Model Quality Network
(MQ-Net) proposed for learning the model error from a
histogram built from the point-to-model residuals of points
closer than a fairly large εmax threshold, e.g., 3 pixels for
fundamental or essential matrix estimation.

15745



0.0 0.2 0.5 0.7 0.9 1.1 1.4 1.6 1.8 2.0 2.2 2.5 2.7 2.9

Point-to-model residual (px)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

%
 p

oi
nt

s
25.0° - 180.0° (avg. inlier ratio = 0.04)

0.0 0.2 0.5 0.7 0.9 1.1 1.4 1.6 1.8 2.0 2.2 2.5 2.7 2.9

Point-to-model residual (px)

0.00

0.02

0.04

0.06

0.08

0.10

%
 p

oi
nt

s

1.0° - 5.0° (avg. inlier ratio = 0.49)

0.0 0.2 0.5 0.7 0.9 1.1 1.4 1.6 1.8 2.0 2.2 2.5 2.7 2.9

Point-to-model residual (px)

0.00

0.01

0.02

0.03

0.04

0.05

%
 p

oi
nt

s

0.0° - 0.001° (avg. inlier ratio = 0.19)

Figure 3. Histograms and inlier ratios for bad, good, and perfect relative poses. Average residual histograms of 10 000 instances of
relative poses where the maximum of the rotation and translation errors is in-between (left) 25◦ − 180◦, (middle) 1◦ − 5◦, and (right)
0◦ − 0.001◦. The average inlier ratio of the models is written in the title. Notice that the inlier ratio is higher for the moderately accurate
poses in the middle plot than for the almost perfect ones in the right one.

2.1. Residual Histogram

State-of-the-art algorithms try modelling the noise in
the point-to-model residuals as having Gaussian [39, 41] or
χ2 [4,5] distribution. We, however, found that assuming the
inlier or outlier residual distribution to follow a particular
model in real-world scenes is unnatural and, thus, necessar-
ily leads to sub-optimal solutions. Fig. 2 shows the residual
(i.e., Sampson error) distributions averaged over 10 000 rel-
ative poses from the PhotoTourism dataset. We used only
those relative poses for a particular curve, where the mean
of the rotation and translation errors (compared to a ground
truth; in degrees) is in the range shown in the legend.

Instead of guessing the actual distribution, we learn it
from the point-to-model residuals. We create residual his-
tograms with h ∈ N bins only using residuals that are
smaller than a fairly large inlier-outlier threshold εmax. Pa-
rameter εmax ∈ R+ can be considered as a threshold upper-
bound as in [6]. Given a model θ ∈ Rd (d ∈ N) estimated,
e.g., from a minimal sample inside RANSAC, the value in
the i-th bin, i ∈ [0, h), of the histogram is calculated as

bi =
1

|P|
∑
p∈P

s
iεmax

h
≤ R(p, θ) < (i+ 1)εmax

h

{
,

where R : P × Rd → R+ is a residual function, and J.K is
the Iverson-bracket that is one if the condition inside holds
and zero otherwise. The value of bi basically is the propor-
tion of points with residuals falling in interval

Ii =

[
iεmax

h
,
(i+ 1)εmax

h

)
.

Example histograms of relative poses are shown in
Fig. 3. The histograms are averaged over 10 000 problem
instances. The right plot shows the histograms of poses with
approximately zero error – these we generated directly from
the ground truth COLMAP [32] reconstructions. In the mid-
dle one, the poses are reasonably accurate but not perfect.

Their error is in-between 1◦ and 5◦. The left one shows the
histograms of inaccurate poses. The average inlier ratio is
in the title. While inaccurate poses are easy to be differenti-
ated from the accurate ones, it is interesting that the average
inlier ratio of reasonably good models is higher than that of
the almost perfect ones. This means that scoring techniques
based purely on the inlier ratio, e.g. RANSAC and MSAC,
fail to find the most accurate relative poses by nature.

2.2. Data Generation

In order to generate training and validation data, we first
load each image pair with a known ground truth relative
pose. We detect 8000 SIFT keypoints in both images in or-
der to have a reasonably dense point cloud reconstruction
and precise camera poses [43]. We combine mutual nearest
neighbor check with standard distance ratio test [21] to es-
tablish tentative correspondences, as recommended in [43].

