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Abstract

We propose a novel multimodal architecture for Scene

Text Visual Question Answering (STVQA), named Layout-

Aware Transformer (LaTr). The task of STVQA requires

models to reason over different modalities. Thus, we first

investigate the impact of each modality, and reveal the im-

portance of the language module, especially when enriched

with layout information. Accounting for this, we propose a

single objective pre-training scheme that requires only text

and spatial cues. We show that applying this pre-training

scheme on scanned documents has certain advantages over

using natural images, despite the domain gap. Scanned

documents are easy to procure, text-dense and have a vari-

ety of layouts, helping the model learn various spatial cues

(e.g. left-of, below etc.) by tying together language and

layout information. Compared to existing approaches, our

method performs vocabulary-free decoding and, as shown,

generalizes well beyond the training vocabulary. We further

demonstrate that LaTr improves robustness towards OCR

errors, a common reason for failure cases in STVQA. In

addition, by leveraging a vision transformer, we eliminate

the need for an external object detector. LaTr outperforms

state-of-the-art STVQA methods on multiple datasets. In

particular, +7.6% on TextVQA, +10.8% on ST-VQA and

+4.0% on OCR-VQA (all absolute accuracy numbers).

1. Introduction

Scene-Text VQA (STVQA) aims to answer questions by
utilizing the scene text in the image. It requires reasoning
over rich semantic information conveyed by various modali-
ties – vision, language and scene text. Fig. 1 (a) depicts rep-
resentative samples in STVQA, showcasing a model’s de-
sired abilities, including; (1) a-priori information and world
knowledge such as knowing what a website looks like (left
image); and (2) the capability to use language, layout, and
visual information (middle and right images).

In this work, we introduce Layout-Aware Transformer

*Authors contribute equally.
†Work done during an internship at Amazon.

Figure 1. The Role of Language and Layout in STVQA. (a)
Representative samples from TextVQA. (b) We visualize the in-
formation extracted by the OCR system, showing that some ques-
tions only require text features, some require both text and layout
information and only some need beyond that. Accounting for this,
we propose a layout-aware pre-training and architecture.

(LaTr), a multimodal encoder-decoder transformer based
model for STVQA. We begin by exploring how far lan-
guage and layout information can take us in STVQA . In
Fig. 1 (b) we visualize the information extracted by the op-
tical character recognition (OCR) system [1, 6, 14, 38], ex-
hibiting three question categories: the first type can be an-
swered with just the text tokens; the second type can be
answered with text and layout information (right vs left);
the third can only be answered by utilizing text, spatial and
visual features all together. We quantitatively show that in
the current datasets, most questions fall under the first two
categories. To methodologically show this, we first eval-
uate a zero-shot language model on STVQA benchmarks,
and then show that LaTr can already correctly answer over
50% of the questions with only text tokens. Next, we show
the performance gain achieved by enriching the language
modality with layout information via our propose layout-

aware pre-training and architecture.
Recently, Yang et al. [74] demonstrated the advantages in

pre-training STVQA models on natural images, proposing
text-aware pre-training (TAP) scheme, which is designed
to foster multi-modal collaboration. Acquiring large quan-
tities of natural images with text is challenging and hard
to scale, as most natural images do not contain scene text.
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Even when they do, the amount of text is often sparse (pre-
vious statistics suggest a median of only 6 words per im-
age [67, 74]). In addition, and more importantly, TAP did
not account for the importance of aligning the layout infor-
mation with the semantic representations when designing
the pre-training objectives.

To counter these drawbacks, we propose layout-aware

pre-training based on a single objective using only text and
spatial cues as input. Our pre-training forces the model to
learn a joint representation which accounts for the interac-
tions between text and layout information, benefiting the
down-stream task of STVQA. Despite the domain gap, we
find that pre-training on documents has certain advantages
over natural images. Scanned documents contain more text
compared to natural images, therefore it is easier to scale
the experiment and expose the model to more data. Words
in documents are usually complete sentences, helping the
model better learn semantics beyond a simple bag of words.
Moreover, scanned documents provide varied layouts, lead-
ing to effective alignment between language and spatial fea-
tures. Lastly, performing pre-training without visual fea-
tures reduces computational complexity substantially.

