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Abstract

There is a growing discrepancy in computer vision be-
tween large-scale models that achieve state-of-the-art per-
formance and models that are affordable in practical appli-
cations. In this paper we address this issue and significantly
bridge the gap between these two types of models. Through-
out our empirical investigation we do not aim to necessarily
propose a new method, but strive to identify a robust and ef-
fective recipe for making state-of-the-art large scale models
affordable in practice. We demonstrate that, when performed
correctly, knowledge distillation can be a powerful tool for
reducing the size of large models without compromising their
performance. In particular, we uncover that there are cer-
tain implicit design choices, which may drastically affect
the effectiveness of distillation. Our key contribution is the
explicit identification of these design choices, which were
not previously articulated in the literature. We back up our
findings by a comprehensive empirical study, demonstrate
compelling results on a wide range of vision datasets and,
in particular, obtain a state-of-the-art ResNet-50 model for
ImageNet, which achieves 82.8% top-1 accuracy.

1. Introduction

Large-scale vision models currently dominate many areas
of computer vision. Recent state-of-the-art models for image
classification [6,22,39,41,48], object detection [7,26] or
semantic segmentation [52] push model size to the limits
allowed by modern hardware. Despite their impressive per-
formance, these models are rarely used in practice due to
high computational costs. Instead, practitioners typically
use much smaller models, such as ResNet-50 [22] or Mo-
bileNet [14], which are order(s) of magnitude cheaper to
run. According to the download counts of five BiT models
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Figure 1. We demonstrate that distillation works the best when we
train patiently for a large number of epochs and provide consis-
tent image views to teacher and student models (green and blue
lines). This can be contrasted to a popular setting of distilling with
precomputed teacher targets (black line), which works much worse.

from Tensorflow Hub, the smallest ResNet-50 [1 1] model
has been downloaded for significantly more times than the
larger ones. As a result, many recent improvements in vision
do not translate to real-world applications.

To address this problem, we concentrate on the follow-
ing task: given a specific application and a large model that
performs very well on it, we aim to compress the model to a
smaller and more efficient architecture without compromis-
ing performance. There are two widely used paradigms that
target this task: model pruning [ 8] and knowledge distilla-
tion [12]. Model pruning reduces the large model’s size by
stripping away its parts. This procedure can be restrictive in
practice: first, it does not allow changing the model family,

10925



say from a ResNet to a MobileNet. Second, there may be
architecture-dependent challenges, e.g. if the model uses
group normalization [46], pruning channels may result in
the need to dynamically re-balance channel groups.

Instead, we concentrate on the knowledge distillation ap-
proach which does not suffer from these drawbacks. The
idea behind knowledge distillation is to “distill” a feacher
model, in our case a large and cumbersome model or ensem-
ble of models, into a small and efficient student model. This
works by forcing the student’s predictions (or internal activa-
tions) to match those of the teacher, thus naturally allowing
a change in the model family as part of compression. We
closely follow the original distillation setup from [ 2] and
find it surprisingly effective when done right: We interpret
distillation as a task of matching the functions implemented
by the teacher and student, as illustrated in Figure 2. With
this interpretation, we discover two principles of knowledge
distillation for model compression. First, teacher and student
should process the exact same input image views or, more
specifically, same crop and augmentations. Second, we want
the functions to match on a large number of support points to
generalize well. Using an aggressive variant of mixup [51],
we can generate support points outside the original image
manifold. With this in mind, we experimentally demonstrate
that consistent image views, aggressive augmentations and
very long training schedules are the key to make model com-
pression via knowledge distillation work well in practice.

Despite the apparent simplicity of our findings, there are
multiple reasons that may commonly prevent researchers
(and practitioners) from making the design choices that we
suggest. First, it is tempting to precompute the teacher’s
activations for an image offline once to save compute, espe-
cially for very large teachers. As we will show, this fixed
teacher approach does not work well. Second, knowledge
distillation is also commonly used in different contexts (other
than model compression), where authors recommend differ-
ent or even opposite design choices [40,48, 50], see Figure 2.
Third, knowledge distillation requires an atypically large
number of epochs to reach best performance, much more
than commonly used for supervised training. Finally, choices
which may look suboptimal in training of regular length of-
ten end up being best for long runs, and vice-versa.

