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Abstract

We study the effect of adversarial perturbations of im-
ages on deep stereo matching networks for the disparity es-
timation task. We present a method to craft a single set of
perturbations that, when added to any stereo image pair
in a dataset, can fool a stereo network to significantly al-
ter the perceived scene geometry. Our perturbation im-
ages are “universal” in that they not only corrupt estimates
of the network on the dataset they are optimized for, but
also generalize to different architectures trained on differ-
ent datasets. We evaluate our approach on multiple bench-
mark datasets where our perturbations can increase the D1-
error (akin to fooling rate) of state-of-the-art stereo net-
works from 1% to as much as 87%. We investigate the effect
of perturbations on the estimated scene geometry and iden-
tify object classes that are most vulnerable. Our analysis
on the activations of registered points between left and right
images led us to find architectural components that can in-
crease robustness against adversaries. By simply designing
networks with such components, one can reduce the effect
of adversaries by up to 60.5%, which rivals the robustness
of networks fine-tuned with costly adversarial data augmen-
tation. Our design principle also improves their robustness
against common image corruptions by an average of 70%.

1. Introduction
Deep neural networks are vulnerable to adversarial per-

turbations, where small changes in the input image(s) can
cause large inference errors, for instance in the label of ob-
jects portrayed within. Even when the images contain suffi-
cient information for inference, for instance in stereo where
the disparity between two calibrated images is used to infer

† denotes authors with equal contributions.
Code: github.com/alexklwong/stereoscopic-universal-perturbations

the depth of the scene, adversarial perturbations have been
shown to alter the depth map [44]. Such perturbations are
ordinarily specific to each individual input, and depend on
the particular deep network architecture and the particular
dataset on which it is trained.

For classification, [22] showed that a single perturbation
can be crafted to disrupt the inference for all images in a
dataset with high probability. These are called “universal”
adversarial perturbations, even though they are universal to
each image in a particular dataset, and usually do not ex-
tend to different datasets. In this paper, we show the exis-
tence of stereoscopic universal perturbations (SUPs). SUPs
are perturbations that can disrupt the depth or disparity es-
timate of different stereo networks, with different architec-
tures, trained on different datasets, and operating on differ-
ent images and domains.

Adversarial perturbations arose mainly as a means to
study the topology and geometry of the decision boundary
of deep networks. Since individual perturbations had to be
crafted for each image, security concerns were far fetched.
Universal adversarial perturbations, however, revealed vul-
nerabilities that could be shared among different images.
Still, crafting them required knowledge of the architecture
and availability of the training set. In contrast, the existence
of universal adversarial perturbations for stereo and other
spatial inference tasks, common in robotics and autonomy,
suggests that such perturbations could present a concern, es-
pecially if they can be applied to different images, processed
by different neural network models that are trained on dif-
ferent datasets. To the best of our knowledge, we are the
first to show, for stereo, that universal perturbations can be
applied effectively even without knowledge of the trained
model, and generalize across domains and datasets. Such
perturbations can be optimized on an off-the-shelf model
and realized as a filter to be placed on top of a camera lens.

Our main methodological innovation is to design SUPs
so that they are approximately space equivariant. We build

15180



Figure 1. Universality across models and datasets. We optimized a single pair of perturbation images for AANet on the KITTI dataset.
When added to a stereo pair from KITTI 2015, it corrupts the disparity estimates of AANet and PSMNet. The same perturbations can be
added to stereo pairs in Flyingthings3D to fool AANet and DeepPruner.

the perturbation out of a single tile, repeated periodically.
Although the tile is not constrained to have periodic bound-
ary conditions, we notice that the model learns perturba-
tions where boundary artifacts are not obvious, partly be-
cause the perturbation itself is designed to be small enough
to be quasi-imperceptible. Our design naturally regularizes
the tile with data, allowing it to generalize to different image
pairs, processed with different architectures trained with
different datasets – increasing error from 1% to as much
as 87% when added to network inputs.

