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Abstract

In this paper, we address the problem of estimating
scale factors between images. We formulate the scale es-
timation problem as a prediction of a probability distri-
bution over scale factors. We design a new architecture,
ScaleNet, that exploits dilated convolutions as well as self-
and cross-correlation layers to predict the scale between
images. We demonstrate that rectifying images with es-
timated scales leads to significant performance improve-
ments for various tasks and methods. Specifically, we
show how ScaleNet can be combined with sparse local fea-
tures and dense correspondence networks to improve cam-
era pose estimation, 3D reconstruction, or dense geomet-
ric matching in different benchmarks and datasets. We pro-
vide an extensive evaluation on several tasks, and analyze
the computational overhead of ScaleNet. The code, evalua-
tion protocols, and trained models are publicly available at
https://github.com/axelBarroso/ScaleNet.

1. Introduction
Establishing correspondences is the very first step in

many different 3D pipelines. Advancing on this task will
have a direct impact on the performance of downstream ap-
plications such as camera pose estimation [39], autonomous
driving [6], or 3D reconstructions [41]. However, methods
that search for correspondences between images face sig-
nificant challenges, and although some solutions are more
mature than others, the task still is far from being solved.

As the field advances, even though the intermediate
tasks in the correspondence search remain the same, their
methods are being revisited and redesigned, e.g., keypoint
detectors/descriptors [10, 11, 37], dense geometric match-
ers [25,53], or geometric verification techniques [31,40,46].
These new approaches have shown that the downstream
tasks can be pushed to new performance levels through ro-
bust correspondences. The key objective of these new meth-
ods is to handle more and more extreme cases where pre-
vious pipelines failed, and although some methods are ar-
guably application-specific [60], their robustness to extreme
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Figure 1. We propose a scale-aware system that helps establish
correspondences under strong scale changes, allowing to correctly
match pairs where previous pipelines were not successful. We in-
troduce ScaleNet, a network that estimates the scale distribution
between two images so that regions of interest can be corrected
and exhibit the same scale factor (top). We display (bottom) an in-
door and outdoor example where matches from R2D2 with multi-
scale pyramid (left) increase if using ScaleNet rectification (right).

conditions is the main reason for success.
Inspired by the previous methods targeting visual ro-

bustness [29, 30, 58], we address the problem of handling
the scale change between images, which is a long-standing
challenge in computer vision [23,26]. Scale robustness and
estimation have been the focus of much research in the area
of handcrafted feature extraction [23, 54, 60] as a reliable
solution that can significantly boost the performance of ex-
isting methods. Moreover, the scale change is arguably the
most challenging, and the most important parameter to esti-
mate compared to rotation, translation, or even local affine
deformations [54]. There are several strategies to deal with
scale changes, with the multi-scale pyramid being one of
the most popular solutions [3,4,11,23,37,52,54]. Although
the multi-scale pyramid mitigates the problem of different
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scales, it increases complexity and ambiguity as the matcher
needs to establish correspondences among multiple scale
levels. Figure 1 (bottom) shows an example of extreme
pairs for which R2D2 [37] with multi-scale pyramid can
only get a high number of correct matches once we rec-
tify the scales. Besides the added complexity, a multi-scale
pyramid is not always a straightforward solution to incor-
porate in some methods, such as dense correspondence net-
works [18,45,53]. In contrast to multi-scale pyramids, some
works aim at being invariant to different scales through their
learning process [10,34], however, as a side effect, they be-
come progressively less discriminative [55]. Another pos-
sible direction, and popular strategy, is to estimate the local
or global transformations and rectify the images prior to es-
tablishing the correspondences [30, 36, 50, 58].

The scale factor characterizes the relationship between
pairs of images and, in general, an accurate estimate can
only be achieved when considering both images at the same
time. Using pairs of images as input may increase the
complexity beyond acceptable in some applications such as
large-scale retrieval and localization unless used in their fi-
nal verification stage. Nonetheless, solving the scale before
the main analysis improves the discriminative power and
allows less robust but more efficient methods to be used in
challenging scenarios [34]. Hence, we propose a new ap-
proach that estimates and corrects the scale factor between
a given pair of images before the correspondence search,
which is illustrated at the top of figure 1. Our scale pre-
dictor network, termed ScaleNet, is inspired by dense geo-
metric methods [25, 51, 53] and conditioned local features
extractors [14, 34, 55]. ScaleNet extracts features from two
low-resolution images and exploits CNN correlation layers
to predict the scale factor. Due to the non-linear nature of
scale changes, we formulate the scale regression problem
as the estimation of a probability distribution in logarithmic
space. We show how ScaleNet can be combined with differ-
ent methods and demonstrate the improvements on different
tasks and datasets.

