
Smooth Maximum Unit: Smooth Activation Function for Deep Networks using
Smoothing Maximum Technique

Koushik Biswas1, Sandeep Kumar1, 2, Shilpak Banerjee3, Ashish Kumar Pandey1

1IIIT Delhi 2 Shaheed Bhagat Singh College, University of Delhi 3IIT Tirupati
{koushikb,ashish.pandey}@iiitd.ac.in, sandeep kumar@sbs.du.ac.in, shilpak@iittp.ac.in

Abstract

Deep learning researchers have a keen interest in
proposing new novel activation functions that can boost
neural network performance. A good choice of activation
function can have a significant effect on improving network
performance and training dynamics. Rectified Linear Unit
(ReLU) is a popular hand-designed activation function and
is the most common choice in the deep learning commu-
nity due to its simplicity though ReLU has some drawbacks.
In this paper, we have proposed two new novel activation
functions based on approximation of the maximum function,
and we call these functions Smooth Maximum Unit (SMU
and SMU-1). We show that SMU and SMU-1 can smoothly
approximate ReLU, Leaky ReLU, or more general Maxout
family, and GELU is a particular case of SMU. Replac-
ing ReLU by SMU, Top-1 classification accuracy improves
by 6.22%, 3.39%, 3.51%, and 3.08% on the CIFAR100
dataset with ShuffleNet V2, PreActResNet-50, ResNet-50,
and SeNet-50 models respectively. Also, our experimental
evaluation shows that SMU and SMU-1 improve network
performance in a variety of deep learning tasks like im-
age classification, object detection, semantic segmentation,
and machine translation compared to widely used activa-
tion functions.

1. Introduction

Deep Neural network has emerged a lot in recent years
and has significantly impacted our real-life applications.
Neural networks are the backbone of deep learning. An ac-
tivation function is the brain of the neural network, which
plays a central role in the effectiveness & training dynamics
of deep neural networks. Hand-designed activation func-
tions are quite a common choice in neural network models.
ReLU [36] is a widely used hand-designed activation func-
tion. Despite its simplicity, ReLU has a major drawback,
known as the dying ReLU problem in which up to 50% neu-
rons can be dead during network training. To overcome the

shortcomings of ReLU, a significant number of activations
have been proposed in recent years, and Leaky ReLU [33],
Parametric ReLU [12], ELU [6], Softplus [56], Randomized
Leaky ReLU [53] are a few of them though they marginally
improve performance of ReLU. Swish [41] is a non-linear
activation function proposed by the Google brain team, and
it shows some good improvement of ReLU. GELU [14] is
an another popular smooth activation function. It can be
shown that Swish and GELU both are a smooth approxima-
tion of ReLU. Recently, a few non-linear activations have
been proposed which improves the performance of ReLU,
Swish or GELU. Some of them are either hand-designed or
smooth approximation of Leaky ReLU function, and Mish
[34], ErfAct [2], Padé activation unit [35], Orthogonal Padé
activation unit [1] are a few of them.

2. Related Work and Motivation

In a deep neural network, activations are either fixed be-
fore training or trainable. Researchers have proposed sev-
eral activations in recent years by combining known func-
tions. Some of these functions have hyperparameters or
trainable parameters. In the case of trainable activation
functions, parameters are optimized during training. Swish
is a popular activation function that can be used as either a
constant or trainable activation function, and it shows some
good performance in a variety of deep learning tasks like
image classification, object detection, machine translation
etc. GELU shares similar properties like the Swish acti-
vation function, and it gains popularity in the deep learn-
ing community due to its efficacy in natural language pro-
cessing tasks. GELU has been used in BERT [8], GPT-
2 [40], and GPT-3 [3] architectures. Padé activation unit
(PAU) has been proposed recently, and it is constructed
from the approximation of the Leaky ReLU function by ra-
tional polynomials of a given order. Though PAU improves
network performance in the image classification problem
over ReLU, its variants, and Swish, it has a major draw-
back. PAU contains many trainable parameters, which sig-
nificantly increases the network complexity and computa-

794

tional cost.
Motivated from these works, we propose activation func-

tions using the smoothing maximum technique. The max-
imum function is non-smooth at the origin. We want to
explore how the smooth approximation of the maximum
function (which can be used as an activation function) af-
fects a network’s training dynamics and performance. Our
experimental evaluation shows that our proposed activa-
tion functions are comparatively more effective than ReLU,
Mish, Swish, GELU, PAU etc., across different deep learn-
ing tasks. We summarise the paper as follows:

1. We have proposed activation functions by smoothing
the maximum function. We show that it can approxi-
mate GELU, ReLU, Leaky ReLU or the general Max-
out family.

