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Abstract

Iterative denoising-based generation, also known as de-
noising diffusion models, has recently been shown to be
comparable in quality to other classes of generative mod-
els, and even surpass them. Including, in particular, Gen-
erative Adversarial Networks, which are currently the state
of the art in many sub-tasks of image generation. However,
a major drawback of this method is that it requires hun-
dreds of iterations to produce a competitive result. Recent
works have proposed solutions that allow for faster gen-
eration with fewer iterations, but the image quality grad-
ually deteriorates with increasingly fewer iterations being
applied during generation. In this paper, we reveal some
of the causes that affect the generation quality of diffusion
models, especially when sampling with few iterations, and
come up with a simple, yet effective, solution to mitigate
them. We consider two opposite equations for the iterative
denoising, the first predicts the applied noise, and the sec-
ond predicts the image directly. Our solution takes the two
options and learns to dynamically alternate between them
through the denoising process. Our proposed solution is
general and can be applied to any existing diffusion model.
As we show, when applied to various SOTA architectures,
our solution immediately improves their generation quality,
with negligible added complexity and parameters. We ex-
periment on multiple datasets and configurations and run
an extensive ablation study to support these findings.

1. Introduction
Over the past few years, deep generative models have

reached the ability to generate high-quality samples in var-
ious domains, including images [2], speech [25], and nat-
ural language [3]. For image generation, generative mod-
els can be divided into two main branches: approaches
based on generative adversarial networks (GAN) [7] and
log-likelihood-based methods, such as variational autoen-
coders (VAE) [15], autoregressive models [26], and normal-
izing flows [14,29]. Log-likelihood models have the advan-
tage of possessing a straightforward objective, which makes

them easier to optimize, while GANs are known to be un-
stable during training [8, 31]. However, until recently, well
optimized GAN models outperformed their log-likelihood
counterparts in generation quality [2, 11–13].

This changed when Ho et al. [9] introduced a new type of
log-likelihood model called the Denoising Diffusion Prob-
abilistic Model (DDPM). With this model, image quality
surpasses GANs [6], while it is also very stable and easy
to train. DDPMs follow the concept of iterative denois-
ing: given a noisy image xt, it is gradually denoised by
predicting a less noisy image xt−1. This process, when
done over hundreds (or thousands) of iterations, is able to
generate images with very high quality and diversity, even
when starting from random noise. DDPMs have many com-
puter vision applications, such as super-resolution [18, 30]
and image translation [33], and are also extremely effective
in non-visual domains [4, 21, 28].

DDPM incorporates a probabilistic denoising process
that is dependant on the estimation of the mean compo-
nent µt−1. This is done by a neural network parameterized
over θ and denoted as µθ(xt, t). However, it was found that
through the forward and backward equations this process is
better formalized by predicting either the noise εθ(xt, t) or
the original image xθ(xt, t) [9]. Their experiments found
the former to be empirically superior, and, as far as we can
ascertain, no further comparisons between the two options
(noise or original image) have been performed as yet.

In this work, we revisit the original implementation of
DDPM, and find that the preference of εθ over xθ is circum-
stantial and depends on the hyperparameters and datasets.
In addition, in certain timesteps, the denoising process has
less error when predicting the noise component εθ, while in
others it predicts the original image xθ better. This realiza-
tion motivated us to design a model capable of predicting
both values and adaptively selecting the more reliable out-
put at each sampling iteration. The modified model has a
negligible number of added parameters and complexity. We
apply this method to various DDPM models and show a
marked improvement in terms of image quality (measured
by FID) for many benchmarks. This addition to the frame-
work is orthogonal to existing advancements (that we know
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of), and is able to improve sampling quality, especially with
the restriction of few iterations.

2. Related work

Diffusion probabilistic models were introduced by Sold-
Dickstein et al. [34], who proposed a model that can learn
to reverse a gradual noising schedule. This framework is
part of long research on generative models that are based
on Markov chains [1, 32], that has led to the develop-
ment of Noise Conditional Score Networks (NCSN) [36,37]
and Denoising Diffusion Probabilistic Models (DDPM) [9].
Although very similar, DDPMs try to minimize the log-
likelihood, while NCSNs optimize the matching objec-
tive [10].