Our contributions include: 1) a scale-aware matching
system based on a novel scale predictor architecture, 2) a
strategy to measure and label the scale factor between two
images, and 3) a learning scheme that tackles the non-linear
nature of scale changes.

2. Related work
Recent works have allowed significant progress in estab-

lishing good correspondences between images. Although
many works have focused on solving entire tasks in an
end-to-end manner [5, 39], there are lots of efforts focused
on identifying limitations and improving the robustness of
individual steps in modern pipelines [3, 28, 40].

Image rectification consists of predicting or applying a

set of transformations to the images so that the search for
correspondences is done in an optimum setting. Pioneering
work on this area is ASIFT [58], which applies multiple
affine transformations to find less challenging image pairs
for matching with SIFT [23]. MODS [29] investigated this
line of work by introducing an iterative scheme to generate
intermediate synthetic views between images. MODS also
proposed an adaptive system to avoid applying synthetic
transformations to easy-to-match pairs, being faster and
more versatile than previous ASIFT. Closer to our work
is [60], which computes the scale factor between a pair
of images by detecting and matching exhaustively SIFT
features on multiple scale levels. Although it shows that
they can deal with strong scale changes, their method is tied
to the need of visiting all possible scaled images before the
actual local feature matching stage. One negative aspect of
these methods is that they still require a blind exploration of
synthetic views to find the optimal image transformations.
A few works have tried to overcome the previous limitation
and proposed to learn such parameterizations directly
from the images. One of the first attempts is [57], where
authors introduced a neural network to assign a canonical
orientation to every input image patch before the descriptor
architecture. In AffNet [30], authors follow this trend and
learn a full affine shape estimator to geometrically align in-
put patches before the descriptor. Moreover, [36] proposed
a scene-specific overlapping estimator and showed that
scale rectification based on image overlapping can improve
feature matching. Unlike previously learned methods,
our labeling strategy is based on keypoint distance ratios,
resulting in a scene-agnostic scale predictor that uses pairs
of images as input. Even though our ScaleNet tackles
only the scale factor out of several possible transformation
parameters, we show in section 5 that the scale factor is
crucial for boosting the performance of current methods.

Visual robustness has been the focus of numerous works in
the field of correspondence search [4, 13, 24]. The rotation
has been addressed by correcting input patches [13, 23, 30]
before extracting local descriptors [28,48,49], or by design-
ing robust architectures [4, 22, 24]. However, in the context
of scale changes, the standard strategy is the well-known
multi-scale (M-S) pyramid approach, which applies meth-
ods at different re-scaled versions of the image [11, 37, 47].
Even though M-S pyramids offer a versatile solution for
many applications, it does not provide a suitable approach
for extreme scale changes (cf. section 5), and thus, both,
single and multi-scale feature extractors, benefit from cor-
recting the scale factor before extracting features. More-
over, recent works show that there is growing interest in
pair-wise methods, i.e., that use two input images at the
same time to establish the local or dense correspondences
[14, 18, 25, 35, 45, 53, 55], but, in that scenario, there is no
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Figure 2. ScaleNet uses a multi-scale (M-S) feature extractor and a combination of self- and cross-correlation layers to calculate the
relationship within each image and between them. The M-S extractor is composed of a common CNN and an ASPP block [7, 8]. The
ASPP module consists of three 3x3 convolutional layers with different dilation rates. Conv blocks perform 1x1 convolutions to learn the
cross-channel interactions that go into the self- and cross-correlation layers. Correlation volumes’ dimensionality is reduced through a
CNN, and its results are concatenated into a flat feature vector. Finally, consecutive fully connected layers calculate the scale distribution.

clear or effective strategy for dealing with scale changes.
Hence, given that such methods already take two images as
inputs, ScaleNet rectification offers a more natural and intu-
itive process towards visual robustness than M-S pyramids.

