Rethinking Visual Geo-localization for Large-Scale Applications

Gabriele Berton
Politecnico di Torino
gabriele.berton@polito.it

Carlo Masone
CINI

Barbara Caputo
Politecnico di Torino

Abstract

Visual Geo-localization (VG) is the task of estimating the position where a given photo was taken by comparing it with a large database of images of known locations. To investigate how existing techniques would perform on a real-world city-wide VG application, we build San Francisco eXtra Large, a new dataset covering a whole city and providing a wide range of challenging cases, with a size 30x bigger than the previous largest dataset for visual geo-localization. We find that current methods fail to scale to such large datasets, therefore we design a new highly scalable training technique, called CosPlace, which casts the training as a classification problem avoiding the expensive mining needed by the commonly used contrastive learning. We achieve state-of-the-art performance on a wide range of datasets and find that CosPlace is robust to heavy domain changes. Moreover, we show that, compared to the previous state-of-the-art, CosPlace requires roughly 80% less GPU memory at train time, and it achieves better results with 8x smaller descriptors, paving the way for city-wide real-world visual geo-localization. Dataset, code and trained models are available for research purposes at https://github.com/gmberton/CosPlace.

1. Introduction

Visual geo-localization (VG), also known as visual place recognition [1] or image localization [30], is a staple of computer vision [1, 15, 21, 44–46, 52] and robotics research [9–11, 17, 22, 26] and it is defined as the task of coarsely recognizing the geographical location where a photo was taken, usually with a tolerance of few meters [1, 5, 18, 24, 27, 30, 48]. This task is commonly approached as an image retrieval problem where the query to be localized is compared to a database of geo-tagged images: the most similar images retrieved from the database, together with their metadata, represent the hypotheses of the query’s geographical location. In particular, all recent VG methods are learning-based and use a neural network to project the images into an embedding space that well represents the similarity of their locations, and that can be used for the retrieval.

So far, research on VG has focused on recognizing the location of images in moderately sized geographical areas (e.g., a neighborhood). However, real-world applications of this technology, such as autonomous driving [15] and assistive devices [12], are posed to operate at a much larger scale (e.g., cities or metropolitan areas), thus requiring massive databases of geo-tagged images to execute the retrieval. Having access to such massive databases, it would be advisable to use them also to train the model rather than just for the execution of the retrieval (inference). This idea requires us to rethink VG, addressing the two following limitations.

Non-representative datasets. The current datasets for VG are not representative of realistic large-scale applications, because they are either too small in the geographical coverage [1, 7, 19, 32, 44] or too sparse [2, 13, 31, 48] (see Fig. 1 for an example of these limitations). Moreover, current datasets follow the common practice of splitting the collected images into geographically disjoint sets for training and inference. However, this practice does not find a correspondence in the real world where one would likely opt to use images

Figure 1. Map of various datasets on the city of San Francisco. Previous datasets only cover a sector of the city (green points) or are sparse (red points). SF-XL densely covers the whole city and provides a realistic case-study for large-scale applications.
Scalability of training. Having access to a massive amount of data raises the question of how to use it effectively for training. All the recent state-of-the-art methods in VG use contrastive learning [1, 5, 18, 21, 24, 27, 30, 34, 35, 48] (mostly relying on a triplet loss), which heavily depends on mining of negative examples across the training database [1]. This operation is expensive, and it becomes prohibitive when the database is very large. Lightweight mining strategies that explore only a small pool of samples can reduce the duration of the mining phase [48], but they still result in a slow convergence and possibly less effective use of the data.

Contributions. In this paper, we address these two limitations with the following contributions:

- A new large-scale and dense dataset, called San Francisco eXtra Large (SF-XL), that is roughly 30x bigger than what is currently available (see Fig. 1). The dataset includes crowd-sourced (i.e., multi-domain) queries that make for a challenging problem.
- A procedure that uses a classification task as a proxy to train the model that is used at inference to extract discriminative descriptors for the retrieval. We call this method CosPlace. CosPlace is remarkably simple, it does not necessitate to mine negative examples, and it can effectively learn from massive collections of data.

Through extensive experimental validation, we demonstrate that not only CosPlace requires roughly 80% less GPU memory at train time than current SOTA, but also that a simple model trained with CosPlace on SF-XL surpasses the SOTA while using 8x smaller embeddings. Additionally, we show that this model generalizes far better to other datasets.