2. We show that the proposed functions outperform
widely used activation functions in a variety of deep
learning tasks.

3. Smooth Maximum Unit
We present Smooth Maximum Unit (SMU), smooth ac-

tivation functions from the smooth approximation of the
maximum function. Using the smooth approximation of the
|x| function, one can find a general approximating formula
for the maximum function, which can smoothly approxi-
mate the general Maxout [10] family, ReLU, Leaky ReLU
or its variants, Swish etc. We also show that the well es-
tablished GELU [14] function can be obtained as a special
case of SMU.

3.1. Smooth approximation of the maximum func-
tion

Note that the maximum function can be expressed as fol-
lowing two different ways:

max(x1, x2) =

{
x1 if x1 ≥ x2

x2 otherwise

=
(x1 + x2) + |x1 − x2|

2
(1)

Note that the max function is not differentiable at the origin.
Using approximations of the |x| function by a smooth func-
tion, we can create approximations to the maximum func-
tions. There are many known approximations to |x|, but for
the rest of this article, we will focus on two specific approx-
imations of |x|, namely xerf(µx) and

√
x2 + µ2. We no-

ticed that the activations constructed using these two func-
tions provide good performance on standard datasets on dif-
ferent deep learning problems (for more details, see the sup-
plementary section). Note that

√
x2 + µ2 as µ → 0 ap-

proximate |x| from above while xerf(µx). as µ → ∞ gives

an approximation of |x| from below. The approximation is
uniform on compact subsets of the real line. Here erf is the
Gaussian error function defined as follows:

erf(x) =
2√
π

∫ x

0

e−t2 dt.

Now, replacing the |x| function by xerf(µx) in equation
(1), we have the smooth approximation formula for maxi-
mum function as follows:

f1(x1, x2;µ) =
(x1 + x2) + (x1 − x2) erf(µ(x1 − x2))

2
.

(2)

Similarly, we can derive the the smooth approximation for-
mula for the maximum function from equation (1) by re-
placing the |x| function by

√
x2 + µ2 as follows:

f2(x1, x2;µ) =
(x1 + x2) +

√
(x1 − x2)2 + µ2

2
(3)

Note that as µ → ∞, f1(x1, x2;µ) → max(x1, x2) and
as µ → 0, f2(x1, x2;µ) → max(x1, x2). For particular
values of x1 and x2, we can approximate known activation
functions. For example, consider x1 = ax, x2 = bx, with
a ̸= b in (2), we get:

f1(ax, bx;µ) =
(a+ b)x+ (a− b)x erf(µ(a− b)x)

2
.

(4)

This is a simple case from the Maxout family [10] while
more complicated cases can be found by considering non-
linear choices of x1 and x2. We can similarly get smooth
approximations to ReLU and Leaky ReLU. For example,
consider x1 = x and x2 = 0, we have smooth approxima-
tion of ReLU as follows:

f1(x, 0;µ) =
x+ x erf(µx)

2
. (5)

We know that GELU [14] is a smooth approximation of
ReLU. Notice that, if we choose µ = 1√

2
in equation (5), we

can recover GELU activation function which also show that
GELU is smooth approximation of ReLU. Also, consider-
ing x1 = x and x2 = αx, we have a smooth approximation
of Leaky ReLU or Parametric ReLU depending on whether
α is a hyperparameter or a learnable parameter.

f1(x, αx;µ) =
(1 + α)x+ (1− α)x erf(µ(1− α)x)

2
.

(6)

Note that, equation (5) and equation (6) approximate ReLU
or Leaky ReLU from below. Similarly, we can derive ap-
proximating function from equation (3) which will approx-
imate ReLU or Leaky ReLU from above.

795

Figure 1. Approximation of ReLU using
SMU (α = 0) for different values of µ.
As µ → ∞, SMU smoothly approximate
ReLU

Figure 2. Approximation of Leaky ReLU
(α = 0.25) using SMU for different values
of µ. As µ → ∞, SMU smoothly approxi-
mate Leaky ReLU

Figure 3. First order derivatives of SMU for
α = 0.25 and different values of µ.

The corresponding derivatives of equation (6) for input
variable x is

d

dx
f1(x, αx;µ) =

1

2
[(1 + α) + (1− α) erf(µ(1− α)x)

+
2√
π
µ(1− α)2xe−(µ(1−α)x)2]

(7)

where
d

dx
erf(x) =

2√
π
e−x2

.

Figures 1, 2, and 3 show the plots for f1(x, 0;µ),
f1(x, 0.25x;µ), and derivative of f1(x, 0.25x;µ) for differ-
ent values of µ. From the figures it is clear that as µ → ∞,
f1(x, αx;µ) smoothly approximate ReLU or Leaky ReLU
depending on value of α. We call the function in equa-
tion (6) as Smooth Maximum Unit (SMU). Similarly, We
can derive a function by replacing x1 = x and x2 = αx in
equation (3) and we call this function SMU-1. For all of our
experiments, we will use SMU and SMU-1 as our proposed
activation functions.