3. Method
ScaleNet embraces several key concepts to deliver good

performance in practical settings. The first key aspect is
that it is effective for low-resolution images, which makes
it more efficient. Another important idea is the formulation
of the scale estimation as a distribution prediction in loga-
rithmic space rather than a regression problem [17, 30, 56].
This allows using a simple and shallow, yet effective archi-
tecture. Figure 2 presents our ScaleNet architecture, and the
following sections detail each of the aspects of ScaleNet and
its learning scheme.

3.1. ScaleNet architecture

Consider A and B as input images to ScaleNet. Low-
resolution images A and B are processed by a multi-scale
feature extractor block, which is composed of a generic net-
work, e.g., VGG, or ResNet, followed by the atrous spatial
pyramid pooling (ASPP) [7, 8]. The ASPP block achieves
multi-scale robustness by applying to the feature map 3× 3
dilated convolutions, each with a different dilation rate, e.g.,
2, 3, and 4. Thus, the ASPP block allows the network to
compute and fuse features from different receptive fields.
M-S features are concatenated and fed into a final 1×1 con-
volution, which combines the features from local and global
areas at a minimum cost. We then apply self- and cross-
correlation layers to multi-scale features fA and fB , and ob-
tain the correlation maps, cA, cB , and cA−B , which contain
the self- and cross-pairwise similarities. As in [38], ReLU

and L2-normalization are applied to the correlation maps
before the feature reduction blocks, which are composed of
four Conv-Batch-ReLU layers each. Finally, c′A, c′B , and
c′A−B maps are flattened, concatenated, and fed into a set
of fully connected layers to predict the scale distribution P ,
with a final softmax activation layer.

3.2. Predicting scale distributions

ScaleNet outputs a scale distribution rather than a re-
gressed single scale factor, which helps the network to con-
verge to a reliable model. In contrast, when tackling the
problem as a regression task, the same network cannot pre-
dict an accurate scale (cf. appendix C.1). We attribute this
to the fact that the network can learn and interpret the re-
lationships between the quantized scale ranges and solve
an easier classification task, which requires it to assign the
weights to the predefined scale factors instead of predicting
its actual value.

We formulate the scale estimation as a problem of pre-
dicting the probability distribution in a scale-space quan-
tized into L bins. Given images A and B, our objec-
tive function measures the distance between our computed
scale distribution, PA→B , and the ground-truth distribution
P gt
A→B :

Loss(A,B) = KL(PA→B , P
gt
A→B), (1)

where KL(·, ·) is the Kullback-Leibler divergence loss.
To obtain the scale factor from the probability distribu-
tion PA→B , we combine all scale levels using a soft-scale
computation. It enables the network to output scale fac-
tors that interpolate between the quantized scale values,
thus covering all possible scales between images A and B.
Soft-assignment gives the architecture further flexibility and
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Figure 3. In the dataset generation, we randomly pick pairs of
corresponding points in both views and compute their distances in
the image planes. The final scale ground-truth is the average of the
distance ratios of all picked keypoints.

robustness when inferring scales as shown in section 5.4.
The scale factor is a relative ratio operator, hence, it

is non-linear. To avoid a bias by high scale values when
computing the soft-scale, we transform the quantized scale
classes, si, to logarithmic space. The logarithmic transfor-
mation allows to calculate the soft-scale, S̄A→B , as a linear
combination of the logarithmic scales, s̄i, weighted by the
predicted scale probabilities from softmax output pi. The
global scale factor S̄A→B in log-scale is given as:

S̄A→B =

L−1∑
i=0

pi · ln(si), (2)

where si = σt corresponds to the quantized scale for
bin i, σ is our predefined base scale factor, integer
t ∈ [−L/2, . . . , 0, . . . ,+L/2], and L = 2t + 1 is the total
number of scale bins. Moreover, we improve the robustness
of our scale estimator by a simple yet effective consistency
check trick, where we compute the scale factor, S̄A→B , and
its inverse, S̄B→A, and combine them as:

ŜA→B =
S̄A→B − S̄B→A

2
and SA→B = eŜA→B , (3)

with SA→B as the final scale factor between the images.

3.3. Dataset generation

ScaleNet is trained with synthetically generated image
pairs as well as images from real scenes.

