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Abstract

Shape implicit neural representations (INRs) have re-
cently shown to be effective in shape analysis and recon-
struction tasks. Existing INRs require point coordinates to
learn the implicit level sets of the shape. When a normal
vector is available for each point, a higher fidelity represen-
tation can be learned, however normal vectors are often not
provided as raw data. Furthermore, the method’s initializa-
tion has been shown to play a crucial role for surface re-
construction. In this paper, we propose a divergence guided
shape representation learning approach that does not re-
quire normal vectors as input. We show that incorporating
a soft constraint on the divergence of the distance function
favours smooth solutions that reliably orients gradients to
match the unknown normal at each point, in some cases
even better than approaches that use ground truth normal
vectors directly. Additionally, we introduce a novel geomet-
ric initialization method for sinusoidal INRs that further im-
proves convergence to the desired solution. We evaluate the
effectiveness of our approach on the task of surface recon-
struction and shape space learning and show SOTA perfor-
mance compared to other unoriented methods.

Code and model parameters available at our project page
https://chumbyte.github.io/DiGS-Site/.

1. Introduction

Reconstructing surfaces from 3D point samples is a well
studied problem in computer vision and computer graphics.
Recently, neural networks have been used to learn an im-
plicit neural representation (INR) that can be used to recon-
struct the underlying surface [2, 3, 16, 17,29,34,36,37,42],
which we refer to as a shape INR. These methods are often
supervised using estimated or known volumetric implicit
representations in a regression setting [16, 29, 34] or using
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Figure 1. Toy 2D example. Given an unoriented input point cloud
sampled on a shape, we train a shape implicit neural representa-
tion using a geometric initialization and a divergence penalty loss
which arises from the observation that in most locations the diver-
gence of the signed distance function should be low.

surface 3D points with or without extra 3D supervision (e.g.
normal data) [2, 3, 17,37] to regress the function directly.
Due to the difficulty of optimizing a regression model to fit
high fidelity surfaces, most methods use normal data. How-
ever, raw 3D point clouds from scans are typically unori-
ented, and thus do not have normal vectors, therefore a pre-
processing estimation stage is required. While while some
methods allow normal supervision to be absent [17,37], we
show that without it their performance drops significantly.
While there have been significant advances in normal es-
timation algorithms [5, 6, 19, 25], all yield unoriented and
noisy predictions. This poses a great challenge for existing
normal-based shape INR learning approaches.

In this work, we introduce a divergence guided shape im-
plicit neural representation learning approach (DiGS INR),
which uses raw 3D point data for supervision without any
pre-processing stages. Our approach is motivated by the
observation, illustrated in Figure 1, that the gradient vec-
tor field of the signed distance function (produced by the
network) has low divergence nearly everywhere. We incor-
porate this geometric prior as a soft constraint in the loss
function and anneal it as training progresses. This requires
a network architecture that has continuous second deriva-
tives, such as SIRENs [37] (which we use), in contrast to
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many previous works that use ReLU multi-layer percep-
trons (MLPs). Additionally, we propose two novel geomet-
rically driven initialization methods for this architecture to
set the initial zero level set (i.e., the estimated shape’s sur-
face) to be approximately spherical, one of which explicitly
maintains high frequencies in a controllable fashion.

We test DiGS on the task of surface reconstruction and
shape space learning, and use shapes from the Surface Re-
construction Benchmark (SRB) [7], DFAUST [10], and
ShapeNet [15] datasets, which consist of shapes with chal-
lenging properties, e.g., topological complexity, nonuni-
form sampling, registration misalignment, missing data and
different feature sizes (levels of detail). We show that our
method suffers very little, if at all, without normal supervi-
sion and performs on par and sometimes better than state-
of-the-art methods that use normals. Importantly, it per-
forms significantly better than other methods that work on
unoriented point clouds.

The main contributions of this paper are:

* Introducing divergence guided shape INR learning
which incorporates soft second order derivative con-
straints to guide the INR learning process.

* Deriving two novel geometric initialization methods
for sinusoidal-based shape INR networks that lead to
better representations.