In our experiments, we observe that the errors in dispar-
ity induced by SUPs are more pronounced on certain classes
of objects. We conjecture that this is due to said classes ex-
hibiting more homogeneous regions, which are more prone
to errors in disparity due to ambiguity. We also found that
there is a systematic bias towards closer distance (larger dis-
parity) after perturbations. To study the effect of SUPs on
stereo networks, we investigate the activations of left and
right feature maps before and after adding perturbations.
We validate empirically that the embedding function am-
plifies the adversarial signal: The embedding of perturbed
registered features between the images grows more uncor-
related throughout a forward pass than the embedding of
the original or “clean” registered features, which “fools” a
stereo network into estimating incorrect correspondences.

Moreover, we use SUPs to improve robustness in stereo
networks. We study the effect that different architectural
elements (deformable convolutions, and explicit matching
modules) have on mitigating perturbations. We observe that
by simply designing networks with these elements (and fol-
lowing standard training protocols), one can reduce the ef-
fect of adversaries to a similar degree as fine-tuning a model
(that lacks such elements) with adversarial data augmen-
tation. While robustness is increased with fine-tuning, it
come at a significant cost in time and compute. In contrast,
the proposed architectural design choices can mitigate at-
tacks (60.5% error reduction), and only require a few lines
of code; they also improve robustness against common im-

age perturbations i.e. lossy compression, noise, blur by an
average of 70%. Conclusions are valid for three different
architectures, across three datasets. While these are chosen
to represent the variety in use today, we cannot exclude that
there could be tasks, data and models on which our method
to craft perturbations is ineffective, and conversely pertur-
bations that are not mitigated by the methods we propose.

Our contributions include: (i) The design of the first
stereoscopic universal perturbations (SUPs) that can not
only fool the network they are optimized for, but also other
networks across multiple datasets. We perform an empir-
ical analysis on how SUPs affect (ii) the estimated scene
geometry, (iii) different object classes, and (iv) the features
of registered points in a stereo pair. Our results shed light
on how SUPs fool stereo networks and led us to uncover
(v) architectural designs, i.e. deformable convolution and
explicit feature matching, that mitigate the effect of SUPs
to a similar degree as fine-tuning on them. A discussion of
potential negative societal impact is available in Supp. Mat.

2. Related Work
Adversarial perturbations. [41] showed that small ad-

ditive signals can significantly alter the output of a clas-
sification network. [11] introduced the fast gradient sign
method (FGSM). [8,17,19] extended FGSM to iterative op-
timization to boost its potency. [23] found the minimal per-
turbation to alter the predicted class while [32] computed
the lower bounds on the perturbation magnitudes required
to fool a network. [29] showed that unrecognizable noise
can yield high confidence outputs and [15] attributed ad-
versaries to non-robust features. [50] improved their trans-
ferability across networks with geometric image augmenta-
tions. [28] studied their transferability across datasets.

[22] proposed universal adversarial perturbations,
where the same perturbation can be added to any image in
a dataset to fool a network. [24] showed that data indepen-
dent universal perturbations are transferable across different
networks and [25] proposed data-free objectives for craft-
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ing them. [13,26,33] use generative models to form univer-
sal perturbations. [36] proposed universal attacks on graphs,
meshes, and point clouds. For those interested, see [5] for
an extensive survey. We also study universal perturbations,
but unlike past works focused on single image based prob-
lems, we consider the deep stereo matching, where the la-
tent variable (disparity) is constrained by the stereo pair.

Efforts to defend against adversarial attack include ad-
versarial data augmentation during training [17, 42], which
can be improved with randomization [48]. [27,40] proposed
universal adversarial training, [3,46] gradient discretization,
and [31,35,45] randomization. [1,12,34,38] performed pu-
rification, and [18] denoising to rectify the image. [47] used
batch normalization to mitigate perturbations. [6] used ad-
versarial learning to improve object detection.

Despite many works on adversarial perturbations for
classification, few study dense-pixel prediction tasks e.g.
segmentation, optical flow, depth estimation. [49] showed
adversarial perturbations for object detection and segmen-
tation. [14] proposed universal perturbations for segmenta-
tion, while [25] studied them for segmentation and single
image depth. [43] showed targeted attacks for single image
depth while [7] studied them using images augmented with
synthetic vehicles. [57] examined translucent patch attacks
for object detection, and [37] visible patch attacks on optical
flow. [39] proposed defenses against physical attacks for op-
tical flow. [44] demonstrated adversarial attacks for stereo.
Like [44], we also consider stereo, but instead, we study
universal perturbations and show that the same perturba-
tions generalize across network architectures and datasets.