To be able to learn how the residuals of accurate poses
look, we calculate the histogram of the ground truth one
and store it with a prediction target of zero. We generate
10 poses with perfect rotation and translation vector rotated
by a random rotation matrix. Also, 10 poses are added with
perfect translation and rotation matrix multiplied by a ran-
dom rotation. Finally, 100 relative poses are generated by
drawing minimal samples uniformly randomly, estimating
the implied models, calculating their errors w.r.t. the ground
truth pose, and storing their residual histograms. The pre-
diction target is always the average of the translation and
rotation errors, w.r.t. to the ground truth pose, divided by
180◦. Thus, it is normalized into interval [0, 1]. A total of
121 samples are generated from each image pair. We found
that learning rotation and translation errors separately is,
generally, less effective than learning a unified score. This
is expected since, due to the nature of projective geome-
try [15], the error in the translation and rotation can not be
disentangled from the point-to-model residuals.
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2.3. Training Loss and Network

Due to being able to normalize the target between 0 and
1, we can consider the problem as binary classification,
where 0 is an accurate and 1 is an inaccurate model. This
assumption implies that the conditional density pγ(y | x) is
the Bernoulli distribution as follows:

pγ(y | x) =

fγ(x), if y = 1;

1− fγ(x), otherwise,

where fγ(x) is a point estimate, γ is the model parameters,
x is the input, and we are given a set D = {(xi, yi)}Mi=1 of
training data generated as explained in the previous section.

In order to train the network by minimizing the negative
log likelihood, we can use the Binary Cross Entropy (BCE)
loss that is written as follows:

− log pγ(y | x) = − [y log fγ(x) + (1− y) log(1− fγ(x))] .

However, since the final objective is to discriminate the
best model among the most accurate ones, learning the his-
tograms of accurate models is significantly more important
than learning inaccurate ones. Therefore, we modify the
loss function to be

− log pγ(y | x,w) = −(1− fγ(x))w

[y log fγ(x) + (1− y) log(1− fγ(x))] .

where w is a weighting parameter [9]. Weighting by the tar-
get error as (1−fγ(x))w assigns high loss to histograms that
resemble the histograms of accurate models. This allows
the network to better discriminate between accurate models
while diminishing the importance of inaccurate ones. This
is motivated by the fact that it is negligible from the esti-
mation standpoint if the error, for example, in the estimated
rotation matrix is 80◦ or 100◦. In contrast, assigning high
score to a rotation with 1◦ error and lower score to one with
10◦ error is of extreme importance.

We use a fairly simple network that allows the proposed
technique to be fast. To do so, we use nl ∈ N linear layers of
size sl, each followed by a 1D batch normalization, a leaky
ReLU and a dropout layer, see Fig. 1. Due to considering
the problem as binary classification, we choose the sigmoid
function as the last layer. To our tests, w = 4, nl = 5 and
sl = 1024 lead to accurate results while being fast.

Interestingly, we found that a mixture of our learned
score with the traditional inlier ratio outperforms both
scores taken alone, suggesting that each score contributes
discriminative information that the other does not provide.
Therefore, the final model score is calculated as follows:

S(θ,P) = α

∑
p∈P JR(p, θ) < εmaxK

|P|
+ (1− α)fγ(θ),

where S : Rd×P× → R is the scoring function, α ∈ [0, 1]
is a weighting parameter, and fγ(θ) is the error prediction
of the network given model θ. We use α = 0.5 in all our
experiments, thus, taking the average of the predicted score
and the actual inlier ratio.

3. Final Model Polishing
The proposed learning-based scoring technique uses a

fairly wide inlier-outlier threshold εmax when calculating the
residual histograms. This threshold is too wide in practice
and, thus, it is not well suited to select the inliers of the
model that scored the best by the proposed technique. This
is quite problematic from the RANSAC standpoint, which
always finishes with either a least-squares fitting or a nu-
merical optimization on the final set of inliers. Therefore,
we propose the following strategy to determine a set of in-
liers that can be used for the model re-estimation.