2. Related-work

Surface reconstruction. Reconstructing surfaces from
point clouds is a difficult problem that has been studied for
many years. Its main challenges include (1) nonuniform
point sampling, (2) noisy point positions and normals due
to sampling inaccuracy, scan registration misalignment and
normal estimation errors, and (3) missing data in parts of the
surface due to occlusions. Reconstruction methods attempt
to overcome these challenges and infer the unknown under-
lying surface. Classical combinatorical approaches for re-
construction include triangulation methods [!3, 24], alpha
shapes [9] and Voronoi diagrams [1]. Classical implicit
function based approaches include piecewise polynomial
functions [32,33], summing radial basis functions [12], and
solving a Poisson equation to find a global indicator func-
tion [22,23]. For a more in depth survey of classical sur-
face reconstruction methods we refer the reader to Berger
et al. [8]. Recently, and more relevant to this work, learn-
ing based approaches with neural networks have been pro-
posed. These include parameteric methods that learn map-
pings from a parametric space to a region of the surface
[18,44], methods that learn an implicit volumetric function
on regular grids [21,40], methods that learn implicit neural
representations (INRs) for the shape and recently a differ-
entiable point-to-mesh optimisation layer [35].

Shape implicit neural representations (INRs). Neural
networks have shown to be very efficient in representing

shapes as implicit functions [2,3,17,26,29,30,34,37,39,45,
], and scenes [4, 20, 36, 38]. These networks are trained
to output either a signed distance function [2—4, 17,20, 30,
,37,38,45,46], an occupancy function [29, 36, 39], or
recently a representation that unifies the two [26].

Our method uses a signed distance function (SDF) to
represent the shape. SDFs were popularised for shape INRs
by DeepSDF [34]. However, for off surface points they re-
quire the ground truth for whether they are inside/outside
the shape (i.e. the sign of the SDF), which is unrealis-
tic. SAL [2] improves upon this by using a sign agnostic
training method that requires no extra 3D supervision, and
SALD [3] shows that using ground truth normals for points
on the surface greatly improves performance. IGR [17] in-
troduce an important eikonal equation based loss term to
regularise the learnt function towards being an SDF, which
can be used with or without normals. NSP [45] frame the
task as a kernel regression problem where the kernel chosen
is equivalent to the limit of infinitely wide, shallow ReLU
networks. FFN [39] and SIREN [37] demonstrate that INRs
using conventional MLPs bias toward low-frequency solu-
tions, and thus explicitly introduce high frequencies into
their architecture. FFN (which learn an occupancy implicit
function) use a ReLU MLP with a Fourier feature layer,
while SIREN uses periodic (specific sine) activation func-
tions. The benefit of the latter is that second derivatives (and
in fact all orders) are defined and continuous, which allows
for higher order supervision as we use in this paper. On the
other hand, DeepSDF, SAL use ReL.U for activation, so the
same cannot be done with those methods.

Ground truth normal information is not usually available
in real world, raw scan data, and must be noisily estimated.
Note that all these methods, except SAL (and DeepSDF
which uses other unrealistic ground truth information), re-
port results with ground truth normal information. Tech-
nically IGR and SIREN can operate without such informa-
tion by dropping the corresponding loss term in their overall
loss, but our experimental results in Section 6 show that per-
formance significantly drops in their absence. On the other
hand, we show that without normal information our method
does not reduce performance as significantly, and in fact
does on par with methods that use normals.

Concurrent work include IDF [46] and PHASE [26].
IDFs extend SIRENS to explicitly decompose learning the
high and low frequencies of a shape, and combine by hav-
ing the local high frequency as a displacement in the low
frequency SIREN’s normal direction. PHASE introduce a
loss that learns a density function whose limit is an occu-
pancy, and whose log transform is a SDF. They also in-
troduce a version without ground truth normal supervision,
PHASE+FF, which uses the Fourier features of FFN [39].

Initializing shape INRs. As finding good shape im-
plicit representations is hard due to the ill-posed nature of
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the task [8], many methods introduce initialization or reg-
ularization to bias toward favourable solutions [2, 3, 17].
SAL [2] introduce a geometric initialization for ReLU
MLPs, which carefully chooses the initial weights (or the
distribution of the initial weights) in particular layers to
make the initial function be approximately the signed dis-
tance function to a r-radius sphere. This initialization
has shown to have favourable properties for reconstruction,
such as in-object and out-object sign consistency.

For SIREN:S, to allow for training deeper networks for
general INRs, Sitzmann ef al. [37] proposed an initializa-
tion that preserves the distribution of activations through its
layers. However for shape INRs, this initialization lacks a
geometric grounding and sometimes causes unwanted ghost
geometries. In this paper, we propose two novel initializa-
tions for SIRENSs that extend the notion of geometric ini-
tialization to periodic activations and show that initializing
with high frequencies is important for capturing fine detail.