Synthetic pairs. We define a set of planar affine trans-
formations to map one image into another. Such image
pairs are easy to generate on-demand for any ground-truth
scale Sgt, however, they do not include the real noise from
different imaging conditions.

Real pairs present more challenging conditions than
synthetic pairs, i.e., non-planar viewpoint changes,
weather/illumination conditions, or occlusions, among oth-
ers. In addition, in contrast to the previous synthetic global
transformations, the scale between two real images may

spatially vary, and areas of different depth or strong per-
spective changes may include various scale factors. Thus,
we introduce a new approach for obtaining training data
by estimating the scale factors between real images. We
use 3D reconstruction datasets, where 3D point clouds and
their corresponding projected 2D positions on the images
are available. First of all, given the 3D model, we find pairs
of images with an overlap higher than 10% computed as
in [11, 32]. For each pair of images A and B, we identify
the 3D points of the model that are visible in both images.
Using the registered 3D points from the model as opposed
to sampling random positions ensures that the regions used
for computing the scale are discriminative. Thus, given the
covisible 3D points, we query its projected 2D positions,
kA, and kB , on image A and B. We randomly sample pairs
of points, kA and kB , and compute their distances as shown
in figure 3.

The scale factor between two images with keypoints
i and j is calculated as the ratio of their distances in image
A and B:

Si−j =
∥kBi − kBj∥
∥kAi − kAj∥

and i, j ∈ [1, ...,K], (4)

with K as the total number of covisible 3D points between
images A and B. As different regions may exhibit different
scale factors, we compute the global scale factor as the aver-
age of ratios in logarithmic scale after sampling R different
pairs of points:

Sgt
A→B = eS̄A→B where S̄A→B =

1

R

∑
i̸=j

ln(Si−j).

(5)
As detailed in section 3.2, the ScaleNet learning scheme
minimizes the K-L divergence between the predicted scales
and ground-truth distributions. We, therefore, build the
ground-truth scale distribution, P gt

A→B , such as it satisfies:

ln(Sgt
A→B) = S̄gt

A→B =

L−1∑
i=0

pgti ∗ ln(si), (6)

where si are the quantized scale factors, and P gt
A→B =

[pgt0 , ..., pgt(L−1)] is the ground-truth distribution of the scale
estimated as a normalized histogram of point pairs.

4. Implementation notes
ScaleNet details. ScaleNet predicts a scale distribution
with L = 13 bins and σ =

√
2, giving possible scale

factors in range S ∈ [0.16, ..., 6]. ASPP module has 3
levels with dilation rates 2, 3, and 4. During training,
ScaleNet uses Adam Optimizer with a learning rate of
10−4 and a decay factor of 0.1 every ten epochs. The
training takes on average 40 epochs, 20 hours on a machine
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Pose estimation (AUC) Time
at 5° at 10° at 20° (ms)

Baseline 4.8 7.4 10.4 -

VGG-16 5.4 8.3 11.8 8.3
ResNet-50 5.6 8.8 12.7 15.8

VGG w/ self-corr. 6.2 9.3 12.5 11.3
VGG w/ ASPP 7.3 11.1 15.7 16.6

Ours (VGG+self-corr+ASPP) 8.4 12.3 17.6 19.4
Ours + Consistency check 8.7 13.4 19.5 19.8

Table 1. Ablation study of the different ScaleNet’s design choices.
Baseline refers to SuperPoint [10] without scale correction.

with an i7-7700 CPU running at 3.60GHz, and an NVIDIA
GeForce GTX 1080-Ti. ScaleNet model and training
scripts are implemented in PyTorch [33].

Dataset details. We use Megadepth dataset [20] for gen-
erating our custom training and testing dataset. We discard
scenes that are in the PhotoTourism test from our training
set as in [40] to avoid overlap. We keep 10% of the train-
ing scenes as our validation set. During data generation, we
sample R = 200 random pairs of 3D points (cf. equation 5)
for a robust scale estimation between the two images. We
sample pairs of images with scale factors S ∈ [0.16, ..., 6]
and create a collection of 250,000 training and 25,000 val-
idation pairs where all scale factors are well represented.
Synthetic pairs are generated on the fly from the Megadepth
training images during training. We include more details
and examples of our training set in appendix A.