2. Related work

Visual geo-localization as image retrieval. Visual geo-localization is commonly approached as an image retrieval problem, with a retrieved image deemed correct if it is within a predefined range (usually 25 meters) from the query’s ground truth position [1, 5, 18, 27, 30, 48]. All recent VG methods perform the retrieval using learned embeddings that are produced by a feature extraction backbone equipped with a head that implements some form of aggregation or pooling, the most notable being NetVLAD [1]. These architectures are trained via contrastive learning, typically using a triplet loss [1, 5, 21, 24, 27, 34, 35, 48] and leveraging the geo-tags of the database images as a form of weak supervision to mine negative examples [1]. There are various alternatives to this scheme, such as the Stochastic Attraction-Repulsion Embedding (SARE) loss [30], which allows to efficiently use multiple negatives at once, while keeping the training methodology from [1]. Another solution is presented in [18], and it achieves new state-of-the-art results by computing the loss not only over the full images but also over cleverly mined crops. Despite the variations, all these methods suffer from poor train-time scalability caused by expensive mining techniques. The problem of scalability also arises at test time, and it relates to the size of the descriptors, which impacts the required memory and the retrieval time. Although the dimensionality of NetVLAD descriptors can be reduced using PCA, this leads to a degradation of results [1], hence works like [18, 30] prefer to keep a high dimensionality of 4096. Alternatively, other works drop NetVLAD and instead use pooling [38] to build smaller embeddings.

Visual geo-localization as classification. An alternative approach to visual geo-localization is to consider it a classification problem [25, 29, 33, 40, 50]. These works build on the idea that two images coming from the same geographical region, although representing different scenes, are likely to share similar semantics, such as architectural styles, types of vehicles, vegetation, etc. In practice, these methods divide the geographical area of interest in cells and group the database of images in classes according to their cell. This formulation allows to scale the problem to the whole globe, but at the cost of reduced accuracy in the estimates because each class can span many kilometers. Therefore, these methods are not used to perform geo-localization when the estimates require tolerance of a few meters.

Relation to prior works. In this work, we propose a new approach to VG that combines the advantages of both retrieval (tolerance of a few meters) and classification (high scalability). Our method uses a classification task as a proxy to train the model without requiring any mining. This makes it possible to train with massive datasets, unlike the solutions that use contrastive learning [1, 5, 21, 24, 27, 34, 35, 48]. At test time, the trained model is used to extract image descriptors and perform a classic retrieval. While CosPlace might appear similar to previous classification-based works [25, 29, 33, 40, 50], given that they also partition a map into classes, there are substantial differences. These prior works tackle the task of global classification and group images within very large cells (up to hundreds of kilometers wide), building on the idea that nearer scenes have similar semantics (e.g. if two images are from China, they might both depict Chinese ideograms). On the other hand, our partitioning strategy is designed to leverage the availability of dense data and ensure that if two images are from the same class, they visualize the same scene. Moreover, unlike [25, 29, 33, 40, 50], once trained our method can be used to perform geo-localization through image retrieval on any given geographical area.
3. The San Francisco XL dataset

There are numerous datasets for VG (see Tab. 1), but none of them reflects the scenario in which the geolocalization must be performed in a large environment and with few meters of tolerance: some datasets are limited to a small geographical area [1, 5, 7, 44] whereas others do not densely cover the area [2, 13, 19, 31, 39, 48]. The San Francisco Landmark Dataset [8] partially overcomes these limitations, but it does not cover the whole city, nor has long-term temporal variations, which are essential for robustly training a neural network [1]. Here we propose the first city-wide, dense, and temporally variable dataset: San Francisco eXtra Large (SF-XL).

Database. Like other datasets used in this task [1, 5, 28, 44, 53, 54], SF-XL’s database is created from Google StreetView imagery. We collected 3.43M equirectangular panoramas (360° images) and split them horizontally in 12 crops, following [1, 44]. This results in a total of 41.2M images (some examples are presented in the supplementary). Each crop is labeled with 6 DoF information (which includes GPS and heading). The images were taken between 2009 and 2021, thus providing an abundance of long-term temporal variations.