The success of DDPMs has sparked a lot of interest in
improving upon the original design. Song et al. proposed
an implicit sampling (DDIM) [35] that reduces the number
of iterations while maintaining high image quality. Nichol
and Dhariwal [23] proposed a cosine noising schedule and a
learned denoising variance factor, and in a second work [6]
proposed architectural improvements and classifier guid-
ance. Watson et al. [38] proposed a dynamic programming
algorithm to find an efficient denoising schedule. Nachmani
et al. [22] applied a Gamma distribution instead of Gaus-
sian. Luhman and Luhman [20] applied knowledge distilla-
tion with DDPMs.

The solution proposed in this work is orthogonal to the
contribution of these methods. It is, therefore, possible to
apply our method to the above advancements and increase
the performance of all these networks. This is demonstrated
in our experiments for some of the existing approaches.

3. Setup

Diffusion models operate as the reversal of a gradual
noising process. Given a sample x0, we consider the sam-
ples xt for t ∈ [1, T ] obtained by gradually adding noise,
starting from x0. Noise is applied in such a way that each
instance is noisier than the previous, and the final instance
xT is completely destroyed and can be seen as a sample
from a predefined noise distribution. Ho et el. [9] proposed
a Gaussian noise that is applied iteratively as:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

Here, βt ∈ [0, 1] for t ∈ [1, T ] are a group of scalars
selected so that xT ∼ N (xT ; 0, I) (a multivariate i.i.d nor-
mal distribution). Due to the choice of applying Gaussian
noise, a simpler transition can be applied directly from x0

to any xt, which makes training much more efficient. Using
at := 1− βt and ᾱt :=

∏t
s=1 as, we get:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

This formulation also reveals a simpler constraint, which
is that ᾱT =

∏T
s=1 (1− βs) ≈ 0, and multiple such sched-

ules have been proposed [9, 23] and tested.
Through this equation, any intermediate step xt can be

sampled, given a noise sample ε ∼ N (0, I):

xt =
√
ᾱtx0 +

√
1− ᾱtε (3)

Notice that x0 can easily be backtraced through

x0 =
1√
ᾱt

(xt −
√

1− ᾱtε), (4)

which is an important property for the denoising process.
The “reversed” denoising process is then a Markovian

process, parameterized with a neural network over θ as:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (5)

Training this model is done by sampling a random t ∈
[1, T ] and minimizing the loss Lt with stochastic gradient
descent. Lt is the KL-divergence:

Lt = DKL(q(xt−1|xt)‖pθ(xt−1|xt)) (6)

Some critical modifications are responsible for the sta-
bilization of this objective. The high variance distribution
q(xt−1|xt) is replaced with the more stable q(xt−1|xt, x0),
which is practically the combination of the posterior
q(xt−1|xt) and the “forward” process q(xt−1|x0).

q(xt−1|xt, x0) := N (xt−1; µ̃t(xt, x0, t), β̃tI) (7)

µ̃t(xt, x0, t) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (8)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (9)

As for pθ(xt−1|xt), Ho et al. [9] found that fixing Σt to
a constant σ2

t makes it easier to optimize an objective that
is reduced to predicting the mean vector µ̃t only:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σ
2
t I) (10)

As a corollary, the loss function becomes:

Lt :=
1

2σ2
t

‖µ̃t(xt, x0, t)− µθ(xt, t)‖2 (11)

The constant σt was selected to be βt, even though there
is also a theoretical explanation for choosing β̃t instead.

In addition, the prediction of µθ directly was replaced by
either 1© the prediction of x0, denoted as xθ, and computing
µθ (denoted as µx(xθ)) through Eq. 8, or 2© predicting ε,
denoted as εθ, and using Eq. 4,8 (µε(εθ)).

1© µx(xθ) :=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
xθ (12)

2© µε(εθ) :=
1
√
αt
xt −

1− αt√
1− ᾱt

√
αt
εθ (13)
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(a) (b) (c)

Figure 1. Loss comparison between εθ and xθ . (a) Loss on predicting µ̃t, (b) loss on predicting εt, (c) loss on predicting x0.