3. Outline of Divergence Guided Shape INRs

We use a smooth-to-sharp approach that keeps the gra-
dient vector field stay highly consistent during training (see
Figure 2). In particular, it allows us to learn a good im-
plicit representation without normal information. The pro-
posed training procedure consists of the following four
steps, which will be detailed in subsequent sections:

¢ Geometric initialization. Initialize to a sphere, bias-

ing the function to start with an SDF that is positive
away from the object and negative in the centre of the
object’s bounding box, while keeping the model’s abil-
ity to have high frequencies (in a controllable manner).

* High divergence phase. Guide the model towards
a smooth reconstruction of the coarse shape. Impor-
tantly, this prevents the model from prematurely fitting
to fine details.

* Annealing divergence phase. Slowly allow fine de-
tails to emerge while still learning a function that has
smoothly changing normals.

¢ Low divergence phase. Allow very fine details such

as sharp corners to emerge, and for the function to

interpolate the original data (point cloud samples)

as much as possible (subject to also minimising the
Eikonal term).

A high weight on the divergence loss produces very smooth

SDF functions, leading to oversmoothed reconstructions.

However learning such smooth representations can be done

quickly and robustly. In the supplemental material, we

provide a video showing the effects of this procedure on

the reconstructions at different iteration steps. We divide

the total number of iterations in 50%, 25% and 25% for

the high, annealing and low divergence phases, respectively.

SIREN.wo n Our DiGS

Figure 2. Results at four different training iterations (progressing
from left to right) for DiGS (top) and SIREN wo n (bottom).

4. Geometric initialization for SIRENs

We now detail our two geometrically motivated initial-
izations for SIRENs, shown in Figure 3 for 2D.

Initialization to a sphere. A key component of our
method is a geometrically meaningful initialization for the
parameters of SIRENS such that the initial signed distance
function is approximately an r-radius sphere.

Let us consider a SIREN specified by

q)(xa 9) = WS ((bn—l o ¢n—2 ©...0 ¢0) (Z‘) + b’fH
¢i(x;) = sin (W,z; +by) (D

where ¢; : RMi — RN is the i*" layer of the net-
work, with input z; € RM: (so zy = ) and parame-
ters 0 = {wy,,bn, Wy_1,by_1,... W1, by} where W, €
RNixMi ‘b, ¢ RN: w, € RM~ b, € R. Rather than ap-
proximating a norm using smooth SIRENs, we instead ap-
proximate the more tractable signed squared norm [43] and
apply the following function to the output of the SIREN:

v(d) = sign (d) \/|d| + ¢. 2)

Thus, we develop an initialization of the network’s param-
eters, § = 6, such that v(®(x;6p)) ~ ||z||, for z within
the unit ball. Note translating and scaling to the unit ball is
standard for point clouds, so we are only interested in the
INR within this region. We then manually minus r from
this to initialize to a an r-radius sphere.

The following proposition shows this for a single hidden
layer SIREN, where we approximate z — 22 using a trans-
lated sine wave (see supplemental for proof).

Proposition 4.1. Let ¢ be a single hidden layer SIREN
(n = 1 in Equation 1) of dimension M,, and let = be a
point within the unit ball. Set W,,_; = 31, b, 1 = 51,
w,, = —1and b, = M,,. Then, v(®(z)) =~ ||z|,.

To extend this to networks with an arbitrary number of
layers, we design layers ¢; that preserve the norm on expec-
tation w.r.t. the weights of the layer: E[||¢;(z;)]]5) = ||zl
8O ||i+1|l2 = ||zi]|2. We do this by sampling entries for the
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Figure 3. Visualization of the SDF of the proposed geometric
initialization and multi-frequency geometric initialization (MFGI)

for SIRENS in 2D compared to Sitzmann et al. [37].
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Figure 4. Illustration of our geometric initialization and MFGI.

weight matrix uniformly in the range [—ci,,., ¢ ] (defined
below), which makes the rows approximately orthonormal.
This also preserves the distribution type of the activations
through all layers (see Sitzmann et al. [37]). Applying
Proposition 4.1 to the last two layers yields the following
proposition (see Figure 4 for a illustration of this).

Proposition 4.2. Let ® be a n-hidden layer SIREN (Equa-
tion 1) that maps from RMe — R and |z|2 < 1. Set

WiNU( ,Ci)Ci = S,biZOfOI‘
wr wr wr M;11

0<i< n—2ande,1 =3I, by, 1=351Lw,=-1

and b, - Then v(®(z)) = ||z||2.

We perturb all constant parameters in Proposition 4.2
with small Gaussian noise to facilitate learning.