Our model utilizes a vision transformer [13] for extract-
ing visual features, thus replacing the extensive need for an
external object detector [21, 25, 74]. Moreover, in practice,
current STVQA models exploit a dataset-specific vocabu-
lary with a pointer mechanism for decoding [17, 21, 24, 25,
71,74–76], creating an over-reliance on the fixed vocabulary
and leaving no room for fixing OCR errors. Our model per-
forms vocabulary-free decoding, does well even on answers
out-of-vocabulary, and even overcomes OCR errors in some
cases. LaTr outperforms the state-of-the-art STVQA meth-
ods by large margins on multiple public benchmarks. To
summarize, the key contributions of our work are:
1. We recognize the key role language and layout play in

STVQA and propose a layout-aware pre-training and ar-
chitecture to account for that.

2. We pinpoint a new symbiosis between documents and
STVQA via pre-training. We show empirically that doc-
uments are beneficial for tying together language and
layout information despite the huge domain gap.

3. We show that existing methods perform poorly on out-
of-vocabulary answers. LaTr does not require a vocabu-
lary, does well even on answers that are not in the train-
ing vocabulary, and can even overcome OCR errors.

4. We provide extensive experimentation and show the ef-
fectiveness of our method by advancing the state-of-the-
art by +7.6% on TextVQA and +10.8% on ST-VQA and
+4.0% in OCR-VQA dataset.

2. Related Work

Pre-training and Language Models. The low cost of ob-
taining language text combined with the success of pre-

training, language models [12,40,52,53] has shown remark-
able success in machine translation, natural language under-
standing, question answering and more. Recently, numer-
ous studies [2, 10, 22, 28, 34–37, 42, 43, 61, 62, 77] showed
the benefits of pre-training multi-modal architectures for
vision and language tasks. Yang et al. [74] demonstrated,
for the first time, the effectiveness of pre-training in scene
text VQA by using masked language modeling and image-
text matching as pretext tasks. In this paper, we show that
tying together language and layout information via a sim-
ple layout-aware pre-training scheme is beneficial for scene
text VQA. Moreover, we perform pre-training over scanned
documents and discover that, despite the domain gap, doc-
uments can be leveraged for task of STVQA.
Vision-language tasks incorporating scene text. Re-
cently, integrating reading into the vision and language
tasks has become imperative, especially in VQA and cap-
tioning where the models were known to be illiterate [8,58].
Since the usage of text can be quite distinct in terms of
the environment, several papers introduce new datasets
for various contexts in which text appears; ST-VQA [9],
TextVQA [58] in natural images; OCR-VQA [49] in book
and movie covers; DocVQA [47] in scanned documents;
InfoVQA [46] in info-graphics. Moreover, STE-VQA [70]
is proposed for multi-lingual VQA and TextCaps [57] for
captioning on natural images. There are several papers pub-
lished on scene text VQA. LoRRa [58] extended Pythia [23]
with a pointer network [68] to select either from a fixed vo-
cabulary or from OCR tokens. M4C [21] also used pointer
networks but instead used multi-modal transformers [66] to
encode all modalities together. SA-M4C [25] build on top
of M4C by providing supervision on self-attention weights.
MM-GNN [16] builds separate graphs for different modali-
ties by utilizing graph neural networks [29]. Instead of hav-
ing separate graphs for each modality, SMA [15] introduces
a single graph that encodes all modalities. [78] proposes to
use an attention mechanism to fuse pairwise modalities.

LaTr enriches the language modality with layout infor-
mation via pre-training to achieve state-of-the-art perfor-
mance across multiple benchmarks. Our model is gener-
ative in nature and as such alleviates the problem of vocab-
ulary reliance current methods suffer from. In addition, we
will show that LaTr is more robust to OCR errors, one of the
most common reasons for failure cases in STVQA [21, 74].