Figure 2. Pixel mean and variance of predicted x0 over timesteps,
for both the subtractive (εθ) and the additive (xθ) paths. For a
model trained on CIFAR10. Real data statistics are in black.

The latter was chosen based on empirical evidence, and
by further developing the equations this choice resulted in a
new formalization of Lt as:

Lt = Mt‖ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε︸ ︷︷ ︸

xt

, t)‖2 , (14)

where Mt is a weight that should be equal to β2
t

2σ2
tαt(1−ᾱt)

for consistency with Eq. 11, but was set to 1 for simplicity.

3.1. Pros and cons for predicting ε

There are multiple justifications for why the backward
process should be driven by predicting the noise ε. The first
is that the noise ε has always zero mean and unit variance,
and the model can learn these statistics quite easily. A sec-
ond is that it gives a residual-like equation, where image
x0 is predicted by subtracting the output of the model from
the input (Eq. 4). This provides the model with the option
to preserve the information in the input, by predicting zero

noise or multiply it by a small
√

1− ᾱt. This approach be-
comes increasingly beneficial towards the end of the denois-
ing process, where the amount of noise becomes small, and
only minor modifications are needed.

The main disadvantage of this approach is that after the
subtraction of noise from xt, the result is scaled with

√
ᾱt

(Eq. 4), which can be a very small value for some steps
(large t). This can lead to a very large error even for a small
error in εθ. This error propagates, since the model is limited
to modifying the intermediate states with something that re-
sembles noise, and if previous iterations produced a state
xt−1 that is not viable, it becomes difficult for the model to
correct this path. In such cases, multiple iterations may be
required just to revert a previous bad prediction.

This problem is demonstrated in Fig. 1,2. Fig. 1 shows
that loss when using εθ is significantly larger at high t than
using a direct xθ approach. Note that Fig. 1 is in log-scale,
and the error of εθ is larger by orders of magnitude for hun-
dreds of steps. Fig. 2 shows the mean and variance of the
predicted x0 through the denoising process. As can be seen,
the prediction of x0 using εθ starts with very high bias and
variance, and it takes multiple steps to correct this. In con-
trast, the direct prediction using xθ immediately starts with
very low bias, and its variance increases monotonically with
the real data variance.

3.2. Pros and cons for predicting x0

An advantage and also disadvantage of predicting x0 di-
rectly is that the model needs to produce the entire image,
not just subtract some noise from its input. This can be an
advantage during the first stages when the input image is
very noisy. As can be seen in Fig. 2, it is easier to pre-
dict an unbiased estimate of the image directly than to do
so by subtracting noise, and the loss during these steps is
substantially lower than εθ (Fig. 1). It becomes a disadvan-
tage during later steps, by when a substantial structure has
been formed in xt, and the direct prediction of x0 needs to
rebuild it in each step, instead of simply subtracting small
noise artifacts. Fig 1 shows that all predictions are less ac-
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Figure 3. The dual output diffusion model. A noisy image xT is gradually denoised into x0. In each iteration, an intermediate state xt
is inserted into a model fθ(xt, t) that predicts xθ, εθ, rθ . These outputs are combined into a mean vector µθ , that is subsequently used to
sample the next state xt−1.

curate for small t when using xθ.
At first glance, it appears that the backward process using

xθ loses the residual-like property of εθ, since the image x0

is estimated directly and not subtracted from xt. However,
the objective of step t is not to predict x0, but to obtain µ̃t.
According to Eq. 8, the residual property is still present in
this alternative backward process, which relies on xθ.

Note that while εθ is subtracted from xt (Eq. 13), xθ is
added to it (Eq. 12). Therefore, we distinguish between
the processes by calling the εθ process the “subtractive”
backward process, and calling the xθ process the “additive”
backward process.

4. Method

To leverage the advantages of both flows, we can con-
sider two models. The first, fφ(xt, t), predicts εφ (and xφ
through Eq. 4), and the second, fψ(xt, t), predicts xψ . Each
of them can estimate its own µ̃t (Eq. 12,13), but in order to
control how much we want to rely on each model’s out-
put, we can interpolate between their estimates with an ad-
ditional parameter rt, as rt ·µψ +(1−rt) ·µφ. By selecting
a different value for rt for each step t, we can control how
much influence we want each path to have on each step.