5. Experiments
This section presents results for ScaleNet integrated with

state-of-the-art methods on several datasets and tasks. Refer
to appendix for more experiments and qualitative examples.

5.1. Preliminaries

Multi-scale pyramid & ScaleNet. Multi-scale (M-S)
pyramids and ScaleNet aim at making methods more robust
against arbitrary scale changes. Although both approaches
tackle the same problem, each has its strengths, e.g., M-S
pyramids can compute a higher number of features by vis-
iting multiple resized images, and ScaleNet offers a more
natural integration into tasks where two images are given
as input [14, 25, 53, 55]. Besides, we claim that ScaleNet
improves not only single-scale feature extractors but also
multi-scale ones. We analyze in figure 4a the robustness
of methods against synthetic scale transformations and
show how the combination with ScaleNet benefits them.
In this experiment, we use 2,000 random images from the
Megadepth dataset and scale them to create the pairs. We
measure the mean matching accuracy (MMA) computed as
in [37]. As expected, results indicate that the performance
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Figure 4. Analysis on the visual robustness against pure scale
changes, and comparison of local vs global scales.

of single-scale methods, Key.Net [3] and R2D2 [37], drop
notably even when images present small scale perturbations
(s > 1.5). Meanwhile, M-S pyramid or ScaleNet strategies
mitigate the effect and lead to a better approach. Moreover,
we observe that the combination of M-S pyramids and
ScaleNet achieves the top performance, and proves that
both strategies contribute and work well together.

Local vs global scale estimation. ScaleNet can predict
a scale for each point within the image, however, it is
not straightforward to correct the scale factor locally for
networks that process the whole image, e.g., dense corre-
spondences networks [25, 51, 53], or dense local feature
extractors [10, 11, 37]. Figure 4b shows the histogram
of the average scale ratios between the globally and the
locally estimated scales per image. To compute the local
scale values, we restrict the random sampling to spatially
neighboring keypoints in equation 4 rather than points
sampled across the whole image. Figure 4b shows that in
the majority of images the differences between global and
local estimations are small and within 1.0 and 1.2. A ratio r
of 1.0 indicates that the local and the global scales between
the two images are the same, and therefore, the global scale
is valid across the whole image. Based on results in figure
4b, we argue that although local scales could bring an
extra benefit in scenes with strong viewpoint or perspective
changes, a single global scale will significantly contribute
towards correcting images.

Ablation study in table 1 displays the contributions of each
ScaleNet’s block towards robust scale estimation. We com-
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Pose estimation (AUC)
at 5° at 10° at 20°

SIFT 9.8 15.4 22.0
w/ ScaleNet 12.9 (+32%) 19.5 (+27%) 27.4 (+25%)

R2D2-SS 3.1 4.4 5.6
w/ ScaleNet 6.5 (+110%) 9.7 (+121%) 12.8 (+129%)

R2D2-MS 10.5 13.1 18.9
w/ ScaleNet 13.2 (+26%) 17.5 (+34%) 21.0 (+11%)

Key.Net-SS 4.7 6.9 9.3
w/ ScaleNet 8.9 (+89%) 14.0 (+103%) 19.5 (+110%)

Key.Net-MS 14.0 22.1 31.6
w/ ScaleNet 17.2 (+23%) 26.4 (+20%) 38.4 (+22%)

SuperPoint 5.4 8.2 11.0
w/ ScaleNet 8.1 (+50%) 12.4 (+51%) 17.3 (+57%)

SP+SuperGlue 16.5 25.3 35.0
w/ ScaleNet 22.5 (+36%) 33.9 (+34%) 45.5 (+30%)

Table 2. Relative camera pose results on custom Megadepth split
with and without ScaleNet correction.

bine different architecture’s designs with SuperPoint [10]
and test them in the task of relative camera pose estimation.
We use Lowe’s ratio test [23] and MAGSAC [2] to compute
camera poses, and, as in [40,45], report the AUC of the pose
errors at 5◦, 10◦, and 20◦, where the error is calculated as
the maximum of the rotation and translation angular errors.
We sample 2,000 image pairs with scale factors between
0.16 and 6 from an independent validation set. Besides the
AUC, we report the overhead inference time of each design.