3. Method

In this section, we describe in detail our model architec-
ture and our pre-training strategy, as seen in Fig. 2. LaTr
consists of three main building blocks. First, a language
model pre-trained on only text. Second, use of spatial em-
bedding for OCR tokens bounding box in conjunction with
further layout-aware pre-training on documents, as depicted
in Fig. 2 (a). Finally, a ViT architecture [13] for obtaining
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Figure 2. An overview of LaTr. (a) In pre-training, we only train the language modality with text and spatial cues to jointly model inter-
actions between text and layout information. Pre-training is done on large amounts of documents. Documents are a text rich environment
with a variety of layouts. (b) In fine-tuning, we add visual features from a ViT, thus eliminating the need for an external object detector.
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Figure 3. Layout Position Embedding. 2-D position embeddings
representing the text layout in the image are leveraged to enrich
the semantic representations.

visual features. We first explain each of the modules and
then describe how all the modules come together as a whole.

The Language Model We base our LaTr architecture on
the encoder-decoder transformer architecture of Text-to-Text

Transfer Transformer (T5 [53]). Apart from minor modifi-
cations, T5’s architecture is roughly equivalent to the orig-
inal transformer proposed by [66], which makes it easy to
extend in various ways. In addition, the vast amount of pre-
training data used in the T5 pretraining makes it attractive
for STVQA as model initialization. In particular, [53] used
Common Crawl publicly-available web archive to obtain a
subset of 750 GB cleaned English text data, which they term
Colossal Clean Crawled Corpus (C4). Pre-training on C4 is
done with a de-noising task, which is a variant of masked-
language modeling (MLM [12]). We follow the implemen-
tation and use the weights from HuggingFace [63] 1.

1https://huggingface.co/transformers/model_doc/
t5.html

2-D Spatial Embedding Recent document understanding
literature [5, 72, 73] prove the value of layout information
when working with Transformers. The key idea is to asso-
ciate and couple the 2-D positional information of the text
with the language representation, i.e. creating better align-
ment between the layout information and the semantic rep-
resentation. Unlike words in a document, scene text in nat-
ural images may appear in arbitrary shapes and angles (e.g.,
as on a watch face). Therefore, we include the height and
width of the text to indicate the reading order.

Formally, as seen in Fig. 3, given an OCR token Oi,
the associated word bounding box may be defined by
(xi

0, y
i
0, x

i
1, y

i
1, h

i, wi), where (xi
0, y

i
0) corresponds to the

position of the upper left corner of the bounding box,
(xi

1, y
i
1) represents the position of the lower right corner,

and (hi, wi) represents the height and width with respect to
the reading order. To embed bounding box information, we
use a lookup table commonly used for continuous encoding
one-hot representations (e.g. nn.Embedding in PyTorch).
Before we feed the word representation into the transformer
encoder, we sum up all the representations together:

Ei = EO(Oi) + Ex(x
i

0) + Ey(y
i

0)+

Ex(x
i

1) + Ey(y
i

1) + Ew(w
i) + Eh(h

i)
(1)

where Ei is the encoded representation for an OCR token Oi

and EO, Ex, Ey, Ew, Eh are the learnable look-up tables.

Layout-Aware Pre-Training As T5 was trained on just
text data, we perform further pre-training to effectively
align the layout information (in form of the 2-D spatial em-
bedding) and the semantic representations. To the best of
our knowledge, we are the first to propose pre-training on
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documents instead of natural images for the task of scene
text VQA. The motivation for selecting documents is that
they are a source of rich text environment in a variety of
complex layouts. Inspired by [53], we perform a layout-

aware de-noising pre-training task, which includes the 2-D
spatial embedding, as seen in Fig. 2 (a). This enables the use
of weak data with no answer annotations in the pre-training
stage. Like the normal de-noising task, our layout-aware

de-noising task masks a span of tokens and forces the model
to predict the masked spans. Unlike the normal de-noising
task, we also give the model access to the rough location
of the masked tokens, which encourages the model to fully
utilize the layout information when completing this task.

More formally, let O = {O1, O2, ..., On} be the set
of all OCR tokens (strings) and B = {B1, B2..., Bn} be
the corresponding bounding box information, where Bj =

(xj

0, y
j

0, x
j

1, y
j

1, w
j , hj). Now, let Ml = {j, j+1, ..., j+k}

be the lth mask span where j is the starting index to mask
such that max(Ml) < min(Ml+1). Then, {Oj , ..., Oj+k}

and {Bj , ..., Bj+k} are replaced by Õi (a special indexed
mask token) and B̃i (the span’s minimal containing bound-
ing box) in the following manner:

Õi = <extra id l>,where l 2 {0, ..., k � 1}

B̃i = (min({xi

0}),min({yi0}),

max({xi

1}),max({yi1}))

where j  i  j + k

(2)

where the height and width of the masked tokens’ bounding
box are calculate with the coordinates of B̃i.