In our empirical study, we mostly concentrate on com-
pressing the large BiT-ResNet-152x2 from [22] that was
pretrained on the ImageNet-21k dataset [36] and fine-tuned
to the relevant datasets of interest. We distill it to a standard
ResNet-50 architecture [ | 1] (but replace batch normalization
with group normalization) on a range of small and mid-sized
datasets without compromising accuracy. We also achieve
very strong results on the ImageNet [35] dataset: with a
total number of 9600 epochs for distillation, we set the new
ResNet-50 SOTA 82.8% on ImageNet. This is 4.4% bet-
ter than the ResNet-50 model from [22], and 2.2% better

than the best ResNet-50 model in the literature, which uses
a more complex setup [37]. Finally, we demonstrate that
our distillation recipe also works when simultaneously com-
pressing and changing the model family, e.g. BiT-ResNet
architecture to the MobileNet architecture.

2. Experimental setup

In this section, we introduce the experimental setup and
benchmarks we use throughout the paper. Given a large-
scale vision model (the teacher, or T) with high accuracy on
a particular task, we aim to compress this model to a much
smaller model (the student, or S) without compromising its
performance. Our compression recipe relies on knowledge
distillation, as introduced in [12], and a careful investigation
of several key ingredients in the training setup.

Datasets, metrics and evaluation protocol. We conduct
experiments on five popular image classification datasets:
flowers102 [30], pets [32], food101 [20], sun397 [47] and
ILSVRC-2012 (“ImageNet”) [35]. These datasets span di-
verse image classification scenarios; In particular, they vary
in the number of classes, from 37 to 1000 classes, and total
number of training images, from 1020 to 1281167 training
images. This allows us to verify our distillation recipe for a
broad range of practical settings and ensure its robustness.

As a metric, we always report classification accuracy. For
all datasets, we perform design choices and hyperparameters
selection using a validation split, and report final results on
the test set. These splits are defined in the appendix E.

Teacher and student models. Throughout the paper,
we opt for using pre-trained teacher models from BiT [22],
which provides a large collection of ResNet models pre-
trained on ILSVRC-2012 and ImageNet-21k datasets, with
state-of-the-art accuracy. The only significant differences
between BiT-ResNets and standard ResNets is their use
of group normalization layer [46] and weight standardiza-
tion [33], which are used instead of batch normalization [16].

In particular, we concentrate on the BiT-M-R152x2 archi-
tecture: a BiT-ResNet-152x2 (152 layers, ‘x2° indicates the
width multiplier) pretrained on ImageNet-21k. This model
demonstrates excellent performance on a variety of vision
benchmarks and it is still manageable to run extensive abla-
tion studies with it. It is highly expensive to deploy (requires
roughly 10x more compute than the standard ResNet-50),
and thus effective compression of this model is of practi-
cal importance. For the student’s architecture, we use a
BiT-ResNet-50 variant, referred to as ResNet-50 for brevity.

Distillation loss. We use the KL-divergence between the
teacher’s p;, and the student’s p, predicted class probability
vectors as a distillation loss, as was originally introduced
in [12]. We do not use any additional loss term with respect
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Figure 2. Schematic illustrations of various design choices when doing knowledge distillation. Left: Teacher receives a fixed i 1mage
while student receives a random augmentation. Center-left: Teacher and student receive independent image augmentations.

Teacher and student receive consistent image augmentations.

: Teacher and student receive consistent image augmentations plus the

input image manifold is extended by including linear segments between pairs of images (known as mixup [51] augmentation).

to the original dataset’s hard labels:

L(ptllps) = Z [—pt,ilogpsi + peilogpei], (1)
i€C
where C is a set of classes. Also, as in [12], we introduce a
temperature parameter 7', which is used to adjust the entropy
of the predicted softmax-probability distributions before they
are used in the loss computation: p, o exp(-%= logp=) and
pr o exp(*52L).