We first compare the effect of different pre-trained fea-
ture extractors on ImageNet [9] (cf. figure 2), VGG-16
[44], and ResNet-50 [15], and see that the more complex
ResNet representation contributes towards better poses with
the downside of a higher computational cost. Thus, to keep
our method light and fast, and given the similarity of the
AUC scores, we use the VGG feature extractor for follow-
ing experiments. In addition to the extractors, we analyze
the effect of the self-correlation layers and the multi-scale
ASPP component and observe that both boost the perfor-
mance. Self-correlations capture the intra-image relation-
ships and, therefore, give a better awareness of the global
content. Additionally, ASPP offers a mechanism to extract
more global features, thus, address larger scale changes.
Furthermore, we show that the consistency check offers a
higher AUC at a low computation cost. Note that M-S fea-
tures and correlation layers only need to be computed once
in inference and, hence, the extra cost for consistency check
is small and proportional to running the dense layers twice.

5.2. Relative camera pose

Protocol. We first evaluate ScaleNet on the camera
pose estimation task due to its natural integration into
the existing pipelines. Similar to the previous ablation
experiment, given a collection of image pairs, we calculate

Geometric matching (PCK-5 %)
All Easy Hard

DGC-Net 40.2 34.4 4.5
w/ ScaleNet 41.4 (+3%) 36.8 (+7%) 20.1 (+347%)

GLU-Net 55.5 55.4 10.8
w/ ScaleNet 57.8 (+4%) 56.3 (+2%) 26.8 (+148%)

Table 3. Results on sparse correspondences for full, easy, and hard
splits in Megadepth, consisting of 1,600, 627, and 440 pairs, re-
spectively. Improvements from ScaleNet are across all splits, in
particular, geometric matchers benefit largely from scale correc-
tion when there are large scale changes (s > 1.8).

the AUC of the camera pose error at 5◦, 10◦, and 20◦

as in [40, 45]. We use the test scenes from Megadepth
and mine 4,000 images pairs with small and strong scale
changes such as s ∈ [0.16, 6]. Appendix contains more
details and examples of our dataset. We study the effect of
ScaleNet on popular and publicly available local feature
methods [3, 10, 23, 28, 37], and refer to Key.Net/HardNet as
Key.Net in the following tables and figures.

Results in table 2 show that ScaleNet corrections boost the
performance of all methods. As discussed previously, even
though ScaleNet excels when combined with a single-scale
method, e.g., SuperPoint, ScaleNet is also able to improve
the pose estimation of multi-scale extractors. We observe
that the average improvements are 77% and 24% for sin-
gle and multi-scale methods, respectively. In addition, we
report results with SuperPoint and SuperGlue [40] and see
that even this state-of-the-art matcher benefits (+33% on av-
erage) from a scale correction prior to the feature extraction.

5.3. Geometric matching

Protocol. We also evaluate ScaleNet on the geometric
correspondence task by integrating it into the popular DGC-
Net [25] and GLU-Net [53]. Note that ScaleNet can also be
combined with other recent methods [45, 51, 52]. ScaleNet
rescales one of the images before the dense correspondence
network estimates the dense flow fields between the two
images. Due to the lack of dense annotations on real image
pairs with large viewpoint and illumination changes, we
evaluate ScaleNet using sparse correspondences available
in the Megadepth [20] dataset. Specifically, we follow
the protocol of 1,600 image pairs introduced in [43] to
compute the percentage of correct keypoints (PCK) under
a 5 pixel acceptance threshold. The experiment is extended
with multiple acceptance thresholds in appendix C.4.

Results in table 3 show the PCK scores obtained with
and without scale correction before the dense architectures,
DGC-Net and GLU-Net. Moreover, to highlight the bene-
fit of ScaleNet for images at different scale factors, besides
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Reg. Num. Track Rep. Reg. Num. Track Rep.
Images Obs. Length Error Images Obs. Length Error