Suppose that we are given an initial set of inliers I =
{p | R(p, θ) < εmax ∧ p ∈ P}, point-to-model residual
function R : P × Rd → R, scoring function S′(: Rd ×
P× → R) = fγ(θ) and model fitting function F : P× →
Rd that estimates the model parameters θ ∈ Rd from a set
of point correspondences, where P× is the power set of P .
Note that scoring S′ only uses the prediction of the network
and is not combined with the inlier ratio. We assume that
maximum threshold εmax is wide enough to accommodate
the true threshold 0 ≤ ε∗ ≤ εmax (i.e., implied by the noise
scale σ). Consequently, the task is to solve

ε∗ = arg max
ε∈[0,εmax]

S′(F (Iε),P) (1)

where Iε = {p | p ∈ I ∧R(p, θ) ≤ ε} ⊆ I.
Let us recognize that the set of candidate values for ε∗

leading to different Iε is finite. This threshold set coin-
cides with the set of point-to-model residuals within inter-
val [0, εmax]. Let us increasingly order the residuals of the
points from I as 0 = r1 = · · · = rm ≤ rm+1 ≤ · · · ≤ ε∗ ≤
· · · ≤ r|I| ≤ εmax, where m is the minimal sample size.
Threshold ε∗ maximizing S′(F (Iε)) is found by progres-
sively increasing the threshold value, where ε0 = rm+1,
ε1 = rm+2, · · · , ε|I|−m = r|I| and, thus, adding the points
one-by-one to the final inlier set. The best threshold ε∗ is
the one where the predicted score of model θ∗ = F (Iε∗)
from the implied inlier set Iε∗ maximizes the learned score
S′(F (Iε∗)). The algorithm is shown in Alg.1.

We make two important notes. First, scoring function
S′ must not increase monotonically together with the size
of the inlier set, e.g., as in the inlier counting of plain
RANSAC. Otherwise, the best value for ε∗ will always be
εmax. This is the sole reason why we use S′ instead of S.
Second, the estimation procedure might be time-consuming
if we include the points one-by-one to the current inlier set.
Therefore, it is preferred to divide the residual set into k
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Algorithm 1 Final Model Fitting.
Input: I – initial inliers; P – points; m – sample size

r1 ≤ · · · ≤ r|I| – inlier residuals; δ – step size
Output: θ∗ – model parameters; I∗ – inliers

1: k ← m+ 1, s∗ ← 0, I∗ ← ∅
2: while k ≤ |I| do
3: Ik ← {p | R(p, θ) ≤ rk ∧ p ∈ I}
4: θk ← F (Ik) . Model estimation
5: s← S(θk,P) . Score calculation
6: if s > s∗ then . New so-far-the-best model
7: s∗ ← s, I∗ ← Ik
8: k ← k + δ . Increase the sample size

2 4 6 8 10
Success threshold (in degrees)

0.1

0.2

0.3

0.4

0.5

R
ec

al
l

Fundamental matrix estimation

RANSAC scores + LSQ
MSAC scores + LSQ
MAGSAC++ scores + LSQ
MQ-Net
MQ-Net + MF-Net

2 4 6 8 10
Success threshold (in degrees)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

Essential matrix estimation

RANSAC scores + LSQ
MSAC scores + LSQ
MAGSAC++ scores + LSQ
MQ-Net
MQ-Net + MF-Net

Figure 4. Recall curves showing the recall (vertical axis) of plain
RANSAC with RANSAC, MSAC and MAGSAC++ scorings, fol-
lowed by least-squares fitting on the final set of inliers; the recall
of RANSAC with the proposed MQ-Net with and without filtering
minimal samples using MF-Net.

groups and do k instead of |I| − m estimations. We will
use k = 10 in the experiments. In the algorithm, there is no
other threshold used besides εmax.

4. Minimal Sample Filtering Network
In most of the estimation tasks, minimal samples often

lead to degenerate models or to ones implying an impossi-
ble underlying scene. For instance, such a case is when a
homography represents a plane that flips between the two

views, i.e., the second camera sees it from the back. For
homographies, this case can be identified by simply check-
ing the minimal sample. However, there is no such so-
lution that finds degenerate configurations prior to epipo-
lar geometry estimation. Prior art like DEGENSAC [11]
and QDEGSAC [13] always need to perform the expensive
epipolar geometry estimation to recognize degenerate min-
imal samples. In practice, this means that the models are
estimated and the quality is calculated unnecessarily before
identifying degenerate situations.

In this section we propose MF-Net (Minimal sample Fil-
tering Network), a network that predicts the probability of
a minimal sample leading to a degenerate model. This is
fundamentally different from prior works [7,25,31,45] that
train networks for outlier rejection: while they encode the
full context of the available correspondences to filter the
ones which do not conform with the camera motion, we in-
stead score a minimal sample to predict its degeneracy inde-
pendently of the underlying motion. This leads to the pos-
sibility, and requirement, of using an extremely lightweight
model without learning motion priors which would hinder
the generalization across datasets.