3.2. Learning activation parameters via back-
propagation

Trainable activation function parameters are updated us-
ing backpropagation [27] technique (see [12]) according to
(8) and for a single layer, the gradient of a hyper-parameter
ω is:

∂L

∂ω
=

∑
x

∂L

∂f(x)

∂f(x)

∂ω
(8)

where L is the objective function, ω ∈ {α, µ} and f(x) ∈
{f1(x, αx;µ), f2(x, αx;µ)}. We implemented forward
pass in both Pytorch [39] & Tensorflow-Keras [5] API, and
automatic differentiation will update the parameters. Alter-
natively, CUDA [38] based implementation (see [33]) can

be used and the gradients of equations (9) and (10)) for the
parameters α and µ of equation (6) can be computed as fol-
lows:

∂f1
∂α

=
x

2
− x erf(µ(1− α)x)

2
− (1− α)µx2e−(µ(1−α)x)2

√
π

(9)

∂f1
∂µ

=
1√
π
(1− α)2x2e−(µ(1−α)x)2 (10)

α and µ can be either hyperparameters or trainable parame-
ters.
Now, note that the class of neural networks with SMU and
SMU-1 activation function is dense in C(K), where K is a
compact subset of Rn and C(K) is the space of all contin-
uous functions over K.
The proof follows from the following proposition (see [35]).

Proposition 1. (Theorem 1.1 in Kidger and Lyons,
2020 [20]) :- Let ρ : R → R be any continuous func-
tion. Let Nρ

n represent the class of neural networks with
activation function ρ, with n neurons in the input layer, one
neuron in the output layer, and one hidden layer with an ar-
bitrary number of neurons. Let K ⊆ Rn be compact. Then
Nρ

n is dense in C(K) if and only if ρ is non-polynomial.

4. Experiments
We report a detailed experimental evaluation in the next

subsections on four different deep learning problems like
image classification, object detection, semantic segmenta-
tion, and machine translation. To compare performance of
our proposed activation function, we consider ten popular
activation functions as the baseline functions. The follow-
ing activations are considered to compare performance with
SMU and SMU-1: ReLU [36], Leaky ReLU [33], ReLU6

796

[24], Parametric ReLU (PReLU) [12], ELU [6], Softplus
[56], Swish [41], Mish [34], GELU [14], and Pade Acti-
vation Unit (PAU) [35]. For all experiments, we consider
Swish (x. Sigmoid(βx)), PReLU (max(x, ax)), and PAU
as trainable activation functions. We initialize the trainable
parameter β at 1.0 for Swish, a at 0.25 for PReLU. PAU
function has ten trainable parameters and all the parame-
ters are initialized as suggested in [35]. All the trainable
parameters are updated via the backpropagation [27] algo-
rithm. We report results for baseline activation functions,
SMU and SMU-1 activation functions in the following sec-
tions. SMU-1 is a computationally cheap activation func-
tion due to its simple form, while it boosts the network per-
formance remarkably well in all the experiments compared
to the baseline activations. All the experiments are con-
ducted on an NVIDIA Tesla V100 GPU with 32GB RAM.

4.1. Image Classification

We report results for the image classification problem
on six popular benchmarking datasets: MNIST, Fashion
MNIST, SVHN, CIFAR10, CIFAR100, and Tiny ImageNet.
Detailed results are reported in the following subsections.
For SMU, we consider α = 0.25, a constant hyperparame-
ter and µ as a trainable parameter and initialise at 1.0.

4.1.1 MNIST, Fashion MNIST, and SVHN

In this section, We present our experimental comparison
for SMU, SMU-1 and other baseline activations on MNIST
([29]), Fashion MNIST ([51]), and SVHN ([37]) datasets.
The MNIST and Fashion MNIST databases contain 60k
training and 10k testing 28×28 grey-scale images. Both the
datasets have ten different classes. The SVHN database has
32 × 32 RGB images and a total of 73257 training images
and 26032 testing images with ten different classes. Stan-
dard data augmentation methods like zoom, rotation, height
shift, shearing are applied to these three datasets. We con-
sider a batch size of 128, 0.01 initial learning rate and decay
the learning rate with cosine annealing ([31]) learning rate
scheduler. We use stochastic gradient descent ([42], [21])
optimizer with 0.9 momentum & 5e−4 weight decay, and
trained all networks up-to 100 epochs. We report results
with VGG-16 [45] (with batch-normalization [19]) archi-
tecture in Table 1 (for more detailed experimental results,
see supplemental material) for mean of 15 different runs.