SIFT 98.5 93k 7.26 0.80 SuperPoint 99.0 78k 10.47 1.17
w/ ScaleNet 98.6 126k 10.20 0.87 w/ ScaleNet 99.5 135k 12.71 1.26

w/ D-ScaleNet 98.5 118k 9.55 0.85 w/ D-ScaleNet 99.3 98k 11.96 1.22

IMC Dataset R2D2-SS 96.0 52k 8.35 0.93 R2D2-MS 97.9 86k 14.19 1.05
(10 scenes) w/ ScaleNet 97.2 89k 10.71 1.02 w/ ScaleNet 99.0 114k 15.35 1.13

w/ D-ScaleNet 96.4 72k 9.43 1.01 w/ D-ScaleNet 97.7 95k 14.37 1.08

Key.Net-SS 99.1 82k 11.05 1.06 Key.Net-MS 99.5 114k 16.23 0.96
w/ ScaleNet 99.6 148k 14.22 1.16 w/ ScaleNet 99.6 148k 19.23 1.09

w/ D-ScaleNet 99.2 126k 12.71 1.10 w/ D-ScaleNet 99.5 147k 17.62 1.02

Table 4. 3D reconstruction results on the 10 test scenes (100 images each) from the IMC dataset [59] with and without ScaleNet correction.

reporting the results for the full dataset (All), we create the
Easy (s > 1.2) and Hard (s > 1.8) splits, where s indi-
cates scale distortions factor between images. Each split
has 1,600, 627, and 440 image pairs, respectively. We ob-
serve that ScaleNet integration does not bring significant
improvements in the All data, where the majority of im-
ages have small scale variations, but it is important to note
that it does not hurt the performance either. Meanwhile, in
extreme cases (Hard split), current dense correspondence
methods fail under severe scale changes, and their integra-
tion with ScaleNet improves the results by 347% and 148%
for DGC-Net and GLU-Net.

5.4. 3D reconstruction

Protocol. ScaleNet can be easily integrated into geometric
correspondence or relative camera pose pipelines, which
are often a part of a more general 3D reconstruction
system. To evaluate ScaleNet in this scenario, we follow
the protocol proposed in the Local Feature Evaluation
Benchmark [42] for building 3D reconstruction models. As
ScaleNet can upsample one of the images, and that could
result in a higher number of candidate keypoints, we limit
the number of features to the top 2,048 keypoints based
on the protocol proposed in [59]. We present results for
the test split from the IMC dataset [59], which includes
ten different scenes with 100 images each. IMC images
pose significant challenges, e.g., weather/illumination,
perspective, scale, as well as strong occlusions.

As ScaleNet is applied to image pairs before the feature
extraction, the detectors and descriptors are recomputed
every time the scale is corrected. Hence, to reduce
the computation time, we propose a discrete variant of
ScaleNet (D-ScaleNet) that makes the extraction process
more efficient. D-ScaleNet implements a hard-assignment
by selecting the maximum scale instead of the soft-scale
and consistency check from equation 2 and 3. Analogous
to multi-scale pyramid approaches, we run the detec-
tors/descriptors at multiple resized images but then select
the optimal set of pre-computed features for matching
based on D-ScaleNet estimation.

Time (s)
Extraction Matching Reconst. Total

SuperPoint 10.3 16.7 195.3 222.3
w/ ScaleNet 980.5 46.3 208.9 1235.7

w/ D-ScaleNet 141.8 161.8 205.6 509.2

Table 5. 3D reconstruction times on the British Museum scene
(100 images) from IMC dataset [59].

Results in table 4 show the 3D reconstruction metrics of
state-of-the-art methods with and without ScaleNet. We
notice that image rectification by both, D-ScaleNet and
ScaleNet, increases the number of registered images and
the total number of observations in the 3D models. Track
length is especially boosted by scale correction, meaning
that the model was able to match the same keypoint simul-
taneously in more images. This increase of track length is
particularly important since it proves that ScaleNet helps
current methods distinguish and link points that were not
possible without it, due to extreme view differences. On
average, improvements added by ScaleNet are greater than
those produced by D-ScaleNet, however, D-ScaleNet still
brings a notable boost over baselines. On the opposite side,
ScaleNet increases the reprojection error (Rep. Error) of
the reconstructions by 0.09 points on average. We attribute
this to their longer track lengths since more points are tri-
angulated throughout the images, and thus, the reprojec-
tion error increases, which has also been reported in [42].
Longer tracks will benefit works that rely on complete and
long tracks to refine the point positions and reduce their re-
projection errors [12, 21]. In table 5, we show a compari-
son of the times taken to generate a 3D model when using
ScaleNet and D-ScaleNet, and display the benefits in terms
of computational time that D-ScaleNet provides.

