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Abstract

We address the problem of generalizability for multi-view
3D human pose estimation. The standard approach is to
first detect 2D keypoints in images and then apply triangula-
tion from multiple views. Even though the existing methods
achieve remarkably accurate 3D pose estimation on pub-
lic benchmarks, most of them are limited to a single spa-
tial camera arrangement and their number. Several meth-
ods address this limitation but demonstrate significantly de-
graded performance on novel views. We propose a stochas-
tic framework for human pose triangulation and demon-
strate a superior generalization across different camera ar-
rangements on two public datasets. In addition, we apply
the same approach to the fundamental matrix estimation
problem, showing that the proposed method can success-
fully apply to other computer vision problems. The stochas-
tic framework achieves more than 8.8% improvement on the
3D pose estimation task, compared to the state-of-the-art,
and more than 30% improvement for fundamental matrix
estimation, compared to a standard algorithm.

1. Introduction
Human pose estimation is a vision task of detecting the key-
points that represent a standard set of human joints. The
area is extremely competitive, especially due to the ad-
vances in deep learning. Pose estimation is particularly im-
portant for applications such as medicine, fashion industry,
anthropometry, and entertainment [1]. In this work, we fo-
cus on 3D human pose estimation from multiple views in a
single time frame.

The common approach to multi-view pose estimation is
to (1) detect correspondent 2D keypoints in each view using
pretrained pose detector [37, 8, 35], and then (2) triangulate
[15, 25, 13, 26, 18, 32]. A naive approach takes 2D de-
tections as they are and applies triangulation from all avail-
able views. Due to the variety of poses and self-occlusions,
some views contain erroneous detections, which should be
ignored or their influence mitigated in the triangulation pro-
cess. One way to ignore the erroneous detections is to apply
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Figure 1: We propose a stochastic framework for human
pose triangulation from multiple views and demonstrate its
successful generalization across different camera arrange-
ments, their number, and different public datasets. The up-
per two and the lower left image shows different camera
arrangements and their number on CMU Panoptic Studio
dataset [17]. The lower right part shows the Human3.6M’s
4-camera arrangement [14].

RANSAC [10], marking the keypoints whose reprojection
errors are above a threshold as outliers [30, 13]. The prob-
lem with vanilla RANSAC is that it is non-differentiable,
so the gradients are not back-propagated, which disables
end-to-end learning. Most of the state-of-the-art 3D pose
estimation approaches extract 2D image features, such as
heatmaps, from multiple views, and combine them for 3D
elevation in an end-to-end fashion [15, 26, 25]; we re-
fer to those approaches as the learnable triangulation ap-
proaches.

Due to a mostly-fixed set of cameras during training,
the learnable triangulation approaches are often limited
to a single camera arrangement and their number. Sev-
eral works attempt to generalize outside the training data

11028



[26, 15, 18, 13, 31, 29, 34], but the demonstrated perfor-
mance on novel views is significantly lower than using the
original (base) views.

Inspired by stochastic learning [27] and its applications
in computer vision [4, 5, 6], we propose generalizable tri-
angulation of human pose. First, we generate a pool of
random hypotheses. A hypothesis is a 3D pose where the
points are obtained by triangulating a random subset of
views for each joint separately. Each generated hypothesis
pass through a scoring neural network. The loss function
is an expectation of the triangulation error, i.e. E(hi) =∑

i eisi, where ei is the error of the hypothesis hi and si
is the hypothesis score. By minimizing the error expecta-
tion, the model learns the distribution of hypotheses. The
key idea is to learn to evaluate 3D pose hypotheses without
considering the spatial camera arrangement used for trian-
gulation.

The proposed approach has several practical advantages
over the previous methods. First, we demonstrate its con-
sistent generalization performance across different camera
arrangement on two public datasets - Human3.6M [14] and
Panoptic Studio [17] (see Fig. 1). Second, we show that
the proposed model learns human pose prior and define a
novel metric for pose prior evaluation. Finally, we apply
the same stochastic approach to the problem of fundamen-
tal matrix estimation from noisy 2D detections and compare
it to the standard 8-point algorithm, showing that the pro-
posed framework successfully applies to computer vision
problems other than human pose triangulation.