Essentially, we have replaced a span of words tokens
{Oj , ..., Oj+k} and their corresponding bounding boxes
{Bj , ..., Bj+k} with a special token Õi and a corresponding
”loose” bounding box. In other words, when we mask the
span of words, we select the minimum of the top-left coor-
dinates and the maximum of the bottom-right ones. The rea-
sons are twofold. First, we do not want our model to know
precise token boxes because that would reveal how many
tokens are masked. Second, we choose not to mask the
bounding boxes completely because then the model does
not know where the text should appear in the document and
cannot use the correct spatial context effectively. So, we
prevent the model from taking shortcuts, but at the same
time give it enough information to learn. The masked to-
ken Õi and its bounding box B̃i are then embedded using
Eq. (1) like any other regular token. We use cross-entropy
loss to predict all the masked tokens’ original text.

Visual Features Most previous methods utilized an ex-
ternal pre-trained object detector [21, 74] for extracting ob-
jects labels, visual object features and visual OCR features.
In this work, we diverge from the literature and leverage a

Vision Transformer (ViT) [13]. The ViT is an image clas-
sification network which is pre-trained and fine-tuned on
ImageNet [11]. We utilize ViT in our architecture only in
the fine-tuning stage, and we freeze all the layers except the
last fully connected projection layer we add. Formally, an
image I having the dimension of H ⇥W ⇥ C is reshaped
into 2D patches of size N ⇥ (p2 · C), where (H,W ) is the
height and width, C is the number of channels, (P, P ) is
the resolution of each image patch, and N = HW/P 2 is
the final number of patches. As depicted in Fig. 2 (b), we
utilize a linear projection layer to map the flattened patches
to D dimensional space and feed them to the ViT. We pass
the full ViT output (containing [class] token) sequence to a
trainable linear projection layer and then feed it to the trans-
former encoder. Position embeddings are added to the patch
embeddings to retain positional information. We denote the
final visual output as V = {V0, ..., VN}.

LaTr So far, we explained the building blocks of our
method, now we describe how we put it all together, as de-
picted in Fig. 2 (b). After pre-training the language modal-
ity of the model with layout information, we input all three
modalities, namely; image, OCR information and question
to the transformer encoder. Let V = {V0, ..., VN} be a set
of visual patch features such that V0 is the [class] embed-
ding, Q = {W1, ...,Wm} be the question tokenized into
Wi and O = {O1, O2, ..., On} be the OCR tokens. We em-
bed the OCR tokens and questions using Eq. (1) to obtain
encoded OCR tokens E and encoded question features E

q .
For the 2-D spatial embedding of each Wi, we use fixed val-
ues (x0 = y0 = 0;x1 = y1 = 1000). Finally, we concate-
nate all the inputs [V; E ; Eq] to feed to the multimodal trans-
former encoder-decoder architecture. Cross entropy loss is
used to fine-tune our model.

4. Experiments

In this section, we experimentally examine our method,
comparing its performance with state-of-the-art methods.
We consider the standard benchmarks of TextVQA [58],
ST-VQA2 [9] and OCR-VQA [49]. For pre-training we con-
sider the same datasets used in [7, 74] with the addition of
the Industrial Document Library (IDL)3. The IDL is a col-
lection of industry documents hosted by UCSF. It hosts mil-
lions of documents publicly disclosed from various indus-
tries like tobacco, drug, food etc. The data from the web-
site amounts to about 13M documents, translating to about
64M pages of various document images. We further ex-
tracted OCR for each document using Textract OCR4. Im-
plementation details and further information on all datasets

2We use ST-VQA for denoting the dataset proposed in [9], and STVQA
for denoting the general task of scene text VQA.

3https://www.industrydocuments.ucsf.edu/
4https://aws.amazon.com/textract/
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Method OCR System Pre-Training Data Extra Finetune No. of Param. Val Acc. Test Acc.