Besides scale and density, SF-XL differs from previous datasets [1, 5, 44, 48] in that the database is not split in geographically non-overlapping subsets for training, validation and testing. We argue that such division of the database does not reflect the reality of applications that may use VG. In fact, when tasked with building a VG application for a large geographical area, one would likely opt to train a neural network on the imagery of such area rather than additionally collecting images from a disjointed one (perhaps adjacent).

To this end, we use the 41.2M images as a training set, which therefore covers the whole area of San Francisco. While at test time, we could use the whole database of 41.2M images for the retrieval, this would be prohibitive for research purposes because extracting the descriptors for all the images on a single GPU requires days. Therefore, we use as test time database only the 2.8M images from the year 2013, which still cover the whole SF-XL geographical area. We found this choice to be a good solution because the set of images is small enough to be a feasible research option for testing but large enough to simulate a real-world scenario and prevent the bad practice of validating or tuning hyperparameters on the test set (as it would take too long to validate on it every epoch).

Finally, for validation, we use a small set of images scattered through the whole city, made of 8k database images and 8k queries.

Queries. While previous methods require the train set to be split into database and queries, CosPlace does not need this distinction. For this reason, we release the training set as a whole, and we believe that methods relying on database/queries splits for training (e.g., [1, 18, 27, 30, 34, 35, 51]) should choose the split that best suits their needs, given that this choice can heavily influence the results (see in Tab. 3 the difference in results between the third and fourth row as an example of this phenomenon).

Concerning the test queries, we believe that they should not be from the same domain as the database, because in most real-world scenarios test time queries could come from unseen domains. This is also in agreement with what is done in the San Francisco Landmark Dataset [8] and Tokyo 24/7 [44]. Hence, in SF-XL we include two different sets of test queries:

- **test set v1:** a set of 1000 images collected from Flickr (similarly to Oxford5k [36], Paris6k [37], Sfm120k [38]). Given the inaccurate GPS coordinates of Flickr imagery, all the images in this set were hand-picked, and their location has been manually verified. We also made sure to blur out faces and plate numbers to anonymize the pictures. These images are very diverse and have a wide range of viewpoint and illumination (day/night) changes (see Fig. 2);

- **test set v2:** a set of 598 images from the queries of the San Francisco Landmark Dataset [8], for which the 6 DoF coordinates have been generated by [46]. Given
that it provides 6 DoF labels, this set can also be used for large-scale pose estimation.

Tab. 2 presents a summary of SF-XL, while further information about it are in the supplementary.

4. Method

Given that a city-wide dataset requires millions of images (Sec. 3) and that visual geo-localization is by nature a large-scale task, we believe that a proper method for VG should be highly scalable, both at train and at test time. We find that current (and previous) state of the art [1,18,27,30] lacks these important qualities:

• at train time, they require to periodically compute the features of all database images and keep them in a cache: this results in a space and time complexity of $O(n)$, which is suitable only for small datasets;

• these methods [1,18,27,30] rely on a NetVLAD layer [1] or its variants [27], which produce high dimensional vectors and require large amounts of memory for inference (given that database descriptors should be kept in memory for efficient retrieval). As an example, a VGG-16 with NetVLAD produces vectors of dimension 32k, which for a 10M database would require $32k \cdot 10M \cdot 4B = 1220GB$ of memory. Smaller embeddings are usually obtained with reduction techniques such as PCA, although using dimensions lower than 4096 leads to a rapid decline of results [1,34,35,55].

To reduce train time complexity we take inspiration from the domain of face recognition, where cosFace [47] and arcFace [14] are key in achieving state-of-the-art results [42]. These losses require the training set to be divided into classes; however, in VG the label space is continuous (GPS coordinates and optionally heading/orientation information), making it not straightforward to divide it into discrete classes.

4.1. Splitting the dataset into classes

A naive approach to divide the database into classes would be to split it into square geographical cells (see Fig. 3), using UTM coordinates {east, north}\(^1\), and further slice each cell into a set of classes according to each image’s orientation/heading \{heading\}. Formally, the set of images assigned to the class C_{e_i,n_j,h_k} would be

$$\{ x : \begin{bmatrix} \text{east} / M \cr \text{north} / M \cr \text{heading} / \alpha \end{bmatrix} = \begin{bmatrix} e_i \cr n_j \cr h_k \end{bmatrix} \}$$

where M and α are two parameters (respectively in meters and degrees) that determine the extent of each class in the domain of face recognition, where cosFace [47] and arcFace [14] are key in achieving state-of-the-art results [42]. These losses require the training set to be divided into classes; however, in VG the label space is continuous (GPS coordinates and optionally heading/orientation information), making it not straightforward to divide it into discrete classes.