To simplify and generalize this solution, we fuse fφ, fψ
into one model fθ, and make the interpolation parameter rt
learned as well (rθ). The generalized model fθ computes:

εθ, xθ, rθ = fθ(xt, t) (15)
µθ = rθ · µx(xθ) + (1− rθ) · µε(εθ) (16)

An illustration can be seen in Fig. 3. The modifications
required to go from a model that only predicts εθ to our new
model might seem complex, but they are in fact very sim-
ple. The only change to the model is in the number of output
channels in the last layer. For example, for x0, ε ∈ RH,W,C
and r ∈ RH,W,1, the output of fθ changes from RH,W,C to
RH,W,2·C+1. This means that the number of added parame-
ters should be negligible. Complexity and runtime are also
unaffected since the computation of µθ is negligible.

This new model requires a new loss function Lt, which
optimizes eθ, xθ, and rθ. We separate this into three com-
ponents:

Lεt = ‖ε− εθ‖2 (17)

Lxt = ‖x0 − xθ‖2 (18)

Lµt = ‖µ̃t − (rθ[µx(xθ)]sg + (1− rθ)[µε(εθ)]sg) ‖2 (19)
Lt = λεtL

ε
t + λxtL

x
t + λµt L

µ
t , (20)

where [·]sg denotes “stop-grad”, which means that inner val-
ues are detached and no gradient propagated back from
them. The λ’s are weights that can be applied to each loss,
which we kept as 1 throughout our experiments. We found
that optimizing with these stop-grads results in a much more
stable training regime than the alternative of allowing gra-
dients to propagate through µx, µε, because the gradients of
∂µx
∂xθ

, ∂µε∂εθ
are subject to intense rescaling (see Eq. 12,13).

4.1. Implicit sampling

Song et al. [35] proposed an implicit sampling method
(DDIM) that is deterministic after generating the first seed
xT . Since our method only changes how µθ is estimated,
it does not affect the ability to perform implicit sampling.
Their generalized formula is as follows:

q(xt|xt−1, x0) := N (µI, σ
2
t I) (21)

µI :=
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t · εt (22)

In [35], x0, εt were estimated with x̂0 = x0(εθ)(Eq. 4),
ε̂t = εθ. Our method uses the interpolated estimation of:

µIx =
√
ᾱt−1xθ +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtxθ√

1− ᾱt︸ ︷︷ ︸
ε̂t

(23)

µIε =
xt −

√
1− ᾱtεθ√
αt︸ ︷︷ ︸

√
ᾱt−1x̂0

+
√

1− ᾱt−1 − σ2
t · εθ (24)
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When σt = 0, deterministic behavior is obtained, and the
model is not sensitive to the value of σ2

t of the probabilistic
approach that would have been selected in Eq. 10.

An additional advantage of DDIM is that it was shown
to be able to generate exceptionally well with far fewer it-
erations than the probabilistic sampling of [9]. For these
reasons, our experiments will follow mostly this approach.

5. Experiments

We start by showcasing our method’s generation results
from each independent output εθ, xθ, and show how the
interpolation parameter rθ affects the generation process.
We then evaluate our model against existing state-of-the-
art methods on multiple datasets, including CIFAR10 [16],
CelebA [19], and ImageNet [5], and perform ablation eval-
uations with each experiment.

5.1. Dual-Output Denoising

As presented in Sec. 4, our proposed solution consists of
a dual output model. One head predicts the noise εθ while
the second predicts the image xθ, and a third head, rθ, ef-
ficiently balances the two options. To understand how each
method affects the iterative process, we visualize their inter-
mediate results during each denoising process. For xθ, the
intermediate result is simply the predicted image. For εθ, it
is following Eq. 4.