However, as this initialization keeps all activations
within the first period of sin, in practice SIRENs initialized
this way will not generate high frequency output. Sitzmann
et al. [37] also notes this problem, and specifically scales
the weight matrix of the first layer by wy = 30 to hit up
to 30 periods, thus giving multiple frequencies through the
network. To overcome this problem, we proposed the multi
frequency geometric initialization (MFGI).

Multi frequency geometric initialization (MFGI). We
initialize using the geometric initialization of Proposi-
tion 4.2 and introduce high frequencies into the first layer
in a controlled manner (see Figure 4 for an illustration of
the method). Specifically, we keep the initialization for the
first k, rows of the weight matrix Wy = [w;] € RNoxMo
as per Proposition 4.2, and for the last Ny — &, rows we
scale the initialized values by n,, = 30. This means that
the output after the first layer, z; € RNo, has its first k,
elements hitting only one period and its remaining Ny — &,

elements hitting up to n,, periods. Then so that our geomet-
ric initialization still works, we scale down any part of the
next weight matrix, W, = [wzlj] e RN1xMi that would
multiply into the multi-period part of the vector by a factor
s = 1073, This can be summarised as:
0 {u (_C%T’C?ur) 0<j <k,
ij

.y

In our experiments we found that k, ~ %NO is sufficient.

Visualisation of the initalizations. Figure 3 shows the
two initializations introduced compared to the initializa-
tion proposed in SIREN [37] for a 4-layer SIREN with 128
nodes in each layer. Notice that SIREN’s initialization has
both SDF and gradient vector norm of almost zero every-
where. On the other hand, our geometric initialization has
sphere-like level sets, which provide smooth and desirable
eikonal and divergence terms (see supplemental for visual-
ization of these components). Our MFGI initialization is
a noisy version of our geometric initialization, where the
amount of noise can be tuned by n,, k, and s.

W . ~ 0 .
Np €Oy M w) otherwise 3)

0<j<k,,0<i<k,

U=
( wr’ wT)
U(-s

ck s ) otherwise

5. DiGS Loss
5.1. Existing loss function components and setup

Prominent neural implicit representation methods [2,

,34,37] train a neural network with parameters 6 to output
a SDF ®(z;0) to the surface of an underlying (unknown)
shape for every given point 2 € R?® . They require several
loss functions when training to constrain the learned func-
tion in certain ways: (A) manifold constraint: points on
the surface manifold should be on the function’s zero level
set [2,3,17,34,37], (B) normal constraint: the gradients
of points on the surface manifold should match the ground
truth normal if such supervision is available [3, 17,37] (C)
either (C1) non-manifold constraint: points off the surface
manifold should match their ground truth SDF or SDF mag-
nitude [2,3,34] or (C2) Eikonal constraint: all points should
have a unit gradient [17, 37], (D) non-manifold penalisa-
tion constraint: off surface points should not have zero
SDF [37]. Note that (A) and (C) are necessary, and (B)
and (D) are used for improving results.

Our method uses the same network architecture and loss
functions of SIREN [37], which we provide for complete-
ness. Given domain €2 and surface manifold {2, they define
the above loss functions as

La— / 1@ (z;6)]|, dx 4
Qo

LB:/Q (1— (Vod(2:0), ner(2))) dz (5)
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Loo :/ IV, (a:6)]), — 1] da ©)
Q

Lp= / exp (—a|®(z;0))), a>1. ()
2\

In summary, the final loss for SIREN is given by a
weighted sum of all of the above terms:

Lsiren =AaLla+ AL+ Ac2Lea+ApLp  (8)

with (A4, AB, Ac2, Ap) = (3000, 100, 50, 100) as given by
Sitzmann et al. [37].

Supervision for (B) and (C1) are either unlikely to have
in practice or costly to approximate well. Gropp et al. [17]
showed however that (C1) can be replaced by (C2), a pop-
ular constraint in PDE theory called the Eikonal equation,
which does not require extra data. In fact, given contin-
uous (and sufficiently well behaved) boundary constraints
(A), solving for a viscous solution to the PDE defined by
the Eikonal equation will be unique (i.e., only (A) and (C2)
are necessary). The difficulty in practice, however, is that
constraint (A) is only defined at discrete points, resulting
in infinitely many solutions, hence the requirement of other
constraints to guide to favourable solutions (especially (B)).