To reduce train time complexity we take inspiration from the domain of face recognition, where cosFace [47] and arcFace [14] are key in achieving state-of-the-art results [42]. These losses require the training set to be divided into classes; however, in VG the label space is continuous (GPS coordinates and optionally heading/orientation information), making it not straightforward to divide it into discrete classes.

\(^1\)UTM coordinates are defined by a system used to identify locations on earth in meters, where 1 UTM unit corresponds to 1 meter. They can be extracted from GPS coordinates (i.e., latitude and longitude) and allow approximating a restricted area of the earth’s surface on a flat surface.
classes from Eq. (1) with the following properties:

Property 1: each class belongs to exactly one group.

Property 2: within a given group, if two images belong to different classes they are at least $M \cdot (N - 1)$ meters apart or $\alpha \cdot (L - 1)$ degrees apart (see Fig. 4);

Property 3: the total number of CosPlace Groups is $N \times N \times L$.

Property 4: no two adjacent classes can belong to the same group (unless $N = 1$ or $L = 1$).

4.2. Training the network

We will now describe how the CosPlace Groups are used to train the model. We take inspiration from the Large Margin Cosine Loss (LCML) [47] also known as cosFace [42, 47, 49], which has shown remarkable results in face recognition [42] and landmark retrieval [49]. Nonetheless, vanilla LCML cannot be applied directly to any VG dataset, given that images are not split into a finite number of classes. However, with the proposed partitioning of the dataset, we can perform LCML sequentially over each CosPlace group (where each group can be considered as a separate dataset) and iterate over the many groups. We call this training procedure CosPlace. As the LCML relies on a fully connected layer with output dimensionality equal to the number of classes, CosPlace requires one fully connected layer per group: these layers are then discarded for validation/test. Note that not all groups must necessarily be used for training, as one could simply use a single group and ignore the others; however, the full ablation in the supplementary shows that using more than one group helps achieve better results. Therefore, we train sequentially over the groups. Formally, for each group:

$$\mathcal{L}_{\text{cosPlace}} = \mathcal{L}_{\text{lmcl}}(G_{wuv})$$

where $\mathcal{L}_{\text{lmcl}}$ is the LCM loss as defined in [47], $u \in \{0, \ldots, N\}$, $v \in \{0, \ldots, N\}$, $W \in \{0, \ldots, L\}$. In practice, we train one epoch on G_{000}, the next one on G_{001}, and so on, iterating over the groups. The remarkable advantage of this procedure w.r.t. the methods based on contrastive losses commonly used in visual geo-localization, is that no mining nor caching is required, making it a much more scalable option. At validation and test time, we use the model not to classify the query, but rather to extract image descriptors as in [47] for a classic retrieval over the database. This allows for the model to be used also on other datasets from unseen geographical areas (see Tab. 3).

5. Experiments

5.1. Implementation details

Architecture. CosPlace is architecture-agnostic, i.e. it can be applied on virtually any image-based model. For most experiments, we rely on a simple network made of a standard CNN backbone followed by a GeM pooling and a fully connected layer with output dimension 512. Note that such a simple architecture is in contrast with the trend of the last five years of research in Visual Geo-localization [1, 18, 27, 30, 34, 35, 51], where the architectures rely on a more complex (w.r.t. our architecture) NetVLAD layer [1], and some even add a number of blocks on top of it [27, 34, 35], resulting in heavier and slower architectures. Given that previous methods rely on a VGG-16 backbone [1, 18, 27, 30, 34, 35, 51, 55], we use a VGG-16 in Sec. 5.2, for fair comparisons with other methods. For our ablations and preliminary experimentations, we relied on a ResNet-18, which achieves similar results to the VGG-16 at a fraction of the training time and memory requirements. In Sec. 5.4 and the supplementary, we investigate the use of more recent backbones (ResNets [23] and transformer-based [16, 20]) with varying output dimensionality, finding that CosPlace reaches encouraging results with a wide variety of architectures and thus demonstrates a great flexibility. For example, we find that CosPlace with a ResNet-101 backbone and 128-D descriptors outperforms current SOTA, which uses 4096-D descriptors.