4.1.2 CIFAR

In this section, we report results on the popular image
classification datasets CIFAR10 [23] and CIFAR100 [23].
Both the datasets have 50k training and 10k testing images.
While CIFAR10 has ten classes and CIFAR100 has 100
classes. In these two datasets for all experiments, we con-
sider a batch size of 128, 0.01 initial learning rate and decay

the learning rate with cosine annealing ([31]) learning rate
scheduler, stochastic gradient descent ([42], [21]) optimizer
with 0.9 momentum & 5e−4 weight decay, and trained all
networks up-to 200 epochs. We consider standard data aug-
mentation methods like horizontal flip and rotation. Top-
1 accuracy is reported in Table 2 and Table 3 (for more
detailed experimental results, please see supplemental ma-
terial) on CIFAR10 [23] and CIFAR100 [23] datasets re-
spectively for mean of 15 different runs. The results are re-
ported with MobileNet V1 [15], MobileNet V2 [44], Shuf-
fleNet V1 [55] (SF V1), ShuffleNet V2 [32], PreActRes-
Net [13], ResNet [11], GoogleNet [47], Inception V3 [48],
DenseNet [17], Squeeze-and-Excitation Networks (SeNet)
[16], SqueezeNet [18], ResNext [52], WideResNet [54],
Xception [4], VGG [45] (with batch-normalization [19]),
AlexNet [25], LeNet [28], and EfficientNet B0 [49]. From
Table 2 it is clear that Top-1 classification accuracy im-
proves by 6.19%, 6.22%, 3.39%, 3.51%, 3.09%, 3.40%
and 3.08% when we replace ReLU by SMU on the CI-
FAR100 dataset with ShuffleNet V2 (1.0x), ShuffleNet V2
(2.0x), PreActResNet-50, ResNet-50, ResNext, Xception
and SeNet-50 models respectively. The Figures 4 and 5
shows the learning curves on CIFAR100 dataset with Shuf-
fleNet V2 (2.0x) model for the baseline and the proposed
activation functions.

4.1.3 Tiny Imagenet

In this section, We report results for classification prob-
lem on a more challenging dataset, Tiny Imagenet [26].
Tiny imagenet has RGB images of size 64 × 64 with to-
tal 1,00,000 training images, 10,000 validation images, and
10,000 test images with total 200 classes. Standard data
augmentation methods like rotation, horizontal flip is ap-
plied. We consider a batch size of 64, 0.1 initial learning
rate and reduce the learning rate after every 50 epochs by
a factor of 10. We use stochastic gradient descent ([42],
[21]) optimizer with 0.9 momentum & 5e−4 weight de-
cay, and trained all networks up-to 200 epochs. Results
are reported with WideResNet 28-10 (WRN 28-10) [54],
DenseNet-121 [17], ResNet-18, and ResNet-50 [11] mod-
els and Top-1 classification accuracy is reported in table 4
for mean of 10 different runs. The proposed functions per-
forms better than the baseline functions and results are sta-
ble (mean±std) and we get very good improvement over the
baseline activation functions. Replacing ReLU by SMU, we
have 2.56%, 2.23%, 2.31%, and 2.78% boost in Top-1 clas-
sification accuracy on DenseNet-121, ResNet-18, ResNet-
50, and WideResNet 28-10 models respectively.

4.2. Object Detection

In this section, we report results on object detection
problem on Pascal VOC dataset [9] with Single Shot Multi-

797

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.53± 0.07 93.79± 0.15 95.97± 0.14

Leaky ReLU 99.58± 0.08 93.80± 0.15 96.02± 0.15
PReLU 99.55 ± 0.07 93.90 ± 0.17 96.10 ± 0.16
ReLU6 99.59 ± 0.06 93.93 ± 0.12 96.11 ± 0.15
ELU 99.48± 0.05 93.87± 0.16 96.05± 0.17

Softplus 99.22± 0.14 93.58± 0.18 95.81± 0.21
Swish 99.57± 0.05 94.17± 0.11 96.20± 0.12
Mish 99.63± 0.04 94.25 ± 0.13 96.31 ± 0.12

GELU 99.59± 0.04 94.22 ± 0.14 96.21 ± 0.14
PAU 99.55± 0.07 94.09 ± 0.14 96.20 ± 0.14
SMU 99.69 ± 0.04 94.48 ± 0.10 96.59 ± 0.11

SMU-1 99.65 ± 0.04 94.37 ± 0.14 96.43 ± 0.14

Table 1. Comparison between SMU, SMU-1 activations and other baseline activations on MNIST, Fashion MNIST, and SVHN datasets for
image classification problem on VGG16 architecture. We report Top-1 test accuracy (in %) for the mean of 15 different runs. mean±std is
reported in the table.