We observe and deal with another problem (that we high-
light in Section 5.3): our loss functions (and thus con-
straints) can only be evaluated at finite, discrete points
within the domain. As a result the quality of our solution
depends highly on the sampling density of our method, and
how effectively our losses constrain the surrounding region.
While we cannot increase the number of discrete points we
get as supervision for (A), (B) greatly constrains the func-
tion space by adding higher order information (but requires
extra supervision). We now do the same for (C) without ex-
tra supervision, and show that it can even remove the need
for (B). Note that to benchmark against no normal supervi-
sion (B), we can also define

LSiREN won = AaLa +AcaLea +ApLp.  (9)
5.2. Second order unsupervised constraints

We turn to second order information to further constrain
the SDF around each sample on Q \ €. Given the gradient
vector field V&, we can compute its curl, V x V&, and
divergence, A® := V - V& (note that this is also known
as the Laplacian of the underlying scalar field ®) [28]. The
curl of any gradient vector field is zero everywhere so it
does not give us any information. However, we can observe
that for a ground truth SDF, the magnitude of the divergence
is very low at most areas of the domain (see supplemental
material for discussion and intuition). We can thus impose
a penalty on the magnitude of the divergence, i.e.,

Lgin = / |AD(x;0)| dx = / |V Vo @(x;0)|dx.
Q\QQ Q\QO
(10)

This leads to our proposed DiGS loss, given by:

Lpigs = LSIREN wo n + TAdivLdiv (11)

where we use A\y;, = 100 and 7 is an annealing factor we
discuss in Section 3.

Note that our approach can only be used with architec-
tures that have activation functions with nonzero second
derivative such as SIRENs. ReLLU based networks will not
be affected by the divergence constraint.

5.3. Minimising divergence as regularisation

We now provide some justification of the loss in Equa-
tion 10 by showing that it is equivalent to regularising the
learnt function. We can quantify the complexity of our
learnt function by using the Dirichlet Energy. The Dirichlet
Energy of a function ® over a space €2 gives a notion for
how smooth or variable the function is [11] (where lower
implies smoother), defined by

1
B8] = 5 [ V(@) s (12)

To minimize this with respect to our constraints (A)—(D), it
suffices to find the function satisfying our conditions whose
magnitude of the divergence is as small as possible, i.e.,
minimizing our divergence term Lg;, in Equation 10 (see
supplemental material for proof).

Why not explicitly minimize the Dirichlet energy as a
loss function? In fact, doing so would be redundant, due to
our Eikonal term (6): if the gradient is constrained to have
unit norm on the sampled points, then the Dirichlet energy,
as far as can be determined from at those sampled points, is
already determined. However we argue that adding our di-
vergence term does a much better job of reducing the vari-
ability of our learned function over the entire space, rather
than just having the Eikonal term. The reason for this is
that it constrains the local region more due to its second or-
der nature. This can also be motivated by the divergence
theorem [3 1] (see supplemental for a thorough discussion).
We use the following toy problem to demonstrate this.

Consider the problem of learning the SDF to the line
y = 0 where below the line is negative, i.e. ®((z,y)) = y.
We train a 2-layer SIREN with point constraints (A) and
Eikonal term (C2), and then add our divergence constraint
for comparison. For point constraints we sample 10 points
onthe linesy = —1,y = 0andy = 1 (for z € {0,1}),
and for Eikonal and divergence constraints we sample on a
n x n grid. We repeat the experiment for n € {20,200}
and evaluate our learned functions on a finer m x m grid
(m = 1000). We perform 20 repetitions of these four ex-
periments with different random initializations.

The results can be seen in Table 1, where we report
the mean Dirichlet energy £ = ||V f||2, the mean gradi-
ent norm ||V f||2 and its standard deviation o(||V f||2). We
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Loss gidsize|E = [VFI3 [V/il2 o(lVFla)
A+C2 20x20 432 +3.07 1.63+0.51 1.05+0.56
A+C2 +Div  20x20 3.37 £3.89 1.464+0.76 0.69 4 0.43
A+C2 200x200| 3.58 +-3.55 1.51 +0.54 0.85 4+ 0.52

A+C2 + Div 200x200| 1.37 +1.35 1.04 £ 0.39 0.22 £ 0.33

Table 1. Results on the toy problem. Comparing mean Dirichlet
energy and mean gradient norm. The divergence term significantly
improves performance.

05

Figure 5. SDF contour lines for the toy problem on a 200x200
grid. With (right) and without (left) the divergence loss term.

also visualize the learnt SDFs for one of the repetitions in
Figure 5. The results show that adding the divergence con-
straint both reduces the mean Dirichlet energy, indicating
that the learned function is less variable, and makes the
function more faithful to the Eikonal constraint. This can
also be seen in the visualization, where the level set con-
tours are less variable and have more consistent spacing.
More visualizations are provided in the supplemental.