Training. Regarding hyperparameters, we set $M = 10$ meters, $\alpha = 30^\circ$, $N = 5$ and $L = 2$. We define an epoch as 10k iterations over a group. We perform an epoch over the first group, then an epoch over the second group and so on, for a total of 50 epochs (i.e., 500k iterations with batch size of 32). To ensure that the same group is seen more than
once during training, we use only 8 of the $N \times N \times L$ (i.e., $5 \times 5 \times 2 = 50$) groups. Validation is performed after each epoch, and once training is finished, testing is performed using the model that obtained the best performance on the validation set. In the supplementary, we provide further implementation details, and we discuss how CosPlace not only reduces the number of hyperparameters in comparison to previous VG methods but also that the ones it introduces have an intuitive meaning (see Fig. 4).

With respect to NetVLAD-based methods [1, 18, 27, 30, 34, 35, 51], which represent the entirety of the state of the art of the past five years, our method does not require multiple steps, whereas the NetVLAD layer requires for features clusters to be computed before starting to train the network, and, optionally, PCA to be computed afterwards.

5.2. Comparison with other methods

In this section, we compare CosPlace with previous methods in visual geo-localization. For a proper assessment of the results, we test on 7 datasets, namely Pitts250k [1], Pitts30k [1], Tokyo 24/7 [44], St Lucia [32], Mapillary Street Level Sequences (MSLS) [48], and our proposed SF-XL test v1 and SF-XL test v2. Of these datasets, MSLS and St Lucia are composed of frontal view images taken with cars, while the rest rely on Google StreetView imagery to build the database. For MSLS, given that the test set labels have not been publicly released yet, we test on the validation set as in [4, 21]. As a metric, we use the recall@N with a 25 meters threshold, i.e., the percentage of queries for which at least one of the first N predictions is within a 25 meters distance from the query, following standard procedure [1, 3, 5, 18, 21, 27, 30, 48].

We perform experiments with NetVLAD [1], CRN [27], GeM [38], SARE [30] and SFRS [18]. These methods are trained on the popular Pitts30k [1] dataset, and we apply color jittering for all, following SFRS. Although for some of them, it is intractable to train on a large-scale dataset such as MSLS or SF-XL (e.g., SFRS’s code relies on pairwise distance computation in features space between any pair of query-database image, which makes space and time complexity grow quadratically with the number of images), we are able to train GeM and NetVLAD also on MSLS and SF-XL using the partial mining from [48], which scales to larger datasets. With this mining technique, we perform training with two different database/queries splits of SF-XL (note that previous methods, unlike CosPlace, require the dataset to be split): SF-XL* uses images after 2010 as queries, and the rest as database, while SF-XL** uses images after 2015 as queries and before 2015 as database (resulting in a denser database). We also report results with other methods such as SPE-VLAD [51], SRALNet [34], APPSVR [35] and APANet [55], although the code for these works is not publicly available and we could not independently reproduce the results.

Discussion of results. Results are reported in Tab. 3 and Tab. 4, and all rely on VGG-16-based architectures. The results can be summarized in a few points:
- CosPlace achieves best results on average, outperforming the second-best method by 8.5% of R@1 averaged over five datasets.
- CosPlace shows strong robustness to datasets coming from other sources. On the other hand, other methods either perform well on datasets with StreetView-sourced database (i.e., Pitts30k, Pitts250k, Tokyo 24/7) or on datasets with frontal view images (i.e., MSLS and St Lucia). For example, the best performing method on MSLS and St Lucia, namely NetVLAD trained on MSLS, falls short of 10.0% of recall@1 on Pitts250k w.r.t. CosPlace; similarly, the best performing on Pitts30k, namely SFRS trained on Pitts30k, is outperformed by CosPlace by 21.8% on St Lucia.
- While other methods fail to reach competitive results with compact descriptors, we find that CosPlace reaches state-of-the-art with 512-D outputs, paving the way for scalable, robust, and efficient real-world applications. In the supplementary, we provide additional results by applying PCA to high-dimensionality descriptors.
- Methods besides CosPlace do not benefit from training on SF-XL. This is likely due to the partial mining [48] (given that standard mining [1] is unfeasible on a large scale).
- For methods other than CosPlace, the way database and queries are partitioned in the training set makes a big difference: training on SF-XL* versus SF-XL**, which use different database/queries partitions, achieve quite different results. This is not a problem for CosPlace since it does not need a database/queries split for training.