Model ReLU SMU SMU-1

Top-1 accuracy Top-1 accuracy Top-1 accuracy

Shufflenet V2 0.5x 62.07 ± 0.26 66.67 ± 0.24 65.60 ± 0.24
Shufflenet V2 1.0x 64.41 ± 0.25 70.60 ± 0.21 69.96 ± 0.22
Shufflenet V2 1.5x 67.20 ± 0.26 72.68 ± 0.19 72.05 ± 0.20
Shufflenet V2 2.0x 67.52 ± 0.25 73.74 ± 0.20 73.45 ± 0.23

PreActResNet 18 73.18 ± 0.22 76.07 ± 0.20 75.72 ± 0.22
PreActResNet 34 73.41 ± 0.24 76.21 ± 0.20 75.87 ± 0.21
PreActResNet 50 73.89 ± 0.23 77.28 ± 0.17 76.85 ± 0.20

ResNet 18 73.23 ± 0.26 75.22 ± 0.20 74.91 ± 0.20
ResNet 34 73.33 ± 0.27 75.77 ± 0.20 75.59 ± 0.21
ResNet 50 74.12 ± 0.24 77.63 ± 0.20 76.89 ± 0.23

SeNet 18 74.77 ± 0.22 76.17 ± 0.17 75.44 ± 0.20
SeNet 34 75.12 ± 0.22 76.79 ± 0.18 75.79 ± 0.21
SeNet 50 76.09 ± 0.20 79.17 ± 0.16 78.45 ± 0.20

ResNext 74.43 ± 0.22 77.52 ± 0.18 77.03 ± 0.21

MobileNet V1 71.10 ± 0.26 73.59 ± 0.22 73.10 ± 0.22
MobileNet V2 74.17 ± 0.24 76.31 ± 0.19 76.03 ± 0.19

Xception 71.22 ± 0.26 74.62 ± 0.23 74.11 ± 0.23

EffitientNet B0 76.60 ± 0.27 79.10 ± 0.22 78.77 ± 0.23

Table 2. Comparison between SMU, SMU-1 activations and other baseline activations on CIFAR100 dataset for image classification
problem. We report Top-1 test accuracy (in %) for the mean of 15 different runs. mean±std is reported in the table.

Box Detector(SSD) 300 model [30] and we consider VGG-
16 (with batch-normalization) [45] as the backbone net-
work. We use VOC2007 & VOC2012 as train data and
VOC2007 as the test dataset. The dataset contains 20 dif-
ferent objects. We consider a batch size of 8, 0.001 initial
learning rate and decay the learning rate as reported in [30].

We use SGD ([42], [21]) optimizer with 0.9 momentum &
5e−4 weight decay, and trained networks up-to 120000 it-
erations. We do not consider any pre-trained weight. We
report the mean average precision (mAP) in Table 5 for the
mean of 10 different runs. Replacing ReLU by SMU, we
got a 1% improvement in mAP in the test dataset.

798

Model ReLU SMU SMU-1

Top-1 accuracy Top-1 accuracy Top-1 accuracy

ShuffleNet V2 0.5x 88.40 ± 0.22 90.63 ± 0.16 90.39 ± 0.18
ShuffleNet V2 1.0x 90.81 ± 0.24 92.72 ± 0.18 92.42 ± 0.20
ShuffleNet V2 1.5x 91.21 ± 0.22 93.42 ± 0.17 92.27 ± 0.18
ShuffleNet V2 2.0x 91.70 ± 0.20 93.61 ± 0.14 93.40 ± 0.16

PreActResNet 18 93.57 ± 0.20 94.63 ± 0.15 94.52 ± 0.17
PreActResNet 34 94.21 ± 0.17 95.12 ± 0.13 94.93 ± 0.14
PreActResNet 50 94.30 ± 0.18 95.37 ± 0.11 94.94 ± 0.12

ResNet 18 94.10 ± 0.20 94.78 ± 0.17 94.51 ± 0.19
ResNet 34 94.22 ± 0.18 94.91 ± 0.16 94.77 ± 0.17
ResNet 50 94.26 ± 0.18 95.38 ± 0.16 94.92 ± 0.17

SeNet 18 94.29 ± 0.20 94.75 ± 0.17 94.56 ± 0.19
SeNet 34 94.42 ± 0.20 95.27 ± 0.15 94.89 ± 0.17
SeNet 50 94.55 ± 0.19 95.92 ± 0.12 95.22 ± 0.17

ResNext 93.37 ± 0.18 94.52 ± 0.15 94.04 ± 0.18

MobileNet V1 92.41 ± 0.14 93.81 ± 0.11 93.47 ± 0.11
MobileNet V2 94.22 ± 0.15 95.50 ± 0.09 95.27 ± 0.10

Xception 90.51 ± 0.22 93.25 ± 0.17 92.59 ± 0.20

EffitientNet B0 95.10 ± 0.15 96.23 ± 0.10 96.11 ± 0.12

Table 3. Comparison between SMU, SMU-1 activations and other baseline activations on CIFAR10 dataset for image classification prob-
lem. We report Top-1 test accuracy (in %) for the mean of 15 different runs. mean±std is reported in the table.