6. Experiments

We evaluate our method on the tasks of surface re-
construction and shape space learning. We test the for-
mer on the Surface Reconstruction Benchmark (SRB) [7],
ShapeNet [ 15] and on a scene from Sitzmann et al. [37], and
the latter on DFaust [10]. In both tasks, we extract the mesh
representing the zero level set of the shape INR using the
marching cubes algorithm [27]. We follow the same mesh
generation procedure as in IGR [17] and use a grid whose
shortest axis is 512 elements, tightly fitted onto the shape
(adapting the grid range to the input scan bounding box).
Unless otherwise specified, we use the same architecture (5
layers, 256 units) and hyperparameters as SIREN [37]. In
the supplemental material, we provide full implementation
details, extended results, ablations, additional experiments
and additional visualizations.

Evaluation metrics. To compare between two point sets
we use the Chamfer (d¢) and Hausdorff (dy) distances.
We follow IGR [17] and sample 1M points on the recon-
struction and compare to the GT and scan point clouds.
For ShapeNet we follow NSP [45] and report the squared
Chamfer and Intersection over Union (IoU). See the sup-
plemental for definitions and further details.

6.1. Surface reconstruction

The task of surface reconstruction of unoriented point
clouds is specified as follows. Given an input point cloud
X C R3 find the surface S from which X’ was sampled. The
point set is usually acquired by a 3D scanner which intro-
duces various types of data corruptions, e.g., noise, occlu-
sions, nonuniform sampling. We evaluate the performance
of our method on the Surface Reconstruction Benchmark
dataset [7] and on ShapeNet [15].

We compare our results to recent prominent methods,
most of which have shown to outperform classical meth-
ods, including SAL [2], IGR [17], SIREN [37], DGP [44]
and NSP [45]. Note that apart from SAL, these methods
report results using normal vector supervision, therefore for
fair comparison we evaluate on SIREN and IGR without the
normal vector loss term (note that the same cannot be done
with DGP and NSP). Furthermore we compare to results re-
ported from the concurrent work PHASE [26], who evaluate
on SRB. While PHASE uses normal information, they also
provide a version without normals that uses Fourier fea-
tures, PHASE+FF, and a baseline for IGR without normal
information, IGR+FF.

Surface Reconstruction Benchmark (SRB). We use
the simulated scan and ground truth data provided in
Williams et al. [44] (freely available for academic use). The
dataset contains five shapes, each with it own challenging
traits, e.g., complex topology, high level of detail, missing
data, and different feature sizes. In Table 2 we report the av-
erage Chamfer and Hausdorff distance for the shapes, and
since the shapes have varying difficulties, we also report the
mean deviation from the best performing method for each
shape. It shows that our method is consistently better than
SoTA methods on both metrics when normal information is
not available. Qualitative results for a subset of the dataset
are shown in Figure 6. In the absence of normal informa-
tion, SIREN and IGR struggle to converge to the correct
zero level set and produce undesired artifacts (ghost geome-
tries). DiGS, on the other hand, is able to remove such
artifacts. When compared to the version with normal su-
pervision added there is not much change other than DiGS
being slightly smoother. In fact, DiGS manages to get sim-
ilar results to the methods that use normal supervision. For
extended results (results per shape, results with normal su-
pervision and more metrics), visualization of all shapes and
a video showing the shapes from multiple angles, see the
supplemental material.

ShapeNet. The ShapeNet dataset contains 3D CAD
models of a diverse range of objects. These shapes of-
ten have internal structure, inconsistent normals, and non-
manifold meshes. We use the preprocessing and split of
Williams et al. [45], who evaluate on 20 shapes in each of
13 categories, and preprocess to make the normals consis-
tent and internal structure to be manifold meshes. The re-
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Method do dy Adc Ady

IGR won 1.38 16.33 1.20 12.84
SIREN wo n 0.42 7.67 0.23 4.18
SAL [2] 0.36 7.47 0.18 3.99
IGR+FF [26] 0.96 11.06 0.78 7.58
PHASE+FF [26]  0.22 4.96 0.04 1.48
Our DiGS 0.19 3.52 0.00 0.04

Table 2. Results on the Surface Reconstruction Benchmark [7].
We compare against other methods without normal information,
for all methods see the supplemental. We report the mean Chamfer
dc and Hausdorff distance dy to the GT scans and their mean
deviation from the best performing method (Adc and Adg).