Training setup. For optimization, we train our models
with the Adam optimizer [2 1] with default parameters, ex-
cept for the initial learning rate that is part of our hyperparam-
eter exploration. We use a cosine learning rate schedule [27]
without warm restarts. We also sweep over the weight decay
loss coefficient for all our experiments (for which we use
a “decoupled” weight decay convention [28]). To stabilize
training we enable gradient clipping with a threshold of 1.0
on the global L2-norm of a gradient. Finally, we use batch
size 512 for all our experiments, except for models trained
on ImageNet, where we train with batch size 4096. For the
remaining hyperparameters, we discuss their sweeping range
together with corresponding experiments in the next section.

One additional important component of our recipe is the
mixup data augmentation strategy [51]. In particular, we
introduce a mixup variant in our “function matching” strat-
egy (see Section 3.1.1), in which we use “agressive” mixing
coefficients sampled uniformly from [0, 1], which can be
seen as an extreme case of the originally proposed sampling
from S-distribution.

Unless explicitly specified otherwise, for prepossessing
we use an “inception-style” crop [38] and then resize images
to a fixed square size. Furthermore, in order to make our ex-

tensive analysis computationally feasible (overall we trained
dozens of thousands of models), we use relatively low input
resolution and resize input images to 128 x 128 size, except
for our ImageNet experiments, that use the standard input
224 x 224 resolution.

For all our experiments we use Google Cloud TPU accel-
erators [19]. We also report our batch sizes, epochs or total
number of update steps, which allow to estimate resource re-
quirements for any particular experiment of interest. Model
code and weights are made publicly available?.

3. Distillation for model compression

3.1. Investigating the
teacher'' hypothesis

"consistent and patient

In this section, we perform an experimental verification of
our hypothesis formulated in the introduction and visualised
in Figure 2, that distillation works best when seen as function
matching, i.e. when the student and teacher see consistent
views of the input images, synthetically “filled” via mixup,
and when student is trained using long training schedule (i.e.
the “teacher” is patient).

To make sure that our findings are robust, we perform
a very thorough analysis on four small and medium scale
datasets, namely Flowers102 [30] (1020 training images),
Pets [32] (3312 training images), Foodl101 [20] (about 68k
training images), and SUN397 [47] (76k training images).

In an effort to remove any confounding factors, for each
individual distillation setting we sweep over all combina-
tions of learning rates {0.0003,0.001,0.003, 0.01}, weight
decays {1-107°,3-107°,1-107%,3-107%,1-1073}, and

2ht tps://github.com/google-research/big_transfer
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Figure 3. Experimental validation of the “consistency” requirement on the Flowers102 dataset. Colors match different knowledge distillation
design choices as introduced in Figure 2 and Section 3.1.1. Note that while the fixed teacher settings achieve significantly lower distillation

loss, they lead to students which do not generalize well. In contrast, and

approaches lead to

significantly higher student performance. Similar results on more datasets are reported in Appendix C.

distillation temperatures {1, 2,5, 10}. In all reported figures,
we show every single run as a low opacity curve, and high-
light the one with the best final validation accuracy. We
provide corresponding test accuracies in Appendix A.

3.1.1 Importance of “consistent” teaching

First, we demonstrate that the consistency criterion, i.e. stu-
dent and teacher seeing the same views, is the only way of
performing distillation which reaches peak student perfor-
mance across all datasets consistently. For this study, we
define multiple distillation configurations which correspond
to instantiations of all four options sketched in Figure 2, with
the same color coding:

* Fixed teacher. We explore several options where the
teacher’s predictions are constant for a given image
(precomputed target). The simplest (and worst) method
is fix/rs, where the image is just resized to 224%px
for both student and teacher. £ix/cc follows a more
common approach of using a fixed central crop for
the teacher and a mild random crop for the student.
fix/ic_ens is a heavy data augmentation approach
where the teacher’s prediction is the average of 1k incep-
tion crops, which we verified to improve the teacher’s
performance. The student also uses random inception
crops. The two latter settings are similar to the input
noise strategy from the “noisy student” paper [48].