Fairness of comparisons. While it can be argued that comparisons in Tab. 3 and Tab. 4 are not fair, given that most other methods are trained on Pitts30k, and CosPlace on a much larger dataset, we want to point out that i) CosPlace cannot be trained on Pitts30k nor MSLS (given that they lack heading labels), and ii) training previous state-of-the-art methods [18, 30] on SF-XL would require a huge amount of resources, and it is practically unfeasible: computing the cache (which contains all database and queries descriptors) involves a forward pass on 40M images, with a memory requirement of 5TB, and it would have to be computed periodically every 1000 iterations.

With these considerations in mind, we were able to use the partial mining method from [48] to train GeM and NetVLAD, which have already been shown to perform competitively with such mining [48], whereas more modern techniques, such as SARE [30] or SFRS [18], cannot be used with partial mining without requiring significant changes to their algorithm. However, the fact that GeM and NetVLAD do not benefit from training on the larger scale
of SF-XL proves that our superior results do not come simply from the dataset size and that the proposed algorithm is needed to succeed in city-wide geo-localization.

Moreover, following [1, 18, 27, 30, 34, 35, 51], we did not use as comparisons re-ranking based methods [3, 6, 21, 43], given that they perform an extra post-processing step, while methods like CosPlace simply rely on a more efficient retrieval through a nearest neighbor search.

5.3. Computational efficiency

Train-time memory footprint. Compared to previous methods that use a triplet loss and require to keep the descriptors for each image [1, 18, 30] (or a large number of them [48]) in a cache, CosPlace circumvents this by posing the problem as a classification task without mining/caching. This effectively means that it can scale to very large datasets, whereas previous works [1, 18, 30, 34, 35, 51] would require massive amounts of memory to train on large-scale datasets. Note that a cache for a large dataset could be extremely memory demanding: NetVLAD descriptors for an image weigh about 32k · 4B = 128KB, while a JPEG image of dimension 480 × 640 is about 70KB; therefore, the cache for a whole dataset is almost twice as heavy as the dataset itself.

GPU requirements. While previous state of the art (i.e., SFRS [18]) requires four 11GB GPUs to train, CosPlace is much lighter. Using the same backbone (a VGG-16 [41]), we only require 7.5 GB on a single GPU to obtain the results shown in Tab. 3 and Tab. 4.

Table 3. Comparisons of various methods on popular datasets. Two values of recalls are used as metric (R@1, R@5), with threshold distance for positives of 25 meters. Results rely on a CNN with a VGG-16 backbone, and are averaged over 3 runs with seeds 0, 1 and 2. * images taken after 2010 are used as queries, and the rest as database. ** images taken after 2015 are used as queries, and the rest as database. † these results could not be independently verified given that no public code implementation is available and we were unable to reproduce the results. The results (when available) were taken from the respective papers.

Table 4. Comparisons on SF-XL test v1 and SF-XL test v2. of SF-XL, proves that our superior results do not come simply from the dataset size and that the proposed algorithm is needed to succeed in city-wide geo-localization.

Comparisons of various methods on popular datasets. Two values of recalls are used as metric (R@1, R@5), with threshold distance for positives of 25 meters. Results rely on a CNN with a VGG-16 backbone, and are averaged over 3 runs with seeds 0, 1 and 2. * images taken after 2010 are used as queries, and the rest as database. ** images taken after 2015 are used as queries, and the rest as database. † these results could not be independently verified given that no public code implementation is available and we were unable to reproduce the results. The results (when available) were taken from the respective papers.

Table 4. Comparisons on SF-XL test v1 and SF-XL test v2.

Descriptors dimension. Since the advent of the ground-breaking NetVLAD paper [1], state of the art relied on the NetVLAD layer [1, 18, 27, 30], which produces high-dimensional descriptors. Considering that the compactness of the descriptors is perhaps one of the most important factors when choosing an algorithm in the real world (given that for efficient retrieval, all database descriptors should be kept in memory), we produce much more compact vectors w.r.t. previous methods. For instance, while [1, 27] use the full NetVLAD dimension of 32k, and [18, 30] reduce it to 4k, CosPlace achieves SOTA results with a dimension of just 512. Moreover, in Sec. 5.4 and the supplementary, we investigate how results depend on the dimensionality of the descriptors (and the underlying backbones), showing that CosPlace with a ResNet-101 and 128-D descriptors outperforms previous SOTA.