These results can be seen in Fig. 4. Evidently, the
two outputs produce two very different iterative processes,
which to some extent act as opposites. The denoising pro-
cess that uses εθ, produces a very noisy start and gradually
removes noise from its previous estimates. In contrast, the
process that relies on xθ starts with a very blurry image,
which resembles an average of many images, and iteratively
adds content to it. These two different sequences inevitably
result in two different final images, but it appears that the
initial seed xT is a strong enough condition to guide them
both in a similar direction in the image space.

In the bottom row of each grid in Fig. 4, we visualize the
dual-output denoising process, driven by the interpolation
parameter rθ.

Evidently, the interpolation magnitude in each step is
dataset dependent. For example, the dual-output process in
CIFAR10 starts very similarly to xθ, while that of CelebA is
mixed. It can also be observed that the dual-output result is
different from either of the two options. In CIFAR10, it can
be observed that the dual-output produces less noisy images
than εθ, and sharper than xθ. For CelebA, we noticed that
the dual-output image quality is higher. For example, pieces
of hair are more refined and glasses are noticeable.

To better understand the denoising process with each
output, we perform an additional experiment, where the
method is switched between subtractive and additive at

some point in the middle of the process. Fig. 5 depicts mul-
tiple sequences, where the model starts with xθ and at some
point continues the task with εθ (this order is more natural
than starting with εθ and switching to xθ, see Sec. 3.1). In
this figure, the steps surrounded by red boxes are the result
of progressing using εθ, while steps marked in blue are in-
termediate results of using xθ. The top row uses only εθ
and the bottom row only xθ. We again add the sequence
produced by the interpolated results. In this example, gen-
eration using xθ failed to produce a pleasing image, and
the other option was superior. However, it seems that some
mixture of the two yields the best result. This is the moti-
vation behind our adaptive interpolation, which allows the
model to choose dynamically how to proceed.

A valid question would be “how much better is a dy-
namic interpolation parameter than learning a constant rt
for each step t ∈ [1, T ]?”. To answer this, we measure rθ
at each step for multiple denoising processes. In Fig. 6, we
show the average value of rθ at each step t. The two plots
show the average value in black, with the grey region mark-
ing the dynamic range of the parameter. We also show the
interpolation value for 16 different trajectories in blue.

This visualization shows that there is a large variability
in the trajectory that the interpolation values take. More-
over, when it comes to a particular generation process, our
method usually prefers a different value than the overall av-
erage. We also evaluate image quality using a fixed rt in
Sec. 5.2, and compare it to the dynamic rθ.

Interestingly, rθ seems to behave differently for each
dataset. In CIFAR10, interpolation is more clear-cut. It
starts with a very high preference towards xθ, and some-
where around the middle of the process starts to drop fast
towards εθ. On CelebA, rθ begins at around 0.5 and main-
tains a relatively narrow dynamic range. Nevertheless, it
also drops fast towards εθ in the second half of the process.
In both datasets, the model finished with a very high prefer-
ence for the subtractive process.

5.2. Image Quality

We conduct image quality evaluations on multiple
datasets and baselines. In all evaluations, we use the im-
plicit sampling formula proposed by Song et al. [35], in or-
der to maintain high quality with low iteration count. In
each evaluation, we specify the number of denoising itera-
tions. Timesteps were respaced uniformly, following [35].

We evaluate by generating 50K images for each dataset,
which are then compared with the full training set for CI-
FAR10 and CelebA and the validation set for ImageNet.
We evaluate the models on the basis of image quality mea-
sured with FID [8]. FID is known to be sensitive for even
slightly different preprocessing and methodology [27]. For
reproducibility and reliability, we use the torch-fidelity [24]
library. For ImageNet, we also measure “improved preci-
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Figure 4. Progressive generation in 5 steps. From top to bottom: 1© Prediction using εθ (subtractive), 2© prediction using xθ (additive),
3© our dual-output. The images generated with the dual-output method are overall cleaner and sharper.

Figure 5. Progressive generation in 10 steps. Each row is a
different generation sequence from the same initial noise. Steps
marked by red are produced with the εθ output and blue are pro-
duced with xθ . Thus, the sequences in the middle rows start with
εθ and switch to xθ at some point. The sequence at the bottom
represents our dynamic dual-output technique.

sion and recall” [17] over VGG feature manifolds between
10K real images and 50K generated images with k=3.