squared Chamfer | ToU 1
Method mean  median std mean median  std
SPSR [23]  2.22e-4 1.70e-4 1.76e-4 0.6340 0.6728 0.1577
IGR[17] 5.12e-4 1.13e-4 2.15¢-3 0.8102 0.8480 0.1519
SIREN [37] 1.03e-4 5.28e-5 1.93e-4 0.8268 0.9097 0.2329
FFN [39] 9.12e-5 8.65e-5 3.36e-5 0.8218 0.8396 0.0989

NSP [45] 5.36e-5 4.06e-5 3.64e-5 0.8973 0.9230 0.0871
DiGS +n 2.74e-4 2.32e-5 9.90e-4 0.9200 0.9774 0.1992
SIREN won 3.08e-4 2.58e-4 3.26e-4 0.3085 0.2952 0.2014
SAL [2] 1.14e-3 2.11e-4 3.63e-3 0.4030 0.3944 0.2722
Our DiGS 1.32e-4 2.55e-5 4.73e-4 0.9390 0.9764 0.1262

Table 3. Surface Reconstruction results on ShapeNet [15]. Meth-
ods above the line use ground truth normal information, and meth-
ods below do not. The mean, median and standard deviation of the
squared Chamfer distance and IoU of all 260 shapes are reported.
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Our DiGS IGR won SIREN wo n|Our DiGS +n IGR SIREN

Figure 6. Qualitative results of surface reconstruction on the an-
chor and gargoyle shapes from the Surface Reconstruction Bench-
mark [7] compared to state of the art approaches (IGR, SIREN)
that use normal vectors as ground truth.
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Figure 7. Results for surface reconstruction on ShapeNet [15].

sults are reported in Table 3 and we provide visualizations
in Figure 7. When adding normal supervision to DiGS, our
method has a much better median squared Chamfer distance
and median IoU among the 260 shapes. We attribute this to
our divergence term smoothing out the space, which does
well on shapes without much internal structure. However

Our DiGS SIREN wo n

SIREN

Figure 8. Qualitative results of scene reconstruction. SIREN
(right) provides high level of detail, however, when normal vec-
tors are not available (center) the proposed divergence constraint
(left) demonstrates a significant improvement.

for some shapes with internal structure (e.g., a loudspeaker
with components inside or a sofa with structural beams) we
get significant internal ghost geometry. As a result our mean
squared Chamfer distance, while competitive with the other
methods, is worse than methods such as SIREN. Note, how-
ever, that ths does not affect the IoU as much, our mean IoU
is still better than other methods. When comparing with-
out normals, DiGS has similar medians on both metrics
to when normal supervision is added, however it has bet-
ter means. We attribute this to having fewer internal ghost
geometries when not attempting to fit normal vectors at in-
ternal points. Note that DiGS outperforms other methods
that do not use normal supervision on both metrics. The
improvement in IoU is significant, which we attribute to
other methods failing to contain ghost geometry and be-
ing inconsistent with what is inside/outside the shape. On
the other hand, DiGS appropriately deals with both of these
challenges by its structured training procedure.

Scene reconstruction. Qualitative results for scene re-
construction are presented in Figure 8. Here we use eight
layers with 512 units and train on the scene from Sitz-
mann et al. [37] which includes 10M oriented points. We
train SIREN with and without the normal constraint, and
the proposed DiGS method. In this experiment we did not
use a geometric initialization because, unlike the shape re-
construction task, the target surface is vastly different than
a sphere, and instead only increase the frequencies. When
training SIREN without normal supervision we observe
many ghost geometries (SIREN wo n). On the other hand,
DiGS is able to reconstruct the scene without these, though
it produces a very smooth result. This is desirable in most
planar regions, e.g., ceiling, floor and table, however, this
trait has the drawback of smoothing out fine details, e.g.,
sofa legs and picture frame.

6.2. Shape Space Learning

Shape space experiments requires training a single
model to learn to represent multiple shapes from a class
of related shapes. We use the DFAUST dataset [10] which
consists of ~40k raw human scans of ten humans at dif-
ferent time points during multiple types of activities. The
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d@(reg, recon) d@(recon, reg) d@(scan, recon) d@(recon, scan)
Mean Median Mean Median Mean Median Mean Median

IGR[17] 1.053 0.509 4916 0.540 1.054 0.509 4916 0.540
DiGS+n 0.568 0.458 1.834 0.461 0.568 0458 1.834 0.461

IGRwon 3.745 2689 12.149 9.027 3.745 2.687 12.147 9.026
Our DiGS 0.856 0.707 12.318 9.202 0.856 0.707 12.319 9.204

Table 4. Quantitative results on DFaust [10]. We compare the
mean and median of the one-sided Chamfer distances (reported as
x10?) between the ground truth registration meshes (reg), recon-
structions (recon) and raw input scans (scan).