2. Related Work
We distinguish two types of related work. First, we fo-

cus on triangulation-based 3D pose estimation methods and
methods that attempt to generalize between the different
camera arrangements and datasets. Second, we relate to
keypoint correspondence methods and point out how our
problem differs from the standard correspondence problem.

Triangulation. Most of the single-person image-based
approaches either use robust triangulation (RANSAC) or
apply learnable triangulation. Several methods [19, 30, 24]
based on robust triangulation use RANSAC on many (more
than four) views to apply triangulation only on inlier detec-
tion candidates to produce pseudo ground truth data. He
et al. [13] exploit epipolar constraints to find the keypoint
matches between multiple images and then apply robust tri-
angulation.

The standard approach for learnable triangulation using
deep learning models [15, 25, 32, 7, 3] is to first extract 2D
pose heatmaps, where each heatmap represents the proba-
bility of a keypoint location. Cross-view fusion [25] builds
upon the pictorial structures model [2] to combine 2D key-
point features from multiple views to estimate a 3D pose.
An algebraic triangulation [15] estimates the confidence

for each keypoint detection and applies weighted triangu-
lation. Their volumetric approach combines the multi-view
features and builds the volumetric grid, obtaining the cur-
rent state-of-the-art for single-frame 3D pose. Finally, [26]
fuses the features into a unified latent representation that is
less memory intensive than the volumetric grids. Similar to
us, they also attempt to disentangle from the specific spatial
camera arrangement.

Keypoint correspondence. The standard keypoint-
based computer vision approaches, such as structure-from-
motion [28], rely on sparse keypoint detections to establish
initial 3D geometry. The core problem is to determine the
correspondences between the extracted keypoint detections
across images, under various illumination changes, texture-
less surfaces, and repetitive structures [11]. The usual ap-
proach is to apply keypoint descriptor such as SIFT [21]
and find inlier correspondences using RANSAC [10]. Even
though this paradigm is successful in practice, it is not dif-
ferentiable and, therefore, cannot be used in an end-to-end
learning fashion.

Several works have proposed soft and differentiable ver-
sions of RANSAC (DSAC) [4, 5, 6, 39]. The successful
soft RANSAC alternative [39] learns to extract both local
features of each data point, as well as retain the global infor-
mation of the 3D scene. Similar to us, they also demonstrate
convincing generalization capabilities to unseen 3D scenes.
On the other hand, DSAC and its variants [4, 5, 6] propose a
probabilistic learning scheme, i.e. minimizing the error ex-
pectation. We follow their approach but also discover that
different strategies work better for our problem (see Sec. 3
and 4).

In contrast to the standard keypoint matching ap-
proaches, we extract keypoints with already known human
joint correspondences between the views. However, our
correspondent keypoints are noisy, oscillating around the
centers of the joints, which potentially leads to erroneous
triangulation. Our model demonstrates robustness to erro-
neous keypoint detections.

3. Method
We first describe the generic stochastic framework, and

then describe it more specifically for generalizable pose tri-
angulation and fundamental matrix estimation. The frame-
work consists of several steps, shown in Fig. 2:

1. Pre-training. Prior to stochastic learning, the 2D
poses (keypoints) are extracted for all images in the
dataset. In all our experiments, we use the keypoints
extracted using a baseline model [37] pretrained on
Human3.6M dataset. The input to stochastic model,
therefore, consists only of keypoint detections, y. In
each frame, JxK keypoints are detected, where J is
the number of joints, and K is the number of views.
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Figure 2: An overview of our method. Before stochastic learning, 2D keypoints, y, are extracted. In each frame, the
hypothesis pool, hi ∈ H, is generated, and the poses are passed through the scoring network, fS . The hypothesis ĥi is
selected based on the estimated scores si. Finally, the total loss, ltotal, consists of three components (lstoch, lentropy, lest), and is
calculated with respect to the ground truth, h∗.

2. Hypothesis generation, H. As it is possible to gen-
erate an extremely large number of hypotheses, only
a subset of random hypotheses is created. Following
[27] and [4], we model the hypothesis generation step
as a stochastic node.