¢ Independent noise. We instantiate this common strat-
egy in two ways: ind/rc computes two independent
mild random crops for the teacher and student respec-
tively, while ind/ic uses the heavier inception crop
instead. A similar setup was used in [40].

. In this approach, we randomly
crop the image only once, either with mild random crop-

ping (same/ rc) or heavy inception crop (same/1ic),
and use this same crop for the input to both the student
and the teacher.

. This approach extends consistent
teaching, by expanding an input manifold of images
through mixup (mix), and, again, providing consistent
inputs to the student and the teacher. For brevity, we
sometimes refer to this approach as “FunMatch”.

Figure 3 shows 10000 epoch training curves on Flow-
ers102 dataset in all of these configurations. These results
clearly show that “consistency” is the key: all “inconsistent”
distillation settings plateau at a lower score, while consistent
settings increase student performance significantly, with the
function matching approach working the best. Furthermore,
the training losses show that, for such small datasets, using a
fixed teacher leads to strong overfitting. In contrast, function
matching never reaches such loss on the training set while
generalizing much better to the validation set. Due to space
constraints, we show analogous results for other datasets and
training durations in Appendix C.

3.1.2 Importance of “patient” teaching

One can interpret distillation as a variant of supervised learn-
ing, where labels (potentially soft) are provided by a strong
teacher model. This is especially true when the feacher
predictions are (pre)computed for a single image view. This
approach inherits all problems of the standard supervised
learning, e.g. aggressive data augmentations may distort
actual image label, while less aggressive augmentations may
cause overfitting.

However, things change if we interpret distillation as
function matching, and, crucially, make sure to provide con-
sistent inputs to the student and teacher. In this case we can
be very aggressive with image augmentations: even if an
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Figure 4. One needs patience along with consistency when doing distillation. Eventually, the teacher will be matched; this is true across

various datasets of different scale.

image view is too distorted, we still will make a progress
towards matching the relevant functions on this input. Thus,
we can be more opportunistic with augmentations and avoid
overfitting by doing aggressive image augmentations and, if
true, optimize for very long time until the student’s function
comes close to the teacher’s.

We empirically confirm our intuition in Figure 4, where
for each dataset we show the evolution of test accuracy dur-
ing training of the best function matching student (according
to validation), for different amounts of training epochs. The
teacher is shown as a red line and is always reached eventu-
ally, after a much larger number of epochs than one would
ever use in a supervised training setup. Crucially, there is no
overfitting even when we optimize for a 1M epochs.

We also trained and tuned two more baselines for refer-
ence: training a ResNet-50 from scratch using the dataset
original hard labels, as well as transferring a ResNet-50 that
was pre-trained on ImageNet-21k. For both of these base-
lines, we heavily tune learning rate and weight decay as
described in Section 3.1. The model trained from scratch
using the original labels is substantially outperformed by
our student. The transfer model fares much better, but is
eventually also outperformed.

Notably, training for a relatively short but common dura-
tion of 100 epochs leads to much worse performance than the
transfer baseline. Overall, the ResNet-50 student patiently
and consistently matches the very strong but much more
expensive ResNet-152x2 teacher across the board.

3.2. Scaling up to ImageNet

Based on our insights from the previous sections, we now
investigate how the proposed distillation recipe scales to the
widely used and more challenging ImageNet dataset [35].
Following the same protocol as before, in Figure 5 (left),

we report student accuracy curves throughout training for
three distillation settings: (1) fixed teacher, (2) consistent
teaching and (3) function matching. For reference, our base
teacher model reaches a top-1 accuracy of 83.0%. Fixed
teacher again suffers from long training schedules, and starts
overfitting after 600 epochs. In contrast, the consistent teach-
ing approaches continuously improves performance as the
training duration increases. From this we can conclude that
consistency is a key to make distillation work on ImageNet,
similar to the behaviors on the previously discussed small
and mid-sized datasets.