Figure 4. Top-1 train and test accuracy curves for SMU, SMU-1
and other baseline activation functions on CIFAR100 dataset with
ShuffleNet V2 (2.0x) model.

Figure 5. Top-1 train and test loss curves for SMU, SMU-1
and other baseline activation functions on CIFAR100 dataset with
ShuffleNet V2 (2.0x) model.

799

Activation Function DenseNet-121 ResNet-18 ResNet-50
WideResNet

28-10
ReLU 63.31 ± 0.47 59.12 ± 0.44 61.23 ± 0.46 63.74 ± 0.40

Leaky ReLU 63.63 ± 0.48 59.40 ± 0.44 61.29 ± 0.44 63.61 ± 0.42
PReLU 63.71 ± 0.46 59.59 ± 0.42 61.35 ± 0.44 63.78 ± 0.44
ReLU6 63.54 ± 0.49 59.49 ± 0.46 61.41 ± 0.44 63.72 ± 0.43

ELU 63.51 ± 0.46 59.34 ± 0.44 61.49 ± 0.43 63.72 ± 0.43
Softplus 63.01 ± 0.57 59.01 ± 0.57 60.93 ± 0.57 63.01 ± 0.59
Swish 64.21 ± 0.40 60.05 ± 0.40 61.79 ± 0.41 64.58 ± 0.41
Mish 64.47 ± 0.40 60.21 ± 0.39 62.07 ± 0.42 64.79 ± 0.38

GELU 64.34 ± 0.42 60.21 ± 0.41 61.66 ± 0.42 64.39 ± 0.40
PAU 64.04 ± 0.43 60.37 ± 0.39 61.72 ± 0.41 64.42 ± 0.40
SMU 65.87 ± 0.37 61.35 ± 0.35 63.54 ± 0.40 66.52 ± 0.35

SMU-1 65.09 ± 0.38 60.93 ± 0.38 62.79 ± 0.40 65.25 ± 0.37

Table 4. Comparison between SMU, SMU-1 activations and other baseline activations on Tiny ImageNet dataset for image classification
problem. We report Top-1 test accuracy (in %) for the mean of 10 different runs. mean±std is reported in the table.

Activation Function mAP
ReLU 77.2 ± 0.14

Leaky ReLU 77.2 ± 0.13
PReLU 77.2 ± 0.16
ReLU6 77.1 ± 0.15
ELU 75.1 ± 0.18

Softplus 74.2 ± 0.25
Swish 77.5 ± 0.11
Mish 77.6 ± 0.11

GELU 77.5 ± 0.12
PAU 77.4 ± 0.14
SMU 78.2 ± 0.09

SMU-1 77.8 ± 0.11

Table 5. Comparison between SMU, SMU-1 activations and other
baseline activations on Pascal VOC dataset for object detection
problem. We report mAP for the mean of 10 different runs.
mean±std is reported in the table.

4.3. Semantic Segmentation

In this section, we report experimental results on se-
mantic segmentation problems on the popular CityScapes
dataset [7]. CityScapes [7] is a popular dataset consisting of
diverse urban street scenes across 50 different cities at vary-
ing times of the year, as well as ground truths for semantic
segmentation, instance-level segmentation. Label annota-
tions for segmentation tasks span across 30+ classes. We
consider U-net model [43] as the segmentation framework.
The model is trained with adam optimizer [22], 5e−3 learn-
ing rate, a batch size 32 up to 250 epochs. We report the
mean of 10 different runs for Pixel Accuracy and the mean
Intersection-Over-Union (mIOU) on test data on table 6.