M4C [21] Rosetta-en 7 7 200M 39.40 39.01
SMA [15] Rosetta-en 7 7 - 40.05 40.66
CRN [39] Rosetta-en 7 7 - 40.39 40.96
LaAP-Net [20] Rosetta-en 7 7 - 40.68 40.54
TAP [74] Rosetta-en TextVQA 7 200M 44.06 -
LaTr -Small Rosetta-en 7 7 149M 41.84 -
LaTr -Base Rosetta-en 7 7 311M 44.06 -
LaTr -Base Rosetta-en IDL 7 311M 48.38 -

SA-M4C [25] Google-OCR 7 ST-VQA 200M 45.4 44.6
SMA [15] SBD-Trans OCR 7 ST-VQA - - 45.51
M4C [21, 74] Microsoft-OCR 7 ST-VQA 200M 45.22 -
TAP [74] Microsoft-OCR TextVQA 7 200M 49.91 49.71
TAP [74] Microsoft-OCR TextVQA, ST-VQA ST-VQA 200M 50.57 50.71
LOGOS [44] Microsoft-OCR 7 ST-VQA - 51.53 51.08
TAP [74] Microsoft-OCR TextVQA, ST-VQA, TextCaps, OCR-CC ST-VQA 200M 54.71 53.97
M4C [21] Amazon-OCR 7 7 200M 47.84 -
LaTr-Base Amazon-OCR 7 7 311M 52.29 -
LaTr-Base Amazon-OCR IDL 7 311M 58.03 58.86
LaTr‡-Base Amazon-OCR IDL ST-VQA 311M 59.53 59.55
LaTr-Large Amazon-OCR IDL 7 856M 59.76 59.24
LaTr‡-Large Amazon-OCR IDL ST-VQA 856M 61.05 61.60

Table 1. Results on the TextVQA dataset [58]. As commonly done, the top part of the table presents results in the constrained setting
that only uses TextVQA for training and Rosetta for OCR detection, while the bottom part is the unconstrained settings. LaTr advances the
state-of-the-art performance, specifically by +6.43% and +7.63% on validation and test, respectively.

can be found in Appendix A and B, respectively. We note
that throughout the rest of the paper, ‡ refers to the models
fine-tuned with both TextVQA and ST-VQA, at the same
time. “-Small”, “-Base” and “-Large” model sizes refer to
architectures that have 6+6, 12+12 and 24+24 layers in en-
coder and decoder, respectively. For convenience, we refer
to LaTr-Base as LaTr.

TextVQA Results Similar to previous work [74], we de-
fine two evaluation settings. The former is the constrained
setting that only uses TextVQA for training and Rosetta
for OCR detection. The latter is the unconstrained set-
ting, in which we present our best performance with the
state-of-the-art. The first part of Tab. 1 reports the accu-
racy under the constrained setting. As can be appreciated,
LaTr-Small outperforms M4C (+2.44%), with fewer pa-
rameters. Increasing the model capacity to LaTr results
in a performance gain of +2.22% (additional discussion on
the model capacity can be found in Appendix D). In addi-
tion, LaTr achieves the same performance as TAP [74] with-
out any pre-training, demonstrating the effectiveness of our
model. Furthermore, when LaTr is pre-trained on IDL, per-
formance increase from 44.06% to 48.38% (+4.32%) using
the Rosetta OCR. This clearly shows the effectiveness of
layout-aware pre-training on scanned documents to the task
of scene text VQA, even in the constrained setting.

In the bottom part of Tab. 1 we modify the OCR sys-
tem to a more recent one than Rosetta and gradually
add additional training datasets (unconstrained settings).
In this work, we experiment with Amazon Text-in-Image