3. Hypothesis scoring, fS. Each generated hypothesis
hi ∈ H is scored using a scoring function, fS(hi|y) =
si. The scoring function is a neural network, i.e. a
multi-layer perceptron. The network architectures for
3D pose triangulation and fundamental matrix estima-
tion differ and are specified at the end of the Sec. 4.
The network is the only learnable part of our model.
The estimated scores si, passed through the Gumbel-
Softmax, σGS(si) (Eq. 3), represent the estimated
probability distribution of the hypotheses H, θH.

4. Hypothesis selection, ĥi. We experiment with several
hypothesis selection strategies. The one that works the
best for us is the weighted average of all hypotheses:

ĥweight =
∑
i

sihi,
∑
i

si = 1, hi ∈ H, (1)

where the scores si are used as weights. We also try
other strategies, such as the stochastic selection:

ĥstoch = hi, with i ∼ θH, (2)

where hypothesis hi is selected based on the estimated
distribution θH. As shown in Sec. 4, the stochastic
selection performs worse than the weighted, in contrast
to [4].

5. Loss calculation, ltotal. The loss function consists of
several components:

(a) Stochastic loss. Following [4], we calculate our
stochastic loss as an expectation of error for all
hypotheses, lstoch = E(eH) =

∑
i e(hi, h

∗)si,
where ei is the error of the estimated hypothesis
with respect to the ground truth, h∗, and si rep-
resent the probability that the error is minimal.

(b) Entropy loss. Score estimations si tend to
quickly converge to zero. To stabilize the esti-
mation values, we follow [5] and minimize an
entropy function, lentropy = −

∑
i si log(si).

(c) Estimation loss. We define it as the error of the
selected hypothesis with respect to the ground
3D pose, lest = ei(ĥi, h

∗). The estimation loss,
in the case of generalizable pose triangulation,
is most similar to the standard 3D pose esti-
mation loss, used by the competing approaches
[15, 26, 25, 32, 18].

Finally, the total loss is a sum of the three components,
ltotal = α lstoch + β lentropy + γ lest, where α, β, and γ
are fixed hyperparameters that regulate relative values
between the components.

In order for the estimated scores si to represent the prob-
abilities, their values need to be normalized into [0, 1] range.
The standard way to normalize the output values is to ap-
ply the softmax function, σ(si) = exp si∑

j exp sj
. To avoid

early convergence, we use the Gumbel-Softmax function
[16, 22]:

σGS(si) =
exp((log si + gi)/τ)∑k

j=1 exp((log sj + gj)/τ)
, (3)

where τ is a temperature parameter, and gi represent
samples drawn from Gumbel(0, 1) [23] distribution. The
temperature τ regulates the broadness of the distribution.
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For lower temperatures (τ < 1), the influence of lower-
score hypotheses is limited compared to higher-score hy-
potheses, and vice versa. The purpose of Gumbel(0, 1) is to
add noise to each sample while retaining the original distri-
bution(s), which allows the model to be more flexible with
the hypothesis selection.

3.1. Generalizable Pose Triangulation

We now describe the stochastic framework specifically
for learning human pose triangulation.

Pose generation. The 3D human pose hypothesis, hi ∈
H, is generated in the following way. For each joint k, a
subset of views, vk, is randomly selected. The detections
from the selected views are triangulated to produce a 3D
joint.

Pose normalization. The input to the pose scoring net-
work, fS,pose are 3D pose coordinates, p, normalized in
the following way — we select three points: left and right
shoulder and the pelvis (between the hips), calculate the ro-
tation between the normal of the plane given by the three
points, and the normal of the xy-plane, and apply that rota-
tion to all coordinates. Other than the 3D pose coordinates,
we also extract 16 body part lengths, given by all adjacent
joints, e.g. left lower arm, left upper arm, left shoulder,
etc. Finally, we concatenate both normalized 3D coordi-
nates and the body part lengths into a 1D vector and pass it
through the network. The output is a scalar, si, representing
the score of the hypothesis hi.