Training and testing speed. The network takes roughly one day to train on SF-XL, similarly to SFRS’s [18] training time on Pitts30k. At test time, with a VGG-16-based model, a V100 GPU is able to extract descriptors for 80 images per second, although we find that the speed largely depends on the backbone and is very similar among the methods of Tab. 3, given that all rely on a VGG-16. However, for large-scale datasets, the time required for the k-Nearest Neighbors search dwarfs the extraction time (considering a real-world scenario where database descriptors are extracted offline). Given that exhaustive KNN’s execution time linearly depends on the dimensionality of the descriptors, our 512-D network is 8 times faster than 4096-D SFRS for inference on large datasets and 64 times faster than 32k-D NetVLAD.
Table 5. Ablation. Recall@1 with varying values of hyperparameters M, α, N and L. The bottom row represents CosPlace, and the other rows represent CosPlace without some components: for example using $\alpha = 360^\circ$ means that heading labels are not used (i.e. all images within any given cell belong to the same class); similarly using $N = 1$ and $L = 1$ means that all classes belong to the same group (and only one group exists, resulting in no group separation). A more thorough ablation is in the supplementary.

Table 6. Limited downward scalability. The first column represents the number of images which are effectively used at training time (sampled from SF-XL), and the other columns show the recall@1 on multiple datasets.

5.4. Ablation

Hyperparameters. To better understand how the choices made in Sec. 4 impact the results, we perform a series of experiments, reported in Tab. 5. The results show that any naive split of the dataset into classes fails to achieve competitive results. The fact that the last row (which represents the only experiment computed without any intra-group adjacent classes) achieves considerably better results than the other rows clearly proves the benefit of using CosPlace groups.

Backbones and descriptors dimensionality. In Fig. 5, we explore the use of different backbones, such as ResNets [23] and Transformers [16, 20]. We find that CosPlace performs well with a variety of backbones, with no need to apply any changes to hyperparameters or layers. This is in contrast with NetVLAD-based architectures (e.g. ResNets followed by NetVLAD perform best when the backbone is cropped at the fourth residual layer instead of the last one [4]). Given that, when using CosPlace, ResNets outperform the VGG-16 while generally being faster and requiring less memory, we believe that future works should move away from the outdated use of VGG-16 backbones towards more efficient ResNets. More details and results on different backbones and descriptors dimensionality are in the supplementary.

5.5. Limitations

Heading labels. Unlike previous VG methods, which solely rely on GPS/UTM coordinates, we also take advantage of heading labels. This is a drawback of CosPlace, although we argue that heading labels are really inexpensive, and just like GPS coordinates, they can be collected simply through a sensor, without requiring any manual annotation whatsoever. However, some commonly used datasets such as Pitts30k and MSLS do not provide heading labels for their images, making CosPlace not trainable on such datasets.

Limited downward scalability. Although CosPlace has been designed for a large-scale dataset, in this paragraph we investigate how the use of a smaller training dataset influences the results. In Tab. 6, we show how recalls vary for logarithmically decreasing sizes of the training dataset. We find that CosPlace needs a large number of training images to reach SOTA performance, and therefore it is not suited to be used for training on small datasets.

6. Conclusions

In this work, we study the task of visual geo-localization (VG) in large-scale applications. Using the newly proposed San Francisco eXtra Large (SF-XL) dataset, we find that current methods based on contrastive learning are hardly scalable to train on large quantities of data. To address this problem, we propose a new method, CosPlace, which allows us to train on large quantities of data efficiently. We demonstrate that very simple architectures trained on SF-XL using CosPlace can surpass the current state of the art while using an 8x smaller descriptor. Most importantly, CosPlace is remarkably simple, needs much less training resources than the contrastive-based approaches, and generalizes extremely well to other domains. Although CosPlace has some limitations, i.e., it is not suited for training on small datasets nor datasets without orientation labels, it paves the way for a new strategy to tackle VG in large-scale applications.

Acknowledgements. We acknowledge the CINECA award under the ISCRA initiative, for the availability of high performance computing resources. This work was supported by CINI.
References

[26] A. Khaliq, S. Elsans, Z. Chen, M. Milford, and K. McDonald-Maier. A holistic visual place recognition approach using lightweight CNNs for significant viewpoint