We define MF-Net as MFω : R4m → [0, 1], a paramet-
ric function with parameters ω that maps a minimal sam-
ple x ∈ R4m with m correspondences to the probability of
its degeneracy. Although an analytically precise solution is
available for this problem, it requires an expensive model
estimation and quality calculation, which we wish to sub-
stitute with a much cheaper probabilistic solution. MF-Net
needs to obey both the invariance to the ordering of corre-
spondences and to the ordering of images by architecture,
independently of the learned parameters ω. We take in-
spiration from PointNet [30] and achieve point ordering in-
variance by processing each correspondence independently
with shared MLPs, and sharing information across corre-
spondences with global max pooling operations. Image or-
dering, on the other hand, only spans two possibilities, so
we run our backbone on both combinations and max pool
features before predicting the final degeneracy score. The
architecture is shown in the supplementary material.

We train MF-Net to classify minimal samples as de-
generate or valid, and produce training data by running
the classical degeneracy test on random minimal samples
from real image correspondences. We use the binary cross-
entropy loss and balance classes with double inverse fre-
quency weighting so that the output probabilities represent
the parameters of Bernoulli distributions independent of the
frequency of degenerate samples in the training set [44]. We
aim at achieving a speed-up without noticeable loss in the
accuracy, so the optimal filtering threshold on the network
confidence is not a trivial choice. We thus tune the thresh-
old on a subset of the training set by observing the resulting
accuracy and speed-up, as shown in Section 5.3 and Fig. 5.
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For essential matrices, we train the network to recognize
the following cases. (1) The minimal solver returns at least
a single real solution. (2) The essential matrix has at least
m + 1 inliers, where m = 5 is the minimal sample size.
(3) There is at least a single pose, decomposed from the es-
timated essential matrix, which triangulates all correspon-
dences from the minimal sample in front of both cameras.

For fundamental matrices, we check the minimal sam-
ple for H-degeneracy [11] together with the same criteria as
what are used for essential matrices.

5. Experiments

In this section, we compare the proposed deep learning-
based scoring technique to the original RANSAC inlier
counting [12], the truncated quadratic loss of the widely
used MSAC [41] and the state-of-the-art MAGSAC++ [6]
methods. To do so, we implemented plain RANSAC with
a final model re-estimation step applied to all found inliers.
We then replaced the scoring function of this RANSAC with
MSAC, MAGSAC++ and the proposed one. For RANSAC,
MSAC and MAGSAC++, we applied LSQ fitting followed
by the Levenberg-Marquardt [26] numerical optimization to
estimate the final model parameters from all found inliers.
For the proposed scoring, we run the algorithm proposed
in Section 3. The confidence is set to 0.999 and the max-
imum iteration number to 10 000. The proposed learning-
based approaches work with 2048-sized batches. The gen-
erated histograms consist of 100 bins when estimating es-
sential matrices and 225 bins for fundamental matrices. The
matches are filtered by using an SNN ratio threshold of 0.9.
All methods use the PROSAC sampler [10] on correspon-
dences ordered by the SNN ratio.

For testing the methods, we use the problems and
datasets from CVPR tutorial RANSAC in 2020 [1]. The data
are from the CVPR IMW 2020 PhotoTourism challenge.
Correspondences are obtained using RootSIFT features and
mutual nearest neighbour matching. For calculating the ac-
curacy, we use all scenes from the test set, each containing
4950 image pairs. Thus, the accuracy is calculated on a
total of 54 450 image pairs. The proposed learning-based
techniques are trained and validated on the provided train-
ing set. For RANSAC, MSAC and MAGSAC++, we use
the hyper-parameters tuned in [1].