Pose estimation error. The pose estimation error,
ei(ĥi, h

∗), is a mean per-joint precision error (MPJPE) [14]
between the estimated 3D pose, p̂i, and the ground truth,
p∗:

ei(ĥi, h
∗) = ei(p̂i,p

∗) =
1

J

J∑
k

||p̂ik − p∗k||2, (4)

where pik is the k-th keypoint of the i-th pose.

3.2. Fundamental Matrix Estimation

We describe how to learn fundamental matrix estimation
between the pairs of cameras using the proposed stochastic
framework. The fundamental matrix describes the relation-
ship between the two views via x⊤

2 Fx1 = 0, where x1 and
x2 are the corresponding 2D points in the first (target) and
the second (reference) view. From the fundamental matrix,
relative rotation and translation (the relative camera pose)
between the views can be obtained [12].

Hypothesis generation. The relative camera pose hy-
pothesis, hi, is generated in a slightly different way than the
3D pose hypothesis. The required number of points to deter-
mine the fundamental matrix is 8 when an 8-point algorithm
is used [20]. However, with the presence of noise, the re-
quired number of points is usually much higher. Instead of

using a single time frame as in pose triangulation, we select
the keypoints from M frames, having a total of M ∗ J in-
dividual point correspondences. The camera hypothesis hi

is obtained using a subset of T < M ∗ J correspondences,
passed through an 8-point algorithm. The result of an 8-
point algorithm are four possible rotations and translations;
we select the correct one in a standard way [12].

Input preparation. The input to the camera pose scor-
ing network, fS,cam, are the distances between the corre-
sponding projected rays. The rays are obtained using the
reference camera parameters, (Rref , tref ), and the esti-
mated relative camera pose, (Rrel,i, trel,i). To achieve the
permutation invariance between the line distances on the in-
put, we simply sort the values before passing it through the
network.

Hypothesis selection. The camera pose hypothesis,
ĥweight, is selected as the weighted average of the rotation1,
i.e. a weighted average of the translation of all hypotheses.

Estimation error. The hypothesis estimation error, ei,
is calculated as:

ei(ĥi, h
∗) = ei(X̂i,X

∗) = ||X̂i −X∗||2 (5)

where X∗ are random 3D points (used as ground truth),
and X̂i are 3D points obtained by projecting the points X∗

to 2D planes, using the estimated parameters, (R̂i, t̂i), and
then projected back to 3D. More specifically, using the es-
timated, target projection matrix, P̂i = Ki[R̂i|t̂i] and the
reference projection matrix, Pref = Kref [Rref |tref ], the
points X∗ are first projected to 2D, x̂i = P̂iX

∗, and then
triangulated using Pref and P̂i. The intrinsic matrices Ki are
assumed to be known for all cameras.

4. Experiments
The stochastic framework is evaluated on Human3.6M

[14] and Panoptic Studio [17] datasets. As most of the pre-
vious 3D pose estimation approaches presented their results
on Human3.6M, we use it for the quantitative comparison to
state-of-the-art. Panoptic Studio contains a relatively large
number of cameras (31) with useful data annotations (cam-
era parameters, 3D and 2D poses). We use the Panoptic
Studio dataset to evaluate the generalization performance
between different camera arrangements and their number.
We also evaluate the generalization between the Panoptic
Studio and Human3.6M datasets. As experiments are based
on a single-person pose estimation, we use Panoptic Studio
sequences that contain single person in the scene, following
[36].

Other than the evaluation of our best result (ĥweight), we
also compare between different hypotheses:

• Weighted average hypothesis, ĥweight,

1The rotations are converted to quaternions, for simplicity.
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Table 1: The demonstration of the generalization performance (MPJPE in mm) on five data sets, featuring different spatial camera place-
ments, different number of cameras, and different datasets (CMU Panoptic Studio and Human3.6M). Each row shows the performance on
five test sets when the specified train set is used. The maximal difference between the scores for particular test sets is shown in the last
column. The last row demonstrates inter-dataset generalization performance, while other rows show intra-dataset performance.