Activation Function
Pixel

Accuracy mIOU

ReLU 79.49 ± 0.46 69.31 ± 0.28
Leaky ReLU 79.41 ± 0.41 69.64 ± 0.42

PReLU 78.95 ± 0.42 68.88 ± 0.41
ReLU6 79.58 ± 0.41 69.70 ± 0.42
ELU 79.48 ± 0.50 68.19 ± 0.40

Softplus 78.45 ± 0.52 68.08 ± 0.49
Swish 80.22 ± 0.46 69.81 ± 0.30
Mish 80.59 ± 0.44 70.12 ± 0.30

GELU 80.14 ± 0.37 69.59 ± 0.40
PAU 79.89 ± 0.39 69.31 ± 0.44
SMU 81.79 ± 0.36 71.11 ± 0.30

SMU-1 80.75 ± 0.41 70.55 ± 0.30

Table 6. Comparison between SMU, SMU-1 activations and other
baseline activations on CityScapes dataset for semantic segmenta-
tion problem. We report pixel accuracy and mIOU for the mean of
10 different runs. mean±std is reported in the table.

4.4. Machine Translation

In this section, we report the result on the machine trans-
lation problem. This problem deals with the translation of
text or speech data from one language to another language
without the help of any human being. The WMT 2014
English→German dataset is used for our experiment. The
database contains 4.5 million training sentences. We use
an attention-based [50] 8-head transformer network with
Adam optimizer [22], 0.1 dropout rate [46], and train up
to 100000 steps. Other hyperparameters are kept simi-
lar as mentioned in the original paper [50]. We evaluate
the network performance on the newstest2014 dataset us-
ing the BLEU score metric. We report the mean of 10 dif-

800

Baselines ReLU
Leaky
ReLU ELU Softplus PReLU ReLU6 Swish Mish GELU PAU

SMU > Baseline 80 80 80 80 80 80 77 76 77 78
SMU = Baseline 0 0 0 0 0 0 0 0 0 0
SMU < Baseline 0 0 0 0 0 0 3 4 3 2

Table 7. Baseline table for SMU. These numbers represent the total number of models in which SMU underperform, equal or outperform
compared to the baseline activation functions

ferent runs on Table 8 on the test dataset(newstest2014).
The table shows that the results are stable on different runs
(mean±std), and we got around 0.6% boost in BLEU score
for SMU compared to ReLU.

Activation Function BLEU Score
ReLU 26.2 ± 0.14

Leaky ReLU 26.3 ± 0.15
PReLU 26.2 ± 0.18
ReLU6 26.1 ± 0.14

ELU 25.1 ± 0.14
Softplus 23.6 ± 0.18
Swish 26.4 ± 0.11
Mish 26.3 ± 0.12

GELU 26.4 ± 0.15
PAU 26.3 ± 0.15
SMU 26.8 ± 0.11

SMU-1 26.6 ± 0.10

Table 8. Comparison between SMU, SMU-1 activations and other
baseline activations on WMT2014 dataset for machine translation
problem. We report BLEU score for the mean of 10 different runs.
mean±std is reported in the table.

5. Baseline Table
SMU and SMU-1 are novel activation functions con-

structed using the smoothing of maximum function. For
a detailed comparison, we report a summary of all the ex-
periments in Table 7 given in earlier sections and the sup-
plementary material. It is pretty clear from Table 7 that the
proposed functions outperform baseline functions almost in
all experiments.

6. Computational Time Comparison
In this section, we report the computational Time Com-

parison for SMU, SMU-1, and baseline activation functions.
We report results in Table 9 for the mean of 100 runs on a
32× 32 RGB image in ResNet-18 [11] model for both for-
ward and backward pass. The experiments are conducted on
an NVIDIA Tesla V100 GPU with 32GB RAM. It is notice-
able from the experiment section and Table 9 that there is a

small trade-off between the computational time and model
performances compared to ReLU or its variants. The pro-
posed activations have significantly boosted the model per-
formance though it has slightly higher computational time
(due to non-linearity and the trainable parameter µ) than
ReLU or its variants. In contrast, the computational time is
similar to popular non-linear activations like Swish, Mish
& GELU and much better than PAU, while model perfor-
mance at the same time is comparatively much better than
these four popular non-linear activations in almost all cases.

Activation
Function Forward Pass Backward Pass

ReLU 6.43 ± 0.31 µs 6.28 ± 0.74 µs
Leaky ReLU 6.49 ± 0.41 µs 6.41 ± 0.95 µs

PReLU 8.20 ± 1.57µs 9.26 ± 1.86 µs
ReLU6 6.45 ± 0.45 µs 6.41 ± 0.91 µs
ELU 6.51 ± 0.50 µs 6.42 ± 0.88 µs

Softplus 6.49 ± 0.49 µs 6.40 ± 0.55 µs
Mish 10.02 ± 1.79 µs 11.97 ± 1.75 µs

GELU 10.75 ± 1.49 µs 12.49 ± 1.77 µs
Swish 10.47 ± 1.10 µs 12.61 ± 1.22 µs
PAU 18.45 ± 3.40 µs 25.99 ± 5.06 µs
SMU 10.74 ± 1.29 µs 12.95 ± 1.54 µs

SMU-1 9.68 ± 1.81 µs 11.98 ± 1.49 µs

Table 9. Runtime comparison for the forward and backward passes
for SMU and SMU-1 and other baseline activation functions for a
32× 32 RGB image in ResNet-18 model.