Deep Stereo Matching. Early works [52, 53] replaced
hand-crafted features with deep features for more robust
matching. Recent works realize the entire stereo pipeline
as an inductive bias, from feature extraction to cost match-
ing, into 2D and 3D network architectures. 2D architectures
leverage correlation layers for matching. For instance, [20]
formed a 2D cost volume with correlation over left and right
features. [30] extended [20] to a cascade residual learning
framework. AANet [51] also used correlation, but proposed
deformable convolutions [55] when performing cost aggre-
gation to avoid sampling at discontinuities. 3D architectures
use feature concatenation and sparse patch matching. [16]
concatenated left and right features together to build a 3D
cost volume. PSMNet [4] added spatial pyramid pooling
layers and introduced a stacked hourglass architecture. [54]
used local and global cost aggregation. DeepPruner [9] pro-
posed differentiable patch matching over deep features to
construct their cost volume.

We demonstrate the existence of universal adversarial
perturbations on PSMNet, DeepPruner and AANet. We
chose them as architectural exemplars for the stereo match-
ing task. PSMNet represents the modern stereo networks
(stacked hourglass, cost volume, 3D convolutions), but uses

feature stacking without explicit matching. DeepPruner
follows the architecture of PSMNet, but performs explicit
matching with PatchMatch [2]. AANet represents the state
of the art in 2D architecture and uses correlation.

3. Universal Perturbations for Stereo
Formulation. Let fθ(xL, xR) ∈ RH×W be a pre-

trained stereo network that estimates the disparity be-
tween the left xL and right xR images of a stereo pair
and X be a distribution of stereo pairs that belongs to
the set of natural images. Our goal is to craft a sin-
gle pair of image-agnostic stereoscopic universal pertur-
bation images (SUPs) vL, vR ∈ [0, 1]H×W×3 that, when
added to (xL, xR), corrupts the disparity estimate such that
fθ(xL, xR) ̸= fθ(x̂L , x̂R) where x̂L = xL + vL and
x̂R = xR + vR for (xL, xR) ∼ X . To ensure that the
SUPs are small or quasi-imperceptible, we subject them to
the norm constraints ∥vI∥∞ ≤ ϵ for I ∈ {L,R}.

We assume a dataset X := {(x(n)
L , x

(n)
R ), y

(n)
gt }Nn=1 sam-

pled from X as a “training” set, and access to a stereo net-
work fθ and its loss function ℓ(fθ(·), ygt) where ygt de-
notes the ground truth. We note that, unlike classifica-
tion or segmentation, it is rare for any large scale stereo
dataset to provide ground truth for every sample, so in-
stead we use disparity estimated from “clean” stereo pairs,
i.e. without any perturbations, as pseudo ground truth,
y(n) = fθ(x

(n)
L , x

(n)
R ).

Algorithm. To craft universal perturbations subject to
the norm constraint of ∥vI∥∞ ≤ ϵ, we propose to generate
(vL, vR) by iterating through X and gradually aggregating
small perturbation vectors that are able to fool the stereo
network fθ into altering its output disparity or the perceived
scene geometry for a given image pair (x(n)

L , x
(n)
R ) ∈ X . At

each iteration, we compute the gradient of the loss ℓ with
respect to each image xI in the stereo pair for I ∈ {L,R}:

g
(n)
I = ∇

x
(n)
I

ℓ(fθ(x̂
(n)
L , x̂

(n)
R ), y(n)). (1)

Then, project it onto a smaller (than ϵ) ball with radius α
(akin to a learning rate) via the projection operator1 and ag-
gregate it to the current perturbations:

vI = vI + p∞,α(g
(n)
I ). (2)

Finally, we project vI onto the ϵ radius ball after each iter-
ation to ensure our perturbations meet the upper norm con-
straint. The procedure is repeated for all stereo pairs in X .
See Alg. 1 for more details.