Train CMU1 CMU2 CMU3 CMU4 H36M Max diff. ↓

Test

CMU1 25.8 CMU1 25.8 CMU1 25.6 CMU1 25.2 CMU1 25.6 2.3%
CMU2 25.4 CMU2 26.0 CMU2 25.5 CMU2 25.6 CMU2 25.9 2.4%
CMU3 24.9 CMU3 26.0 CMU3 25.0 CMU3 25.0 CMU3 25.7 4.4%
CMU4 25.1 CMU4 25.6 CMU4 25.3 CMU4 25.1 CMU4 25.5 2.0%
H36M 33.5 H36M 33.4 H36M 31.0 H36M 32.5 H36M 29.1 15.1%

Table 2: The evaluation of generalization performance from CMU
Panoptic Studio [17] to Human3.6M dataset [14], compared to the
volumetric approach of Iskakov et al. [15]. The proposed ap-
proach achieves 8.8% better performance on H3.6M compared to
[15], when trained on a 4-camera CMU3 dataset (see Table 1).

CMU → H3.6M
Ours Iskakov et al. [15] Improvement

31.0 mm 34.0 mm 8.8%

Table 3: The evaluation of generalization performance compared
to Remelli et al. [26] (lower is better). We measure the perfor-
mance drop between the base test set and the novel test set for
intra-dataset and inter-dataset configurations. Note that we do
not compare on the same datasets, so we only measure the rela-
tive drop in percentages. Still, our approach demonstrates a sig-
nificantly smaller performance drop compared to the competing
method in all setups. The † presents the canonical fusion, and the
‡ presents the baseline approach in [26].

Intra-dataset
Method (train dataset) Base test Novel test Diff. ↓

Remelli et al. [26] (TC1)† 27.5 mm 38.2 mm 38.9%
Remelli et al. [26] (TC1)‡ 39.3 mm 48.2 mm 22.6%

Ours (CMU1) 24.9 mm 25.8 mm 3.6%
Ours (CMU3) 25.0 mm 25.6 mm 2.4%
Ours (CMU4) 25.0 mm 25.6 mm 2.4%
Ours (CMU2) 25.6 mm 26.0 mm 1.6%

Inter-dataset
Method (train dataset) H36M CMU1 Diff. ↓

Ours (H36M) 29.1 mm 33.5 mm 15.1%

• Average hypothesis, ĥavg, obtained as an average of all
hypotheses,

• Most and least probable hypotheses, ĥmost and ĥleast,
the hypotheses with maximal and minimal estimated
score, smax and smin,

• Stochastic hypothesis, ĥstoch, selected randomly, based
on the estimated distribution θH,

• Random hypothesis, ĥrandom, selected randomly from

Table 4: The comparison to RANSAC, algebraic triangulation
[15], and VoxelPose [34] on Panoptic Studio (intra-dataset) [mm].
The numbers show the performance on novel camera views. Our
number is obtained as an average over 12 non-diagonal values of
Table 1.

Intra-dataset (CMU Panoptic Studio)
RANSAC Algebraic VoxelPose Ours

39.5 33.4 25.5 25.4

an uniform distribution,

• Best and worst hypotheses2, hbest and hworst, with the
lowest and the highest errors, emin and emax.

Additionally, we also compare ourselves with RANSAC
as reported in [15] (see Subsec. 4.2).

4.1. Generalization Performance

One of the most important properties of the proposed
model is that it generalizes well to different spatial arrange-
ments and number of cameras, and different datasets, which
is a major limitation of the previous models. To evaluate the
generalization performance across data sets, we select five
different camera arrangements:

1. Cameras 1, 2, 3, 4, 6, 7, 10 (CMU1),

2. Cameras 12, 16, 18, 19, 22, 23, 30 (CMU2),

3. Cameras 10, 12, 16, 18 (CMU3),

4. Cameras 6, 7, 10, 12, 16, 18, 19, 22, 23, 30 (CMU4),
and

5. Cameras 0, 1, 2, 3 (H36M).

The setup is as follows. Each of the five camera arrange-
ments is first used for training, and then the generalization
performance is tested on the remaining four arrangements.

2Note that the best and the worst hypotheses are not available in infer-
ence (missing ˆ sign), because they are determined using ground truth.
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Table 5: No additional training data setup. Overall comparison to the state-of-the-art on Human3.6M dataset. The proposed method
outperforms most of the state-of-the-art methods. All values are showing MPJPE scores (mm).