7. Conclusion

This work uses the maximum smoothing technique to ap-
proximate Leaky ReLU, a well-established activation func-
tion (not differentiable at 0) by two smooth functions. We
call these two functions SMU and SMU-1, and we use
them as potential candidates for activation functions. Our
experimental evaluation shows that the proposed functions
beat the traditional activation functions in well-known deep
learning problems and have the potential to replace them.

801

References
[1] Koushik Biswas, Shilpak Banerjee, and Ashish Kumar

Pandey. Orthogonal-padé activation functions: Trainable ac-
tivation functions for smooth and faster convergence in deep
networks, 2021. 1

[2] Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and
Ashish Kumar Pandey. Erfact and pserf: Non-monotonic
smooth trainable activation functions, 2021. 1

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020. 1

[4] François Chollet. Xception: Deep learning with depthwise
separable convolutions, 2017. 4

[5] François Chollet et al. Keras. https://keras.io, 2015.
3

[6] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponential
linear units (elus), 2016. 1, 4

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding, 2016. 7

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding, 2019. 1

[9] Mark Everingham, Luc Gool, Christopher K. Williams,
John Winn, and Andrew Zisserman. The pascal visual
object classes (voc) challenge. Int. J. Comput. Vision,
88(2):303–338, June 2010. 4

[10] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron
Courville, and Yoshua Bengio. Maxout networks, 2013. 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 4, 8

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification, 2015. 1, 3, 4

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks, 2016. 4

[14] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus), 2020. 1, 2, 4

[15] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications, 2017.
4

[16] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.
Squeeze-and-excitation networks, 2019. 4

[17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works, 2016. 4

[18] Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parame-
ters and ¡0.5mb model size, 2016. 4

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift, 2015. 4

[20] Patrick Kidger and Terry Lyons. Universal approximation
with deep narrow networks, 2020. 3

[21] J. Kiefer and J. Wolfowitz. Stochastic estimation of the
maximum of a regression function. Annals of Mathematical
Statistics, 23:462–466, 1952. 4, 5

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 7

[23] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
4

[24] Alex Krizhevsky. Convolutional deep belief networks on
cifar-10, 2010. 4

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume 1,
NIPS’12, page 1097–1105, Red Hook, NY, USA, 2012. Cur-
ran Associates Inc. 4

[26] Y. Le and X. Yang. Tiny imagenet visual recognition chal-
lenge. 2015. 4

[27] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1(4):541–551, 1989. 3, 4

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 4

[29] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010. 4

[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. Ssd: Single shot multibox detector. Lecture Notes
in Computer Science, page 21–37, 2016. 5

[31] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts, 2017. 4

[32] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design, 2018. 4

[33] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rec-
tifier nonlinearities improve neural network acoustic models.
In in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013. 1, 3

[34] Diganta Misra. Mish: A self regularized non-monotonic ac-
tivation function, 2020. 1, 4

[35] Alejandro Molina, Patrick Schramowski, and Kristian Ker-
sting. Padé activation units: End-to-end learning of flexible
activation functions in deep networks, 2020. 1, 3, 4

802

[36] Vinod Nair and Geoffrey E. Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Johannes Fürnkranz
and Thorsten Joachims, editors, Proceedings of the 27th In-
ternational Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel, pages 807–814. Omnipress,
2010. 1, 3

[37] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 4

[38] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming. In 2008 IEEE Hot Chips 20 Sympo-
sium (HCS), pages 40–53, 2008. 3

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library, 2019.
3

[40] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. 2019. 1

[41] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Search-
ing for activation functions, 2017. 1, 4

[42] H. Robbins and S. Monro. A stochastic approximation
method. Annals of Mathematical Statistics, 22:400–407,
1951. 4, 5

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015. 7

[44] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks, 2019. 4

[45] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition, 2015. 4,
5

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15(1):1929–1958, Jan. 2014. 7

[47] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions, 2014. 4

[48] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision, 2015. 4

[49] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks, 2020. 4

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017. 7

[51] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
4

[52] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks, 2017. 4

[53] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical
evaluation of rectified activations in convolutional network,
2015. 1

[54] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works, 2016. 4

[55] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices, 2017. 4

[56] Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and
Yanpeng Li. Improving deep neural networks using softplus
units. In 2015 International Joint Conference on Neural Net-
works (IJCNN), pages 1–4, 2015. 1, 4

803