Towards universality across model and data. We aim
to optimize a single pair of perturbations that can alter the
perceived geometry of a scene, not just for the network and
dataset it is optimized for, but for an array of different un-
seen network architectures across multiple datasets. To this

1pp,ξ(v) = argminv′ ∥v − v′∥ subject to ∥v′∥p < ξ
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Figure 2. The effect of perturbation size. All methods are robust to naive attacks of uniform and Gaussian noise, as performance is
constant across ϵ. Hence, we optimize a pair of perturbations on KITTI for AANet and attack (a) AANet, (b) DeepPruner, and (c) PSMNet.
Amongst the perturbation sizes, full and 64 × 64 are the most effective at degrading performance on KITTI 2015 validation set. In (d),
we show transferability to FlyingThings3D by using the same perturbations optimized on KITTI from (a)-(c) to attack models trained on
Scene Flow. The 64× 64 perturbations generalize the best across datasets.

Algorithm 1 Computing universal perturbations.

Parameters: Upper norm ϵ, learning rate α.
Inputs: Dataset X , pre-trained stereo network fθ.
Outputs: Perturbations vL, vR.
Initialize: vL = 0, vR = 0.
for each stereo pair (x(n)

L , x
(n)
R ) ∈ X do

Compute g
(n)
L and g

(n)
R as defined in Eqn. 1

vL = p∞,ϵ(vL + p∞,α(g
(n)
L ))

vR = p∞,ϵ(vR + p∞,α(g
(n)
R ))

end for

end, the perturbations must be spatially invariant to gener-
alize across different scene distributions i.e. roads are com-
monly at the center of the image for outdoor driving scenar-
ios, but a variety of shapes may populate the same region for
indoors. Hence, rather than optimizing (vL, vR) that span
the full H×W image domain, we reduce (vL, vR) to a pair
of h × w patches or tiles subject to h | H and w | W . We
note that full size H ×W perturbations are a special case.

To apply (vL, vR) to (xL, xR) over the entire image
space, we evenly repeat or tile the perturbation vI across
xI with no overlap. Formally, we let xI(i, j) be the
h × w image region that spans from pixel position (i, j)

to (i + h, j + w) for i ∈ {0, H
h , ...,

H(h−1)
h } and j ∈

{0, W
w , ..., W (w−1)

w }. Thus, the perturbed image region is:

x̂I(i, j) = xI(i, j) + vI ∀ i, j. (3)

We now modify the the gradient computation step in Alg. 1
for a given stereo pair (x(n)

L , x
(n)
R ) by taking the mean over

the gradient with respect to the image g
(n)
I for all tiles

ḡ
(n)
I =

h · w
H ·W

∑
i,j

g
(n)
I (i, j). (4)

In doing so, we prevent the perturbations from overfitting to
the bias in scene structures induced by the training set e.g.
road on bottom of the image and sky on top. We demon-
strate in Sec. 4 that this approach yields a single set of uni-
versal perturbations that can fool different models across

multiple datasets. We note that we can extend our approach
to patch attacks by adding the perturbations anywhere on
the image, instead of tiling across the image. However, be-
cause we constrain our perturbations to be within a small
ϵ ball, unlike [37], a visually imperceptible patch attack is
limited in its effect on fooling the network.

4. Experiments and Results
We optimized our SUPs on the KITTI raw dataset [10]

and evaluated them on KITTI 2012, KITTI 2015 [21] for
stereo models [4, 9, 51]. We also show that the same
SUPs generalize to FlyingThings3D [20] to disrupt mod-
els trained on Scene Flow [20]. Please see Supp. Mat. for
details on datasets, hyper-parameters and implementation.

On the effect of perturbation size. We optimize SUPs
on AANet using square tiles of 16, 32, and 64, and the full
image size of 256× 640. We report results in Fig. 2, which
shows the performance of each network on KITTI 2015
when attacked by these perturbations. We compare our re-
sults against [44] which uses image-specific perturbations
generated with FGSM. We additionally consider two naive
attacks that perturb the input stereo pair (xL, xR) with uni-
form U(−ϵ, ϵ) and Gaussian N (0, (ϵ/4)2) noise.