Protocol 1, abs. positions Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg ↓

Tome et al. [32] 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8
Kadkhodamohammadi et al. [18] 39.4 46.9 41.0 42.7 53.6 54.8 41.4 50.0 59.9 78.8 49.8 46.2 51.1 40.5 41.0 49.1
Cross-view fusion [25] 28.9 32.5 26.6 28.1 28.3 29.3 28.0 36.8 41.0 30.5 35.6 30.0 28.3 30.0 30.5 31.2
Remelli et al. [26] 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6 36.4 31.7 31.2 29.9 26.9 33.7 30.4 30.2
Epipolar transformers [13] 25.7 27.7 23.7 24.8 26.9 31.4 24.9 26.5 28.8 31.7 28.2 26.4 23.6 28.3 23.5 26.9
Ours (hweight ) 27.5 28.4 29.3 27.5 30.1 28.1 27.9 30.8 32.9 32.5 30.8 29.4 28.5 30.5 30.1 29.1

The five selected sets differ with respect to the spatial cam-
era arrangement and their number. Additionally, the fifth
camera set (H36M) is used to test the transfer learning ca-
pabilities between the datasets. All the results in this sub-
section are obtained using hweight hypothesis.

Our Generalization Performance. Table 1 shows con-
sistent performance on each of the five test datasets, regard-
less of the selected training dataset. In particular, the per-
formance between different test sets on the Panoptic Stu-
dio dataset is within 5% difference, which demonstrates ro-
bustness to various camera arrangements and their number
(intra-dataset). The inter-dataset generalization is also suc-
cessful, which we further evaluate against the competing
methods [15, 26]. Note that the demonstrated generaliza-
tion can be exploited both in training time and in inference.

Volumetric Triangulation. Table 2 compares our pro-
posed method to the state-of-the-art 3D pose estimation ap-
proach [15]. Iskakov et al. reported an average 34.0 mm
error on Human3.6M test set when they trained on CMU
Panoptic Studio (4-camera arrangement). Compared to
them, we achieve 31.0 mm on our 4-camera arrangement
(CMU3), demonstrating an improvement in inter-dataset
generalization (see Table 1 for the comprehensive results).

Remelli et al. Table 3 compares our method to Remelli
et al. [26]. Similar to us, they explicitly address the general-
ization to novel views. They demonstrate their intra-dataset
generalization performance on Total Capture [33], by com-
paring the test performances on cameras (1, 3, 5, 7) as a
base arrangement (TC1) and testing it on cameras (2, 4, 6,
8) as a novel arrangement (TC2). We do not evaluate our
model on Total Capture. Instead, to compare with Remelli
et al., we measure the performance between the CMU cam-
era test sets and evaluate relative score differences. The per-
formance of our model is consistent across different camera
arrangements and their number for intra-dataset configura-
tion. Moreover, our inter-dataset performance from CMU
Panoptic Studio to Human3.6M is 15.1%, which is still bet-
ter than the best result by Remelli et al. Note that the inter-
dataset experiment is the most difficult as it also includes
the changes in camera arrangement.

RANSAC. We outperform RANSAC on Panoptic Studio
by a large margin. We can explain this by the fact that CMU
does not have a full view of a person in most cameras, lead-
ing to strong occlusions and missing parts. As RANSAC
takes only reprojection errors of individual 3D joints as an

inlier selection criterion, it is unable to evaluate the esti-
mated 3D pose as a whole, in contrast to our model that
learns human pose prior (see Sec. 4.3).

Algebraic Triangulation. The algebraic triangula-
tion [15] is originally proposed as an improvement over
RANSAC, where the weight is estimated for each joint
location. The weight-based model indeed outperforms
RANSAC both on Human3.6M and Panoptic Studio. How-
ever, as the authors point out in [15], it has several draw-
backs. First, it processes each view independently, and sec-
ond, it separately triangulates each joint. Therefore, the
weight-based algebraic model suffers from the same prob-
lem as RANSAC by not taking the whole pose into account.
Our model, on the other hand, successfully learns human
pose prior, which allows it to select more feasible poses,
making it more robust to occlusions and missing body parts.
Note that [15] does not test their weighted model on unseen
views. Therefore, Table 1 shows the result of the model w/o
weights, as this model is consistent across different camera
sets. The actual result of the weighted model might differ,
but it is hard to estimate by how much.