5.5. Image matching

Protocol. We compute the Mean Matching Accuracy
(MMA) [27] as the ratio of correctly matched features
within a threshold (5 pixels) and the total number of fea-
tures following the benchmark proposed in [11]. We report
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Figure 5. MMA on the full Viewpoint HPatches (left), scenes with
easy (middle) and hard (right) scale transformations. Dashed lines
(- -) show ScaleNet combined with other methods.

results for the 59 viewpoint scenes from the HPatches
dataset [1]. Similar to the 3D task, we fix the number of
features to top 1,000 as in [19] to eliminate the effect of
increased matching scores from a high number of keypoints.

Results in figure 5 (left) show that ScaleNet improves the
robustness of current methods overall, and excels for single-
scale methods, e.g., Key.Net-SS [3], or R2D2-SS [37].
However, in contrast to images used for statistics in fig-
ure 4b, most of the scenes in the HPatches Viewpoint con-
tain strong perspective changes, i.e., display different scale
factors within the scene. Hence, to highlight the effect of
ScaleNet, we show results for the subset of scenes with
affine transformations, i.e., scenes with stretch and skew
transformations in addition to global scale and rotation. We
select the splits such that the Easy has s ∈ [1.2, . . . , 1.8] and
the Hard has s > 1.8. When the scale factor is global across
the image, ScaleNet correction can deal with planar scenes
and improve the matching accuracy of single and multi-
scale methods. As expected, results show that ScaleNet
scaling is more critical for stronger scale changes in figure
5 (right). Only SIFT [23], which is specially designed to be
robust against scale changes on planar scenes, does not ben-
efit from ScaleNet correction in the Hard split. Moreover,
to deal with scenes with possible strong perspective scale
changes, we introduce in appendix Local-ScaleNet, which
infers local scale factors and offers a more robust and func-
tional alternative for scenes with perspective changes.

6. Discussion
Limitations. ScaleNet deals with arbitrary scale changes
and, hence, it only brings improvements if such changes
are present in the images. This makes ScaleNet useful
in applications where those viewpoint changes prevent a
successful matching of images, e.g., extreme and sparse

collection of images, or ground-aerial applications. Never-
theless, even though ScaleNet does not boost performance
when there is no scale change, it does not hurt either (cf.
appendix C.3). Another limitation comes when ScaleNet
needs to be applied to a large collection of images, e.g., 3D
tasks. ScaleNet works with pairs of images, hence, features
can not be stored but need to be computed every time a new
image is presented, increasing the feature extraction time
as seen in table 5. Although we propose D-ScaleNet, which
mitigates the complexity time for such tasks, ScaleNet can
be further optimized for faster processing by replacing
VGG with more compact models such as MobileNet [16],
or by only using ScaleNet for computing camera pose after
a restrictive retrieval search.

Societal impact. Image matching is a pivotal but small
component within large systems that facilitate technologies
like AR, 3D reconstruction, navigation, modeling, SLAM,
among others. Hence, as we contribute towards more robust
matching pipelines, ScaleNet’s societal impact is tied to
the applications that rely on such technologies. Some
applications may include smartphone apps, AR headsets,
or autonomous cars. However, as our method cannot work
independently of a larger system, the negative or ethical
issues are not directly associated with our approach but
rather with the specific business and final application where
image matching may be used.

Reproducibility. The experiments are computed on stan-
dard and public datasets and tasks, and hence, they can be
reproduced. Moreover, we made public the evaluation and
training scripts, as well as our custom training dataset. In
addition, to encourage the research on scale estimation, we
published the test set of section 5.2 and splits of section 5.3
for easier comparison and support of future works.

7. Conclusions
We introduced ScaleNet, an approach that estimates the

scale change between images and improves the perfor-
mance of methods that search for correspondences through-
out different views of the same scene. We proposed a
novel learning scheme that formulates the problem of scale
estimation as a prediction of a probability distribution of
scales. We demonstrated how to make use of images from
non-planar scenes to generate the training data. In addition
to ScaleNet, we also introduced D-ScaleNet, a discrete vari-
ant of the proposed approach, and demonstrated its effec-
tiveness in 3D-related tasks as well as computational time.
We proved that ScaleNet can improve the results of popular
pipelines in image matching for relative camera pose or 3D
reconstruction while not being limited only to these tasks.
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