Fig. 2-(a, b, c) show that naive attacks have little effect
on stereo networks, as the D1-error is roughly constant for
all ϵ. Hence, stereo networks are robust to naive perturba-
tions within ϵ upper norm, and fooling them is non-trivial.
Among all square tiles, 64× 64 causes the largest error for
all networks across all ϵ. We note that, although our SUPs
are image-agnostic, we are comparable to [44] on small
norms and beat them on larger norms. Fig. 3 shows the
64 × 64 tiles optimized on KITTI for AANet, DeepPruner,
and PSMNet. When added to a stereo pair from KITTI
2015, the disparity estimated by each network is corrupted.

For FlyingThings3D, we consider the full and 64 × 64
SUPs (both trained on KITTI) as they caused the most cor-
ruption on KITTI 2015. Fig. 2-(d) shows that 64 × 64
generalizes better than full-size SUPs across networks. For
ϵ = 0.02, 64×64 achieves 46.14% error on AANet, 34.87%
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Figure 3. Attacking stereo networks. We visualize 64×64 perturbations (tiled across the image domain) optimized for AANet, DeepPruner,
and PSMNet on the KITTI dataset. When added to the inputs of the network for which they were optimized, the perturbations can corrupt
the estimated disparities. Note: the damage is concentrated on textureless regions e.g. sky, road.

Figure 4. Distribution of disparities before and after adding per-
turbations. (a) Before adding perturbations, most of the scene is
estimated to be ≈2 disparities. (b) The perturbations fool the net-
works into predicting larger (≈50) disparities.

on DeepPruner and 31.93% on PSMNet, while full achieves
36.09%, 23.28%, and 25.35%, respectively. Thus, our tiling
approach can help generalize to different data distributions.
As our goal is universality across architectures and datasets,
we use 64×64 perturbations for the rest of our experiments.

Generalization across architectures and datasets. We
optimized three sets of 64× 64 SUPs on KITTI for AANet,
DeepPruner, and PSMNet, respectively. In Fig. 5, we attack
each network with each set of SUPs on three datasets. We
report D1-error for KITTI 2012, and 2015, and EPE for Fly-
ingThings3D (see Supp. Mat. for results for KITTI 2012).
For KITTI 2015, Fig. 5-(a) shows that, when trained on the
network to be attacked, SUPs with ϵ = 0.02 cause error to
rise from 1.47% to 48.43% for AANet, 1.28% to 52.74%
for DeepPruner, and 4.25% to 87.72% for PSMNet. While
SUPs with ϵ = 0.002 have negligible impact, relaxing ϵ to
0.005 increases the error of AANet to 7.62%, DeepPruner
to 8.90%, and PSMNet to 28.97%. Fig. 5-(b) shows that
SUPs generalize to other data distributions as well. Adding
SUPs optimized on KITTI to FlyingThings3D causes in-
creases in EPE for models trained on Scene Flow – from
1.30px to 9.47px for AANet, 1.25px to 14.77px for Deep-
Pruner, and 1.27px to 18.88px for PSMNet.

For all three datasets, our SUPs also generalize across
architectures. For example, SUPs with ϵ = 0.02 opti-
mized for AANet on KITTI can be added to stereo pairs in

KITTI 2015 to fool DeepPruner (from 1.28% to 52.66%),
and PSMNet (from 4.25% to 61.66%). Similarly, the same
SUPs can be added to images in FlyingThings3D to corrupt
the outputs of PSMNet (from 1.27 to 6.86px) and Deep-
Pruner (1.25 to 6.60px). Yet, transferability is not symmet-
ric e.g. SUPs optimized for DeepPruner on KITTI only cor-
rupt AANet predictions from 1.30 to 4.49px on Flyingth-
ings3D. Fig. 8 demonstrates the transferability qualitatively,
showing corruption against PSMNet on FlyingThings3D.

In our experiments, we found AANet to be the most ro-
bust and PSMNet the least. We hypothesize that explicit
matching plays a role because DeepPruner shares the same
architecture as PSMNet, with the exception of a PatchMatch
module, but is significantly more robust. Like DeepPruner,
AANet also employs matching, but replaces convolutions
with deformable convolutions – we explore the use of these
architectural designs as a defense in Sec. 5.