VoxelPose. VoxelPose [34] reports 25.51mm MPJPE
score on their intra-dataset experiment, compared to our
25.42mm. Even though we achieve comparable perfor-
mances, the significant difference is that we did not pretrain
our 2D backbone on the Panoptic Studio dataset, which
would most likely further improve our 2D keypoint estima-
tion and, consequently, final 3D pose estimations (Supp.).

4.2. Base Dataset Performance

The comparison to state-of-the-art is shown in Table 5.
Note that the Table only shows the methods that use Hu-
man3.6M for training and testing, with no additional train-
ing data (therefore, excluding Iskakov et al. [15]). Com-
pared to the best-performing single-frame method, Epipo-
lar Transformers [13], we obtain 2.2mm worse MPJPE, but
outperform most of the other recent methods.

Table 6 shows the MPJPE scores of all previously de-
scribed pose hypotheses on the two datasets, compared to
the RANSAC result, as reported in [15]. Even though our
weighted average hypothesis, ĥweight, is outperformed by
the RANSAC approach on Human3.6M, we show a sig-
nificant improvement on Panoptic Studio. Also, note that
RANSAC is competitive against most of the state-of-the-art
approaches on Human3.6M that do not use additional train-
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Figure 3: Qualitative comparison between four 3D pose hypotheses compared to ground truth (gt), on Human3.6M.

Table 6: Overall quantitative comparison between the hypotheses.
The values are showing MPJPE scores in mm (the lower is better).

Hypothesis Human3.6M ↓ Panoptic Studio ↓

ĥweight 29.1 24.9
ĥavg 31.2 +2.1 25.9 +1.0
ĥmost 41.3 +12.2 25.0 +0.1
ĥleast 74.5 +45.4 29.8 +3.9
ĥstoch 41.3 +12.2 26.5 +1.6
ĥrandom 45.0 +15.9 26.1 +1.2
hbest 22.3 -6.8 24.4 -0.5
hworst 98.9 +69.8 31.0 +6.1
RANSAC 27.4 -1.7 39.5 +14.6

ing data.

Regarding other results, the average hypothesis, ĥavg per-
forms better than the stochastic, ĥstoch. The stochastic per-
forms even worse than the random hypothesis on Panoptic
Studio. The most probable hypothesis, ĥmost, outperforms
the average on Panoptic Studio. Note that the difference
between best and worst hypothesis (hbest, hworst) is signifi-
cantly different on the two datasets. This suggests that the
hypotheses generated on Panoptic Studio are more similar
to each other and the distribution is less broad. The differ-
ence between the most and the least probable hypotheses
(ĥmost, ĥleast) is reasonable on both datasets, which confirms
that our model learned to differentiate between the poses.

Fig. 3 shows the qualitative performance comparison be-
tween several hypotheses. The least probable hypothesis,
hleast, does not have visually plausible pose reconstruction,
while the random hypothesis, ĥrandom, has some obvious er-
rors in the upper body. The most probable hypothesis, ĥmost

has minor reconstruction errors on the right arm and shoul-
der. The weighted hypothesis, ĥweight, is visually compara-
ble to ground truth.

weight
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avg most least stoch random best worst
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Figure 4: Evaluation of the human pose prior metric for different
hypotheses, and six body part pairs (lower is better).

4.3. Human Pose Prior

We demonstrate the successful pose prior learning of the
pose scoring network, fS,pose. There are previous works that
attempt learning human pose prior [9, 38, 2], but they do not
quantitatively evaluate their methods. The idea of learning
pose prior is to differentiate between the 3D poses that are
more plausible and the poses that are less plausible with
respect to several human body properties. The properties
that can be extracted from the 3D pose are based on the
body part lengths and between-joint angles. In this work,
we focus on body part lengths, i.e. left-right body symmetry.