We test three versions of MQ-Net depending on the prob-
lem it was trained on. We train it on fundamental matrix (F),
essential matrix estimation (E) and on both problems simul-
taneously (E & F). In the E & F case, the same network runs
for both fundamental and essential matrix estimation. Dif-
ferently, MF-Net is either trained on fundamental matrix or
on essential matrix.

mAA@10◦ ↑ Median (◦) ↓ Time (ms) ↓
Model scoring R t εR εt AVG MED
RANSAC [12] 0.64 0.32 2.19 11.20 1.12 2.10
MSAC [41] 0.63 0.31 2.39 12.14 1.35 3.88
MAGSAC++ [6] 0.64 0.31 2.33 12.25 1.35 3.95
MQ-Net (E) 0.62 0.29 2.29 15.09 9.73 4.74
MQ-Net (F) 0.66 0.34 1.83 10.98 8.54 3.82
MQ-Net (E & F) 0.70 0.35 1.67 10.45 8.42 3.75
MQ-Net + MF-Net 0.70 0.36 1.63 10.20 1.76 1.65

Table 1. Fundamental matrix estimation. The reported values
are the rotation and translation mAA@10◦ scores; median errors
(εR and εt) in degrees; and the run-times in milliseconds. MQ-Net
(E) and (F) are trained, respectively, on essential and fundamental
matrix estimation. MQ-Net (E & F) is trained on both problems.
The last row shows the results with filtering by MF-Net.

5.1. Fundamental Matrix Estimation

To estimate fundamental matrices, we use the 7-point
algorithm [15] as minimal solver and the normalized 8-
point [16] one for estimating from a non-minimal sample.

Table 1 reports the rotation and translation mean Av-
erage Accuracy (mAA) at 10◦; the median errors (εR and
εt) in degrees, and the run-times (t) in milliseconds of the
entire robust estimation. The mAA score is calculated as
the area under the recall curve cropped at 10◦. All three
variants of MQ-Net lead to a significantly improved accu-
racy compared to the traditional techniques. The best re-
sults are achieved by the network trained on both problems
simultaneously. The median rotation error is the 72% of
the MAGSAC++ error. The median translation error is de-
creased by 2.05 degrees. MF-Net is able to accelerate the
method by five times while improving the accuracy as well.
MQ-Net combined with MF-Net is both faster and more ac-
curate than the traditional methods.

The recall curves are shown in Fig. 4 (top). The success
threshold (horizontal axis; in degrees) defines the error up-
per bound for a relative pose to be considered as accurate.
The error is calculated as the maximum of the rotation and
translation errors. The vertical axis shows the ratio of poses
considered accurate by using a particular success threshold.

5.2. Essential Matrix Estimation

For estimating essential matrices, we use the 5-point al-
gorithm [37] as minimal solver. In the final model polishing
stage, we optimize the pose with the Levenberg-Marquardt
numerical optimization [26] minimizing the pose error.

Table 2 reports the rotation and translation mAA@10◦

scores, median errors (εR and εt) in degrees, and the run-
times (t) in milliseconds of the entire robust estimation pro-
cedure. All three variants of the proposed algorithm lead
to better accuracy than the traditional techniques. Again,
the best results are achieved by the network trained on both

15749



mAA@10◦ ↑ Median (◦) ↓ Time (ms) ↓
Model scoring R t εR εt AVG MED
RANSAC [12] 0.70 0.46 1.76 5.41 1.64 1.61
MSAC [41] 0.71 0.47 1.67 5.21 1.94 2.73
MAGSAC++ [6] 0.71 0.47 1.64 5.03 1.96 2.69
MQ-Net (E) 0.76 0.61 0.99 2.56 7.43 5.94
MQ-Net (F) 0.76 0.61 0.98 2.51 6.62 5.43
MQ-Net (E & F) 0.78 0.62 0.94 2.40 5.38 3.75
MQ-Net + MF-Net 0.79 0.62 0.91 2.34 4.33 3.35

Table 2. Essential matrix estimation. The reported values are the
rotation and translation mAA@10◦ scores; median errors (εR and
εt) in degrees; and the run-times in milliseconds. MQ-Net (E) and
(F) are trained, respectively, on essential and fundamental matrix
estimation. MQ-Net (E & F) is trained on both problems. The last
row shows the results with filtering by MF-Net.

problems. Both median errors and mAA@10◦ are improved
by a large margin. The median error of the proposed al-
gorithm is the half of the error of the traditional meth-
ods. MF-Net accelerates the robust estimation significantly
while also improving accuracy. We argue that early sam-
ple rejection plays a larger role in harder problems with a
higher ratio of outlier minimal samples, which is the case
for fundamental matrix compared to essential matrix. We
substantiate this claim with further experiments in the sup-
plementary, where we observed speedups up to an order of
magnitude in harder settings.