\J

. f/qw
} |

Our DiGS

Ground Truth IGR Our DiGS+n IGRwon

Figure 9. Qualitative results for the shape space experiment on
the DFaust dataset [10]. Each row is a single pose of a different
human from the test set.

scans are noisy and often incomplete (contains missing ob-
ject surfaces). The dataset also provides ground truth reg-
istrations for each scan. Following IGR’s [17] setup, we
use their 75%/25% train-test split, and we use DiGS as an
autodecoder [34]. Thus at training time, multiple scans of
the humans are learnt with a separate latent vector for each
pose, and at test time, unseen poses of those same humans
are reconstructed by jointly estimating a suitable latent vec-
tor. Note this is a much harder problem than surface recon-
struction, the model has to learn to be able to fit to multiple
shapes given different (learnable) latent codes, stretching
the test of the model’s capacity.

Table 4 shows the quantitative results of one-sided
Chamfer distances'. In particular, for registration & scan to
reconstruction DiGS+n has a lower mean than IGR, show-
ing it fits better to the ground truth and input surfaces and
does not miss ground truth regions. For reconstruction to
registration & scan the mean distances increase for both
IGR and DiGS+n, indicating that both models create ghost
geometry, however DiGS+n creates much less. Both of
these are demonstrated in Figure 9: despite IGR sometimes
having more detail (e.g., the face) it has multiple ghost
geometries and significant missing parts (e.g., forearms).
DiGS+n also achieves slightly smaller median distances.

For the methods without normals supervision, DiGS

For IGR we use the code and weights provided by [17]. Note that
some methods report the squared Chamfer [2]. After correspondence with
the authors of SAL and SALD [2, 3], we were unable to reproduce their
results and therefore these baseline are omitted.

clearly outperforms IGR wo n, the latter is not able to con-
verge. This can be seen in Figure 9, where the reconstruc-
tions do not even resemble the initial humans. DiGS on the
other hand captures the human shapes, but is oversmoothed
and has large ghost geometries framing the humans. Look-
ing at Table 4 the means and medians for registration &
scan to reconstruction are still quite small, showing that de-
spite oversmoothing the detail DiGS learns to fit to the un-
seen test surfaces quite well. Due to the ghost geometry,
for the reconstruction to registration & scan distances DiGS
has very large values, similar to IGR wo n.

6.3. Limitations

DiGS is mainly limited in two aspects: (1) capturing very
thin structures, e.g., the left sofa’s legs in Figure 8, and (2)
smoothing effects, e.g., the pictures on the walls in Figure 8.
This is expected since these regions contain only very few
points and without the normal vector information, uncover-
ing the underlying surface is more challenging.

7. Conclusion

We introduce DiGS, a divergence guided shape implicit
neural representation approach for raw unoriented point
clouds without any pre-processing. Additionally, we de-
rive a geometrically motivated initialization for sinusoidal
representation networks while preserving high frequencies.
Finally, we demonstrate that DiGS has the ability to re-
construct shapes of high fidelity with some limitations of
smoothing and thin features reconstruction. We report state
of the art results compared to other methods that do not use
normal supervision, and show that our method is compara-
tive to methods that do use such supervision.

All existing methods, including ours, struggle with miss-
ing data and thin features. Future work can explore exten-
sions to use local self similarity to deal better with these
regions. Point cloud density is also an important factor in
the representation power and additional work can be done
to mitigate density effects. Lastly, shape representation net-
works are highly dependant on the initialization and further
work should be done to explore this direction.

Potential societal impact. The proposed DiGS ap-
proach enables accurate representation of 3D shapes from
3D point cloud data in a deep learning framework. Many
down stream tasks may be enabled by DiGS, including
avatar creation and computer aided design (CAD). These
applications may be leveraged for negative and positive out-
comes. For example, DiGS may be extended for genera-
tive tasks and enable novel approaches for shape generation.
This has potential misuses including digital impersonation
without consent and unauthorized reproduction of mechani-
cal designs. This ties into DeepFakes which were discussed
in depth in a recent review on neural rendering [41].
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