Effect on scene geometry. To quantify how SUPs af-
fect the estimated scene geometry, we compare the dispar-
ities estimated for “clean” (no added perturbations, Fig. 4-
(a)) and perturbed (optimized on AANet, Fig. 4-(b)) stereo
pairs. Fig. 4 shows that the peak of the distribution shifts
from ≈2 to ≈50px for all three networks. For PSMNet, we
see an additional mode at ≈110px. Depth and disparity are
inversely related, so the SUPs fool the network to predict
the scene to be closer to the camera. We observe similar
trends for DeepPruner and PSMNet (see Supp. Mat.).

Robustness of semantic classes. To analyze their effect
on objects populating the scene, we use SDCNet [56] to ob-
tain segmentation maps for the KITTI 2015 validation set.
We measure the per class error and found that different se-
mantic classes exhibit different levels of robustness against
adversaries. Specifically, Fig. 6 shows that sky and vegeta-
tion are the least robust with 72.96% and 58.52% D1-error,
respectively; whereas, truck (14.19%) and car (16.82%) are
the most robust. We observe that the least robust classes
are largely homogeneous. We conjecture that these regions
are most vulnerable because locally they give little to no
information about scene structure, which leads to ambigu-
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Figure 5. Generalization across architectures and datasets. Perturbations were optimized for AANet, DeepPruner, and PSMNet on KITTI
and added to stereo pairs of KITTI 2015, and FlyingThings3D. Despite being optimized for a specific model on KITTI, they can corrupt
models trained on KITTI for KITTI 2015 and those trained on Scene Flow for FlyingThings3D.

Figure 6. D1-error for each semantic class for perturbed images.
Each class exhibit different levels of robustness. Homogeneous
regions (sky, vegetation) are most vulnerable.

ity when registering points between two images – this is in
contrast to sufficiently textured regions where unique cor-
respondences are to be found. Thus, the network must rely
on the regularizer (stored in the weights) learned from the
training set to fill in the disparity for homogeneous regions.

Effect on feature maps. As DeepPruner and AANet
use explicit matching to form their cost volume, there is a
well-defined measure of data-fidelity to register the left and
right images. So, to alter disparity, SUPs must corrupt the
features used in the matching process. Hence, to quantify
their effect, we measure the correlation between left and
right feature maps before and after perturbing the images.

Let f (l)
θ be the l-th layer of the encoder shared between

the stereo pair and u ∈ Ω, the image domain. To quan-
tify how SUPs corrupt the feature maps, we compute the
correlation between f

(l)
θ (xI(u)) and f

(l)
θ (x̂I(u)) for all l.

Fig. 7-(a, b) shows that when SUPs optimized for AANet
are added to the input, the correlation between clean and
perturbed left and right features grow uncorrelated from 1 to
0.76 during a forward pass i.e. the embedding function am-
plifies the effect of perturbation. We observe similar trends
for DeepPruner and PSMNet (see Supp. Mat.).

While the observations in Fig. 7-(a, b) may be suffi-

Figure 7. Effect on features. Clean and perturbed left (a) and right
(b) features grow uncorrelated. Features of clean stereo pairs are
correlated (c), but after perturbation, become uncorrelated (d).

cient to fool a classification network, i.e. the feature maps
are transformed across a decision boundary, it is not suffi-
cient for stereo matching. To fool a stereo network, SUPs
must alter the correspondences between left and right im-
age. In other words, for a pair of registered points xL(u)
and xR(u − ygt(u)), where ygt ∈ RH×W is the true dis-
parity, the perturbations must cause the features of these
similar points in the image to be dissimilar in embedding
space. To quantify this, we first compute the correlation
between the registered clean stereo pair f

(l)
θ (xL(u)) and

f
(l)
θ (xR(u− ygt(u))) in Fig. 7-(c). As expected the feature

maps of the registered points are well correlated. In Fig. 7-
(d), we compute the correlation between the registered per-
turbed stereo pair f

(l)
θ (x̂L(u)) and f

(l)
θ (x̂R(u − ygt(u))).

Indeed, the registered perturbed feature maps grow uncor-
related relative to the clean feature maps in the forward pass
i.e. the perturbations cause similar regions in the RGB do-
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Figure 8. Transferability to PSMNet. Stereoscopic universal perturbations optimized on KITTI for AANet, DeepPruner, and PSMNet can
generalize to stereo pairs in FlyingThings3D to corrupt the disparity estimation of PSMNet.