The recall curves are in the bottom of Fig. 4. The success
threshold (horizontal axis; in degrees) defines what error is
accepted as a success. The error is the maximum of the
rotation and translation errors. The vertical axis is the ratio
of poses that are considered successful using the a particular
success threshold.

5.3. Sample Rejection

We tune the confidence threshold εconf of MF-Net on the
4950 image pairs of scene Notre Dame Front Facade from
the training set of [1]. We compare the traditional algorithm
that runs chirality and degeneracy checks after the model
is estimated; and the proposed one that first runs MF-Net,
estimates the model from the samples that survived and, fi-
nally, applies the traditional checks to the estimated models.
Confidence threshold εconf ∈ [0, 1] is used to reject samples
where the predicted confidence is smaller than εconf. The
traditional algorithm with no deep filtering runs if εconf = 0.
For this experiment, we did not filter by the SNN ratio.

Fig. 5 shows the ratios of the results of the proposed and
traditional techniques as a function of εconf. The shown
properties are the rotation (εR) and translation (εt) errors
and run-times. The vertical lines are placed so the filtering
leads to the best accuracy. For essential matrices, setting
the threshold to 0.8 leads to almost an order-of-magnitude
speed-up. The accuracy is improved by 20% on average.
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Figure 5. MF-Net threshold influence. The rotation (εR) and
translation (εt) errors and the run-time divided by the εconf = 0
case and plotted as a function of filtering confidence threshold
εconf for essential (E) and fundamental (F) matrix estimation. Case
εconf = 0 means that no deep filtering is applied. The vertical lines
are placed so the threshold leads to the best accuracy.

For fundamental matrices, the threshold leading to the most
accurate results is 0.7 which reduces the run-time to almost
one fifth. The accuracy is improved by 17% on average.

5.4. Ablation Study: Histogram Size

We test the proposed scoring approach with histograms
of different sizes. The mean and median rotation and trans-
lation errors and run-times of essential matrix estimation
are reported in Table 3. We tested networks trained either
on essential or fundamental matrix estimation and, also, on
both problems simultaneously. The histogram sizes are in
the first column. The mAA score increases together and the
median error inverse proportionally with the histogram size
– the denser the histograms, the lower the error. The best
results are obtained by histograms consisting of 2500 bins.
Note that, while it is possible to run with bigger histograms,
it is both memory and time consuming.

We run the same test for fundamental matrix estimation.
The mAA scores, median rotation and translation errors and
run-times are reported in Table 4. Again, we tested MQ-
Net trained either on E or F estimation and, also, on both
problems simultaneously. Interestingly, the histogram size
has an opposite effect on the results when compared with
essential matrix estimation. The smaller the histogram, the
better the results. The best results are obtained by either
100 or 225 bins. In the tests, we chose 225 since its average
results are marginally more accurate than using 100 bins.

5.5. Ablation Study: Model Re-estimation

The results on E and F estimation are shown, respec-
tively, in Tables 5 and 6. Four strategies are tested: no final
model polishing; using all inliers closer than Iεmax ; using
the algorithm proposed in Section 3 without grouping the
residuals (Iεno ) and with 10 groups (Iε10 ).
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mAA@10◦ ↑ Median (◦) ↓ Time (ms) ↓
trained on E R t εR εt AVG MED

100 0.75 0.60 1.05 2.65 3.52 2.30
225 0.76 0.60 1.03 2.69 3.63 2.38
625 0.76 0.61 1.00 2.61 3.75 2.47

1600 0.76 0.61 0.99 2.56 4.79 2.59
2500 0.76 0.61 1.00 2.62 4.17 2.76

trained on F
100 0.75 0.60 1.01 2.60 4.36 3.01
225 0.75 0.60 1.02 2.59 4.50 3.03
625 0.75 0.61 1.01 2.58 4.54 3.13

1600 0.75 0.61 0.99 2.56 5.07 3.76
2500 0.76 0.61 0.98 2.51 5.40 3.76

trained on E & F
100 0.77 0.62 0.95 2.39 4.35 3.01
225 0.77 0.62 0.96 2.44 4.49 3.03
625 0.77 0.62 0.96 2.47 4.49 3.11

1600 0.77 0.62 0.95 2.45 5.07 3.51
2500 0.78 0.62 0.94 2.40 5.38 3.75

Table 3. Histogram size for E estimation. The rotation and trans-
lation mAA@10◦ scores; median errors (εR and εt; in ◦); and the
run-times (in ms) are plotted as a function of the histogram size.