Compared to simple consistent teaching, function match-
ing performs slightly worse with short schedules, which
likely happens due to underfitting. But when we increase
the length of training schedule, the improvement of function
matching becomes apparent: for instance with only 1200
epochs, it is able to match the performance of consistent
teaching at 4800 epochs, thus saving 75% compute resource.
Finally, for the longest run of function matching we ex-
perimented on, the vanilla ResNet-50 student architecture
achieves 82.31% top-1 accuracy on ImageNet.

3.3. Distilling across different input resolutions

So far, we have assumed that both the student and teacher
receive the same standard input resolution of 224px. How-
ever, it is possible to pass images of different resolution to the
student and the teacher, while still being consistent: one sim-
ply has to perform the crop on the original high-resolution
image, and subsequently resize it differently for the student
and the teacher: their views will be consistent, albeit at dif-
ferent resolutions. This insight can be leveraged for learning
from a better, higher resolution, teacher [22,42], but also
for training a smaller, faster student [2]. We investigate both
directions: first, following [2], we train a ResNet-50 student
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fixed teacher eventually saturates and overfits to it. Both consistent teaching and function matching do not exhibit overfitting or saturation.

Middle: Reducing the optimization cost, via Shampoo =

preconditioning; with 1200 epochs, it is able to match the baseline trained for

4800 epochs. Right: Initializing student with pre-trained weights improves short training runs, but harms for the longest schedules.

with an input resolution of 160px while leaving the teacher
resolution unchanged (224px). This results in a twice faster
model, which still achieves remarkable 80.49% top-1 accu-
racy (see Table 1), compared to the best published 78.8% at
this resolution using an array of modifications [2].

Second, following [22], we distill a teacher that was fine-
tuned at a resolution of 384px (and attains 83.7% top-1 accu-
racy), this time leaving the student resolution unchanged, i.e.
consuming a 224px input image. Compared to the baseline
teacher, this provides a modest but consistent improvement
across the board, as shown in Table 1.

3.4. Optimization: A second order preconditioner
(* 7) improves training efficiency

We observe that optimization efficacy creates a compu-
tational bottleneck for our distillation recipe with “function
matching” perspective due to long training schedules. Intu-
itively, we believe that optimization difficulties stem from the
fact that it is much harder to fit a general function with mul-
tivariate outputs, rather than fixed image-level labels. Thus,
we conduct an initial exploration, whether more powerful
optimizers can do a much better job at our task.

To this end, we change the underlying optimizer from
Adam to Shampoo [1], with the second order preconditioner.
In Figure 5 (middle) we observe that Shampoo achieves the
same test accuracy reached by Adam at 4800 epochs in just
1200 epochs, and with minimal step time overhead. And, in
general, we observe consistent improvement over Adam in
all our experimental settings. Experimental details on the
Shampoo optimizer are provided in the Appendix D.

3.5. Optimization: A good initialization improves
short runs but eventually falls behind

Motivated by transfer learning literature [10,22] and [37],
where a good initialization is able to significantly shorten the
training cost and achieve a better solution, we try to initial-
ize the student model with a pre-trained BiT-M-ResNet50
weights and show the results in Figure 5 (right).

The BiT-M initialization improves more than 2% when
the distillation duration is short. However, the gap closes
when the training schedule is long enough. Our observa-
tion is similar to the conclusion of [10]. Starting from 1200
epochs, distilling from scratch matches the BiT-M initial-
izated student, and slightly overtakes it for 4800 epochs.