Figure 9. Adversarial data augmentation. AANet, DeepPruner, and PSMNet were fine-tuned with adversarial data augmentation. Each
model was attacked with a perturbation trained for the original and fine-tuned AANet (a), DeepPruner (b), and PSMNet (c). Fine-tuning
with adversarial data augmentation is an effective defense against SUPs trained for the original model, but does not fully mitigate a new
adversary. Fine-tuning a model on SUPs optimized for it increases robustness against perturbations optimized for different architectures.

main to be dissimilar in the embedding space, resulting in
incorrect points being matched. Note that, like in Fig. 7-
(a) and Fig. 7-(b), correlation between left and right AANet
features increases from layer 20 to 30; this coincides with
deformable convolutions. We conjecture that this may be
related to AANet’s relative robustness against adversaries.

5. Towards Robust Deep Stereo Networks
Adversarial data augmentation. As shown in [44],

fine-tuning with adversarial data augmentation is among
the best performing defenses for stereo. Hence, we first
fine-tuned each pretrained stereo model on KITTI 2015
with SUPs of ϵ ∈ {0.002, 0.005, 0.01, 0.02} trained for the
model. The SUPs were randomly added the inputs with
50% probability. In Fig. 9, we attack each fine-tuned model
with a perturbation trained for the original and fine-tuned
variant of each architecture. Fig. 9 shows that adversarial
data augmentation improves the robustness of each model.
When attacked by the SUPs it is fine-tuned on, AANet re-
duces in error from 48.43% to 3.62%, DeepPruner from
52.74% to 2.83%, and PSMNet from 87.72% to 2.96% for
ϵ = 0.02. New adversaries optimized for the fine-tuned net-
works are less effective, with AANet dropping to 25.54%
error, DeepPruner to 31.54%, and PSMNet to 35.75%.

Fig. 9 also shows that fine-tuning a model on SUPs op-
timized for it increases robustness against SUPs optimized
for different architectures. For example, Fig. 9-(a) shows
that fine-tuning reduces AANet in error from 48.43% to
3.62%, DeepPruner from 52.74% to 11.32%, and PSMNet

from 87.72% to 31.54% when attacked by SUPs optimized
for the original AANet with ϵ = 0.02. Note that AANet has
the lowest error against the original AANet adversary be-
cause it was fine-tuned on that perturbation, whereas Deep-
Pruner and PSMNet are seeing it as a “new” adversary. Sim-
ilar results are shown for SUPs optimized for DeepPruner
(Fig. 9-(b)) and PSMNet (Fig. 9-(c)). We note that this pro-
cess of optimizing SUPs and fine-tuning on them is time
consuming, and the resulting networks are not fully robust.

On explicit matching (EM) and deformable convolu-
tion (DC). Instead, we propose to make simple modifica-
tions to the design of stereo networks. From our obser-
vations, EM increases robustness as PSMNet (no explicit
matching) is more vulnerable than AANet and DeepPruner.
Fig. 7 shows that the effect of SUPs is amplified by the em-
bedding function, which ultimately fools the network; we
conjecture that EM mitigates this by explicitly registering
correspondences based on similarity rather than propagat-
ing the local signal. This intuition extends to DCs that learn
convolutional offsets to regions locally similar to the ele-
ment being convolved over and in effect “avoids” the adver-
sarial signal – Fig. 7 shows an increase in AANet’s feature
correlation that coincides with DCs. While the intent of DC
is to minimize artifacts e.g. over-smoothing along occlusion
boundaries by sampling features that are robust to local de-
formation and respect boundary conditions, we hypothesize
that this filters out the perturbation signal that causes dis-
similarities within a patch, and is the reason DC (and EM)
allows AANet to be more robust.
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Figure 10. Improving robustness against perturbations. In (a, b), each variant was attacked by perturbations optimized specifically for them
on image pairs. (a) Adding deformable convolution (DC) to PSMNet and DeepPruner improves their robustness, while removing it from
AANet decreases its robustness. The least robust model, PSMNet, can achieve comparable performance to the most robust model, AANet,
when using DC and explicit matching (EM). (b) Adding DC and EM to PSMNet achieves comparable results to adversarial training. (c)
PSMNet with DC and EM is more robust than AANet under black-box attack, where the adversary was optimized for a different model
(DeepPruner). (d) By applying our design principles to PSMNet, we improve its robustness to common image corruptions by ≈70%.