mAA@10◦ ↑ Median (◦) ↓ Time (ms) ↓
trained on E R t εR εt AVG MED

100 0.62 0.29 2.29 15.09 5.94 2.67
225 0.61 0.27 2.44 15.57 5.96 2.72
625 0.59 0.26 2.58 16.16 6.09 2.73

1600 0.56 0.23 3.35 17.35 6.38 2.86
2500 0.52 0.21 4.09 18.34 6.78 2.99

trained on F
100 0.66 0.34 1.83 10.98 8.09 2.44
225 0.66 0.34 1.84 11.22 8.45 3.75
625 0.66 0.32 1.86 11.77 8.56 3.90

1600 0.63 0.32 2.06 12.09 8.69 3.98
2500 0.65 0.30 1.96 12.09 9.17 4.20

trained on E & F
100 0.70 0.35 1.69 10.29 8.08 3.66
225 0.70 0.35 1.67 10.45 8.42 3.75
625 0.69 0.34 1.76 10.68 8.12 3.72

1600 0.64 0.29 2.06 10.99 5.94 3.98
2500 0.64 0.29 2.01 11.14 9.16 4.20

Table 4. Histogram size for F estimation. The rotation and trans-
lation mAA@10◦ scores; median errors (εR and εt; in ◦); and the
run-times (in ms) are plotted as a function of the histogram size.

Without re-fitting, the results are purely the accuracy of
the minimal sample models scored the best by the proposed
technique without any LSQ re-estimating the model param-
eters. When the models are re-estimated from all inliers
with lower than εmax residuals, the results are, as expected,
inaccurate. This justifies the need for an adaptive inlier se-
lection strategy. Applying the proposed strategy without
grouping the residuals is extremely accurate but five times
slower than the other variants. Grouping the residuals into

mAA@10◦ ↑ Median (◦) ↓ Time (ms) ↓
LSQ R t εR εt AVG MED
w/o 0.55 0.23 3.57 16.78 6.83 3.13
Iεmax 0.67 0.31 2.18 11.35 7.04 3.21
I∗no 0.74 0.38 1.33 9.03 28.49 7.79
I∗10 0.70 0.36 1.63 10.20 8.42 3.75

Table 5. Model re-estimation on fundamental matrices. Rota-
tion and translation mAA@10◦ scores; median errors (εR and εt;
in degrees); and the run-times (in ms) of fundamental matrix esti-
mation with different final re-fitting strategies: no polishing (w/o);
re-fitting on all inlier closer than the max. threshold (Iεmax ); re-
fitting with the proposed technique without grouping the residuals
(I∗no); proposed method with 10 groups (I∗10).

mAA@10◦ ↑ Median (◦) ↓ Time (ms) ↓
LSQ R t εR εt AVG MED
w/o 0.66 0.45 2.22 5.47 4.25 2.17
Iεmax 0.16 0.07 30.09 34.29 4.25 2.17
I∗no 0.79 0.62 0.99 2.45 27.97 10.38
I∗10 0.78 0.62 0.91 2.34 5.38 3.73

Table 6. Model re-estimation on essential matrices. The rota-
tion and translation mAA@10◦ scores; median errors (εR and εt;
in degrees); and the run-times (in ms) of essential matrix estima-
tion with different final re-fitting strategies: no polishing (w/o);
re-fitting on all inlier closer than the max. threshold (Iεmax ); re-
fitting with the proposed technique without grouping the residuals
(I∗no); proposed method with 10 groups (I∗10).

10 groups and, thus, doing only 10 non-minimal model es-
timations leads to similar accuracy while being fast.

6. Conclusion
We propose two new learning-based approaches MQ-net

and MF-Net to improve the robust estimation accuracy by
learning to find models with small errors, and to speed it up
by rejecting minimal samples early. MQ-Net, together with
a new adaptive model re-estimation strategy and MF-Net,
leads to results superior to the state-of-the-art by a large
margin while running faster than its less accurate alterna-
tives. MQ-Net using a single model trained jointly on es-
sential and fundamental matrix estimation leads to the most
accurate results on both problems on thousands of image
pairs. The algorithms can be straightforwardly plugged
into state-of-the-art RANSAC pipelines, e.g., VSAC [18].
Moreover, we demonstrate an interesting property of such
robust estimation problems: consensus maximization does
not necessarily lead to the most accurate relative poses.
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