3.6. Distilling across different model families

Going beyond using different input resolutions for student
and teacher, nothing in principle prevents us from using
architectures of different families entirely, as our consistent
patient teacher approach still applies in this setting. This
allows us to efficiently transfer knowledge from stronger and
more complex teachers, e.g. ensembles, while keeping the
simple architecture of a ResNet50 student, but also transfer
the state-of-the-art performance of large ResNet models to
more efficient architectures e.g. MobileNet. We demonstrate
this via two experiments. First, we use an ensemble of
two models as teacher and show that this further improves
performance. Second, we train a MobileNet v3 [13] student
and obtain the best reported MobileNet v3 model to date.

MobileNet student. We use MobileNet v3 (Large) as a
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with the ResNet-152x2 teacher.

student, for most experiments we opt for the variant which
uses GroupNorm (with the default of 8 groups) instead of
BatchNorm. We do not use any of the training tricks used
in the original paper,we simply perform function matching.
Our student reaches 74.60% after 300 epochs, and 76.31%
after 1200 epochs, resulting in the best published MobileNet
v3 model. More results are in the Appendix A.

Ensemble teacher. We now try a better teacher: we create
a model which consists of averaging the logits from our
default teacher at 224px resolution, and our teacher at 384px
resolution from the previous section. This is a different,
though closely related, type of teacher which is significantly
more powerful but also slower. This teacher’s student is
better than our default teacher’s student at every duration we
tried (Appendix A) and, after 9600 epochs, reaches a new
state-of-the-art top-1 ImageNet accuracy of 82.82%.

3.7. Comparison to the results from literature.

Now, when we introduced our key experiments, we com-
pare our best ResNet-50 models to the best ResNet-50 mod-
els available in the literature, see Table 2. In particular, for
224 x 224 input resolution we compare against the original
ResNet-50 model from [ ! 1], BiT-M-ResNet-50 pretrained
on ImageNet-21k dataset [36] and previous state-of-the-art
model from [37]. For 160 x 160 input resolution we com-
pare against very recent and competitive model from [2]. We
observe that our distillation recipe leads the state-of-the-art
performance in both cases and by a significant margin.

3.8. Distilling on the ''out-of-domain'' data

By looking at knowledge distillation as “function match-
ing”, one can draw a reasonable hypothesis that distillation
can be done on arbitrary image inputs. In this section we
investigate this hypothesis.

We conduct experiments on pets and sun397 datasets. We
use our distillation recipe to distill pets and sun397 models
using out-of-domain images from the food101 and ImageNet
datasets and, for the reference results, also run distillation
with “in-domain” images from pets and sun397 datasets.

Figure 6 summarizes our results. First we observe that
distilling using in-domain data works the best. Somewhat
surprisingly, even if the images are completely unrelated,
distillation still works to some extent, though results get
worse. This, for example, means that the student model can
learn to classify pets with roughly 30% accuracy by only
seeing food images (softly) labeled as breeds of pets. Finally,
if distillation images are somewhat related or overlapping
with the actual “in-domain” images (e.g. Pets and ImageNet,
or sun397 and ImageNet), then results can be as good (or
almost as good) as using “in-domain” data, but extra long
optimization schedule may be required.

3.9. Finetuning ResNet-50 with augmentations

To make sure that our observed state-of-the-art distillation
results are not an artifact of our well-tuned training setup,
namely very long schedule and aggressive mixup augmen-
tations, we train corresponding baseline ResNet-50 models.
More specifically, we reuse the distillation training setup for
supervised training on ImageNet dataset without distillation
loss. To further strengthen our baseline, we additionally try
SGD optimizer with momentum, which is known to often
work better for ImageNet than Adam optimizer.

Results are shown in Figure 7. We observe that training
with labels and without distillation loss leads to significantly
worse results and starts to overfit for long training schedules.
Thus, we conclude that distillation is necessary to make our
training recipe work well.
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Table 1. Top-1 test accuracy for different teacher/student input resolu-

tions (rows) and number of training epochs (columns).