We compare our model to official pretrained models
of DDPM [9], DDIM [35], IDDPM [23], and ADM [6].
We also included IDDPM with implicit sampling (IDDIM),
which uses the same official pretrained model, but applies
the implicit backward process. Since DDPM and IDDPM
enforce a different noising schedule (linear and cosine, re-
spectively), we separate them and compare the models that

Figure 6. Mean value for the interpolation parameter rθ over the
generation steps. (top) CIFAR10 (bottom) CelebA.

were trained under equal conditions. DDIM used the pre-
trained model of DDPM for CIFAR10, but trained a new
model for CelebA.

Each comparison to a baseline involves modifying the
architecture and loss function to suit our method, and then
train the model using the same hyperparameters. Training
of each model was performed on 4 NVIDIA RTX 2080 TI
GPUS in a distributed fashion. CIFAR10 and CelebA were
trained from scratch. On ImageNet, this was not feasible,
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(a) (b) (c)

Figure 7. Generation on CIFAR10. Comparison between similar images. (a) 5, (b) 10, and (c) 20 steps. Top: DDIM, Bottom: Ours.

since the baseline (ADM) took 4.36 million iterations on ex-
tremely high-end devices. Instead, we loaded the encoded
with the pretrained weights of their model and trained the
rest of the model (decoder and residual block) for 80 thou-
sand iterations.

CIFAR10 and CelebA

In Tab. 1, we show the results of evaluation on CIFAR10
and CelebA. We perform the evaluations with 5, 10, 20, 50,
and 100 iterations. As can be seen, our method outperforms
the baselines on all metrics and under all respacing condi-
tions, except for IDDPM with 100 iterations. The image
quality inevitably declines with the reduction of denoising
iterations, but our method maintains a significantly lower
FID than the equivalent baselines.

When comparing to the ablation experiments, it can be
observed that using a fixed rt, which was taken to be the
mean value as in Fig. 6, worse performance is obtained. The
results for the additive and the subtractive paths reveal that
no single path is always better than the other. CIFAR10
with linear schedule measured a lower FID with εθ, but the
cosine schedule and CelebA did better with xθ.

For a visual comparison, we show generated images of
our method alongside DDIM, for 5, 10, and 20 steps, see
Fig. 7. The images were not cherry-picked, but we did
manually select samples in DDIM and our method, that
looked relatively similar. For each image in our method,
we show the most similar image from 100 generated im-
ages in DDIM. It can be seen that our method generated
better-looking, more detailed and sharper images. It is also
evident that more steps produce higher quality results.

ImageNet

Fig. 8 shows generated results with our model on Ima-
geNet, for different images generated with the same initial
noise xT , but different denoising paths (εθ, “dual”, and xθ
respectively). To qualitatively compare the images, we per-

Method / #iter 5 10 20 50 100

C
IF

A
R

10
(3

2×
32

)
L

in
ea

r

DDPM© [9] 196.54 160.18 145.45 65.43 32.65
DDIM© [35] 49.70 18.57 10.87 7.03 5.57
ours 35.12 11.68 8.62 6.68 5.54
- fixed rt 38.50 12.08 8.71 6.89 5.57
- only εθ 41.99 12.30 8.74 7.11 6.01
- only xθ 45.53 24.27 16.93 12.47 7.39

C
os

in
e

IDDPM¨ [23] 7 29.10 13.33 5.73 4.58
IDDIM¨ [23] 7 38.14 19.68 8.98 6.29
ours 7 18.25 12.54 5.59 5.10
- fixed rt 7 19.60 13.93 7.24 6.17
- only εθ 7 36.78 17.08 8.85 6.72
- only xθ 45.75 19.75 13.21 7.13 5.93

C
el

eb
A

(6
4×

64
)

L
in

ea
r

DDPM« [9] 304.89 278.31 160.67 88.74 43.90
DDIM« [35] 56.16 16.90 13.38 8.80 6.15
ours 26.22 14.96 8.74 5.54 4.07
- fixed rt 32.64 16.19 8.85 6.20 4.44
- only εθ 64.82 27.53 12.64 9.03 8.68
- only xθ 29.79 16.03 9.18 6.57 4.23

Official pretrained models by [9]©, [23]¨, and [35]«.