The body symmetry is measured for six different body
left-right part pairs: upper arms, lower arms, shoulders,
hips, upper legs, and lower legs. For each pair, l, we cal-
culate the ratio, ril between the left and right part, in each
time frame, i. The final pose prior metric is a variance of
the ratios over time:

S2 =

∑
i(ril − rl)

2

T − 1
, (6)
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Table 7: Evaluation of fundamental matrix estimation for all pairs
of views on Human3.6M, based on four error metrics. Note that
the camera pairs (1, 3), and (2, 4) are diagonal, while other pairs
are adjacent.

Camera pair ER ↓ Et ↓ E2D ↓ E3D ↓

(1, 3) 1.7e-2 2.3e+1 3.7e+0 2.3e+1
(2, 4) 3.2e-2 4.9e+0 1.3e+0 2.3e+1
(1, 4) 9.8e-3 2.7e+1 2.3e+0 1.3e+1
(2, 3) 2.1e-3 9.9e+0 7.2e-1 1.3e+1
(3, 4) 4.7e-3 8.5e+0 1.2e+0 5.5e+0
(1, 2) 4.8e-3 4.8e+0 8.1e-1 4.9e+0

where rl is the mean ratio for the pair l, and T is the
number of frames. The reason for using ratios instead of
the differences between the body parts is that some people
are naturally asymmetric, so the idea is only to measure the
consistency over time.

Fig. 4 shows the pose prior metrics for the subject 9
of the Human3.6M dataset, for different hypotheses. As
expected, the values are generally the lowest for our best
performing hypothesis, ĥweight, followed by the average hy-
pothesis, ĥavg. The difference between the most probable
and the least probable hypothesis (ĥmost, ĥleast) suggests that
we successfully learned body pose prior, i.e. differentiate
between the plausible poses with respect to the body sym-
metry consistency over time. Note that the best hypothesis,
hbest, is comparable to ĥweight.

4.4. Fundamental Matrix Estimation

Table 7 shows the fundamental matrix estimation results
on all 4-view combinations on Human3.6M. The four met-
rics are used for the evaluation:

• Rotation error, ER = ||quat(R̂rel) − quat(R∗
rel)||2,

where quat() represents the conversion to quaternions,

• Translation error (mm), Et = ||t̂rel − t∗rel||2,

• 2D error (pixels), E2D = ||x̂i − x∗||2, where x∗ rep-
resents random 3D points, X∗, projected using the
ground truth relative projection matrix, P ∗, and

• 3D error (mm), E3D = ei(ĥi, h
∗), from Eq. 5.

The obtained results show that the model achieves sub-
pixel error (E2D) for two pairs of views ((1, 2) and (2, 3)),
and only few pixels in the worst case, which corresponds
to several millimeters when reprojected back to 3D (E3D).
Note that the adjacent pairs of views have lower errors than
the opposite pairs, as expected.

In Fig. 5, we compare our 3D errors (E3D) to the vanilla
8-point algorithm, on the (2, 3) camera pair, using different

Figure 5: The comparison of the E3D errors between the stochas-
tic model and the 8-point algorithm, for different number of input
frames (between 10 and 100), using the camera pair (2, 3) of Hu-
man3.6M. For every number of frames, the experiments is done 10
times. The lines show mean values, and the fill parts show standard
deviations. The values are clipped to 80 mm.

number of input frames. Our model consistently outper-
forms the 8-point algorithm, showing robustness to noise
and increased confidence due to lower variance.

5. Conclusion

The proposed generalizable approach is a promising
novel direction for 3D human pose estimation, as well as
other related computer vision problems, such as the camera
pose estimation. The demonstrated results show convinc-
ing generalization capabilities between different camera ar-
rangements and datasets, outperforming previous methods.
The model requires relatively little training data, which
makes training faster and more convenient for smaller
datasets, as further discussed in Supplementary.

The overall performance is competitive in both human
pose triangulation and camera pose estimation tasks. By
combining these two steps, it is possible to transfer the
performance of the base dataset to any novel multi-camera
dataset, in inference. The next reasonable step is to exploit
image features in an end-to-end learning fashion, which
should further improve the performance and possibly out-
perform the state-of-the-art even on the base dataset. The
current model supports only a single-person pose triangula-
tion. To extend to multi-person, we need to solve the key-
point correspondence problem between the people.
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