Experiment 300 1200 4800 9600
T224 — S224 80.30 81.54 82.18 82.31
T224 — S160 78.17 79.61 N/A 80.49
T384 — S224 80.46 81.82 82.33 82.64
4. Related work

There are many paradigms for compressing neural net-
works. One of them is pruning, where the general idea is to
discard parts of the trained model while making it much more
efficient and incurring little or no sacrifise in performance.
Model pruning comes in many different flavours: it can be
unstructured (i.e. focus on pruning individual connections)
or structured (i.e. focus on pruning larger building blocks,
e.g. whole channels). It can also come with or without an
additional finetuning step, or be iterative or not. Balanced
and fair discussion of this topic goes beyond the scope of
this paper, so we refer interested reader to recent overviews
as a starting point [3,44].

Knowledge distillation [ 2] is a technique for transfer-
ring knowledge from one model (feacher) to another (stu-
dent), by optimizing a student model to match certain out-
puts (or intermediate activations) of a feacher model. This
technique is used in numerous distinct contexts, such as semi-
supervised learning [40, 48] or even self-supervised learn-
ing [8]. In this paper we only consider knowledge distillation
as a tool for model compression. The efficiency of distilla-
tion has been showcased in numerous works, e.g. [4, 34], un-
der different depth/width patterns of the student and teacher
architectures, and even combined with other compression
techniques [29]. Notably, MEAL [37] proposes to distill an
ensemble of large ResNet teachers to a smaller ResNet stu-
dent with an adversarial loss and achieves strong results. The
main difference of our work to similar works on knowledge
distillation for compression, is that our method is simultane-
ously the simplest and best performing: we do not introduce
any new components, but rather discover that correct training
setup is sufficient to attain state-of-the art results.

Weights quantization [17, 25, 31,45] and decomposi-
tion [5,9,23,43] aim to accelerate and reduce the memory
footprint of CNNs by replacing large matrices operations
with their lightweight approximations. This line of research
is largely orthogonal to this work and can generally be com-
bined with the method from this paper, especially during for
the final model deployment stage. We leave exploration of

Table 2. Comparison of our best and literature ResNet models.
The metric is accuracy on ImageNet test split (officially val split).

Model Arch. Res. Accuracy
“Revisiting ResNet” [2] R50 160 78.8%
FunMatch (T224) R50 160  80.5%
Original ResNet [11] R50 224 77.2%
BiT-M-R50 [22] R50 224 78.4%
Meal-v2 [37] R50 224 80.7%
FunMatch (T384+224) R50 224 82.8%
“Revisiting ResNet” [2] R152 224 82.8%

this topic for future research.

Finally, there is a line of work, which approaches our
goal (compact and high performing models) from a different
angle, by focusing on altering the architecture and getting
good compact models trained from scratch, so there is no
need to compress large models. Some notable examples in-
clude ResNeXt [49], Squeeze-and-Excitation Networks [15]
and Selective Kernel [24], which propose modifications that
improve model accuracy for a fixed compute budget. These
improvements are complementary to the research question
tackled in this paper and can be compounded.

5. Conclusion

Instead of proposing a new method for model compres-
sion, we closely look at the existing common knowledge
distillation process and identify how to make it work really
well in the context of model compression. Our key findings
stem from a specific interpretation of knowledge distillation:
we propose to see it as a function matching task. This is not
the typical view of knowledge distillation, as normally it is
seen as “a strong feacher generates better (soft) labels that
are useful for training a better and smaller student model”.

Based on our interpretation we simultaneously incorpo-
rate three ingredients: (i) make sure that feacher and student
always get identical inputs, including noise, (ii) introduce
aggressive data augmentations to enrich the input image
manifold (through mixup) and (iii) use very long training
schedules. Even though each component of our recipe may
seem trivial, our experiments show that one has to apply all
of them jointly to get top results.

We attain very strong empirical results for compressing
very large models to the more practical ResNet-50 architec-
ture. We believe that they are very useful from a practical
point of view and are a very strong baseline for future re-
search on compressing large-scale models.
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