Table 1. FID on CIFAR10 and CelebA. Results are separated
by the applied noising schedule “linear/cosine”. 7 marks unstable
conditions that produced NaNs; due to dividing by a very low ᾱ.

formed a user study, where the subjects were asked to select
the most visually convincing image from the three options.
Among 25 participants, our images were selected 78% of
the time, followed by 17% xθ, and 5% εθ.

Tab. 2 shows our evaluation on conditional ImageNet
with 128×128 resolution. Since we did not train our model
for nearly as long as the baseline, we do not compare our
results to theirs, but only add them as reference. Our eval-
uation is focused on comparing the subtractive (εθ) and the
additive (xθ) paths to the dual-output solution. In here, εθ
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Figure 8. Image generation on ImageNet. Comparison of generated results for different paths on the same initial noise xT .

25 iterations 50 iterations

Method (+train steps) FID PR RC FID PR RC

— no classifier guidance —

ADM [6] (4.36M) 11.7 0.92 0.14 7.6 0.92 0.21

dual (∗80K) 27.7 0.90 0.11 25.3 0.89 0.15
- only εθ (∗80K) 51.3 0.89 0.08 49.1 0.86 0.09
- only xθ (∗80K) 29.5 0.90 0.08 27.4 0.88 0.12

— classifier scale 1.0 —

ADM [6] (4.36M) 10.2 0.95 0.09 7.1 0.96 0.16

dual (∗80K) 24.5 0.94 0.08 22.1 0.92 0.12
- only εθ (∗80K) 44.1 0.93 0.07 36.8 0.89 0.07
- only xθ (∗80K) 26.0 0.93 0.07 24.7 0.90 0.10

Table 2. Generation evaluation on ImageNet 128×128. With
and without classifier guidance. Measuring FID, precision, and
recall. ∗ Using pretrained encoder from ADM.

can act as a representative for the baseline, as that is the
baseline’s method of choice.

The evaluation was performed on 25 and 50 denoising it-
erations, with and without the classifier guidance proposed
by the baseline [6]. All evaluations were performed by
generating 50 images per class (50K images in total), and
comparing them to 50K validation images for FID and 10K
images for precision and recall. The results show that the
dual-output outperforms each of the alternative paths on all
three metrics. Also, again we observed that the results of
xθ were superior to εθ, which shows that the advantage of
the subtractive path is circumstantial. Finally, while there
is a considerable gap between our results and the ADM
baseline, this evaluation solidifies our speculation about the
dual-output process, and suggests that with enough training
resources, could surpass the baseline.

6. Discussion and limitations
While we are able to select an effective value for rθ by

considering the next-step measure derived from the loss in

Eq. 19, this does not necessarily lead to optimal image qual-
ity at the end of the generation process. While one can intu-
itively expect such a greedy approach to be close to optimal,
this requires validation. If the greedy approach turns out to
be significantly suboptimal, a beam search approach may
be able to improve image quality further.

From the societal perspective, the study of diffusion
models has two immediate negative outcomes: environmen-
tal and harmful use. The environmental footprint of train-
ing high-resource neural networks is becoming a major con-
cern. Our work enables the reduction of the number of it-
erations required to achieve a certain level of visual quality,
thus lowering their computation cost. In addition, our ex-
periments are done at a relatively modest energy cost, es-
pecially since we opted to train the ImageNet models only
in part. The second concern is the ability to generate real-
istic fake media with generative methods. Our hope is that
open academic study of generative models will raise public
awareness of the associated risks and enable the develop-
ment of methods for identifying fake images and audio.

7. Conclusions

When applying diffusion models, one can choose to tran-
sition to the next step by estimating either the slightly im-
proved image after applying the current step or by estimat-
ing the target image. As we show, the accuracy of each of
the two, depends on the exact stage of the inference process.
Moreover, the ideal trajectory varies depending on the spe-
cific sample, and for most of the process, mixing the two
estimates for the next step provides a better results.
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