To assess DC as an inherent defense against adversarial
perturbations, we trained (i) PSMNet and (ii) DeepPruner,
each with 25 DCs, and (iii) AANet without DCs. We opti-
mized six pairs of SUPs on KITTI for vanilla AANet, Deep-
Pruner, PSMNet, and their variants. In Fig. 10-(a), we show
results on KITTI 2015, where each network was attacked by
SUPs optimized specifically for them. We found that DCs
do improve robustness as both DeepPruner and PSMNet
produced lower D1-errors across all norms. For ϵ = 0.02,
DeepPruner drops in error from 52.74% to 39.47%, and
PSMNet drops from 87.72% to 52.10%. Conversely, re-
placing DCs with regular convolutions can make a model
more susceptible to adversaries – AANet without DCs is
less robust, as D1-error increase from 48.43% to 54.32%.
In summary, simply designing a network with DC, the least
robust model, PSMNet, can become comparable in perfor-
mance to AANet, the most robust model.

Next, we assessed how EM and DC compare to adversar-
ial training. We trained variants of PSMNet with (i) 6 DCs,
(ii) 25 DCs, and (iii) 25 DCs and EM i.e. DeepPruner with
25 DCs. We performed adversarial fine-tuning on PSM-
Net and (iii). In Fig. 10-(b), we observe for ϵ = 0.02
that increasing the number of DCs and then adding explicit
matching drops the D1-error of PSMNet from 87.72% to
66.10%, 52.10%, and finally to 39.47%. PSMNet fine-
tuned on SUPs also performs well; however, with a D1-
error of 35.75%, it only marginally beats PSMNet with 25
DCs and explicit matching on ϵ = 0.02. For all other norms,
the two are comparable. The best performing variant is
PSMNet with DCs and EM fine-tuned on SUPs, achieving
D1-error of 33.85%. So, simply using DCs and EM and
following standard training protocols can yield more robust
networks with no explicit intent for defense. Moreover, they
can also be used in conjunction with existing defenses (i.e.
adversarial fine-tuning) to yield even more robust networks.

In Fig. 10-(c), we simulate the realistic black-box sce-
nario where an attacker does not have access to a network
(PSMNet or AANet) and crafts SUPs with an off-the-shelf

model (DeepPruner). Replacing convolutions in PSMNet
with DCs leads to immediate improvements in robustness
with no loss in accuracy on clean images. With just 6 DCs,
PSMNet becomes more robust than DeepPruner and with
25 it is on par with AANet. Incorporating PatchMatch into
PSMNet (i.e. DeepPruner) with 25 DCs improves it to the
most robust method. Note: fine-tuning on SUPs as data aug-
mentation can further improve its robustness (Fig. 10-(b)).

Designing networks with DCs and inductive biases like
EM not only improves robustness against SUPs, but also
against common image corruptions i.e. lossy compression,
blur and noise. Fig. 10-(d) shows that PSMNet (red) is sus-
ceptible to blurring and shot noise where the latter can in-
crease error by 50%. Our design improves its robustness
across all common corruption. Particularly, Gaussian and
defocus blur, and pixelation have little effect – we improve
by as much as 80% on shot noise and 70% on average.

6. Discussion
Stereoscopic universal perturbations (SUPs) exist and

can generalize across architectures and datasets. SUPs can
be partly mitigated by fine-tuning with adversarial data aug-
mentation. However, doing so is costly in time and com-
pute. Instead, we propose to address the robustness prob-
lem starting from the the design of deep networks. We have
identified architectural elements, i.e. deformable convolu-
tions and explicit matching, which can be easily incorpo-
rated into stereo networks with few lines of code and trained
with standard protocol. The resulting networks are compa-
rable in robustness and performance to those without these
elements, but fine-tuned on adversarial examples. Admit-
tedly, SUPs do not exist in nature; nonetheless, our design
is also applicable to common image corruptions. While the
our scope is limited to stereo, many geometry problems i.e.
optical flow share similar architectural designs. So we hope
this work can contribute to robust systems in related fields.
Acknowledgements. We thank ARL W911NF-20-1-0158,
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