(Amazon-OCR)5 [65]. As seen, when using Amazon-OCR
our method outperforms the M4C baseline, improving per-
formance from 47.84% to 52.29% (+4.45%). Furthermore,
when enabling pre-training, LaTr outperforms the previous
art [74] by large margins from 54.71% to 58.03% (+3.32%)
on validation and from 53.97% to 58.86% (+4.89%) on the
test. We note that for [74] there is a -0.74% decrease be-
tween validation and test while for LaTr we observe an in-
crease of +0.83%, demonstrating better generalization. An-
other critical point is that LaTr can benefit more when ST-
VQA dataset is added as an extra fine-tune data. We be-
lieve this point to be critical since we do not have to train
separate models for TextVQA and ST-VQA but rather one
model that can get the best performance on both dataset. Fi-
nally, increasing our model capacity to LaTr-Large further
boosts performance to 61.6% (+7.6% from [74]).
ST-VQA Results Tab. 2 presents the accuracy on ST-
VQA [9] in the unconstrained setting. LaTr uses the
Amazon-OCR and is pre-trained on IDL and fine-tuned
on the training set of ST-VQA. LaTr‡ is also fine-tuned
with TextVQA. The behaviour observed in TextVQA is
consistent with ST-VQA dataset, LaTr‡-Base and LaTr‡-
Large outperforming the previous art [74] by +8.26% and
+10.81%, respectively. Moreover, we show a similar trend
on OCR-VQA [49] dataset where the discussion and the
numbers can be found in Appendix E.
Qualitative Analysis In Fig. 4 we depict five different
question categories which are representative of the capa-

5https://docs.aws.amazon.com/rekognition/index.html
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Figure 4. Why is STVQA hard? Current state-of-the-art methods struggle to acquire various abilities which are needed for scene text
VQA. We depict five representative abilities; fixing OCR errors, language understating, world knowledge, understating complex layouts
and the ability to produces long answers. Our model is able to correctly answer each one of the these examples. We refer the reader to
more qualitative results and comparisons to previous art in Appendix F.

Method Val Acc. Val ANLS Test ANLS

M4C [21] 38.05 0.472 0.462
SA-M4C [25] 42.23 0.512 0.504
SMA [15] - - 0.466
CRN [39] - - 0.483
LaAP-Net [20] 39.74 0.497 0.485
LOGOS [44] 48.63 0.581 0.579
TAP [74] 50.83 0.598 0.597
LaTr-Base 58.41 0.675 0.668
LaTr‡-Base 59.09 0.683 0.684
LaTr‡-Large 61.64 0.702 0.696

Table 2. Results on the ST-VQA Dataset [9]. Our model ad-
vances the state-of-the-art performance by +10.81%.

bilities STVQA models need. We start with the ability to
correct OCR errors (Fig. 4 (a)). Most state-of-the-art OCR
systems for scene text [6,14,38,50] operate on a word-level,
and thus are unable to utilize image-level context. Current
STVQA methods depend on a pointer network for decod-
ing, which means they are bounded by the performance of
the OCR system at hand. Contrary to that, LaTr leverages
image-level context and jointly with its generative nature, is
able to correct OCR errors. Next, scene text VQA models
are required to have the ability to understand language to-
gether with world knowledge (Fig. 4 (b)(c)). Both require-
ments are met in LaTr thanks to its extensive pre-training.

As seen in Fig. 4 (d), answering questions often requires
reasoning over the relative spatial positions of the text in the
image. Over the years several methods aimed at developing
spatially aware models were proposed [25, 44]. However,
most of those methods are complex, not easy to implement
and eventually led to minimal performance improvements.
LaTr is pre-trained on documents with layout information,
which leads to a spatially aware model without any complex
architectural changes. The last category we analyze is long
answers (Fig. 4 (e)). In practice, the existing pointer net-
work decoding mechanism is also limited in ability to pro-
duce long answers. Furthermore, when pre-training is done

Model OCR Acc.

T5-Base Rosetta-en 16.05
T5-Base Amazon-OCR 21.93
T5-Base GT text 25.45

Table 3. Zero Shot Performance of T5 Language Model on

TextVQA. In this setting, T5-Base is pre-trained on C4 and fine-
tuned on SQuAD [54], a reading comprehension dataset. Showing
that a “blind” pre-trained language model can get up to 25.45%.

on natural images as in [74], the model hardly encounters
long sentences. LaTr does not rely on a pointer network
and is pre-trained on documents, in which text appears in a
variety of lengths.

We provide further qualitative analysis and comparisons
to previous work [21] in Appendix F. In addition, we dis-
play failure cases of our method on the TextVQA dataset.
The failure cases are mostly composed of OCR errors, com-
positionality of spatial reasoning and visual attributes.

5. Ablation Studies

In this section, we provide insightful experiments which
we deem crucial for the STVQA task and its future develop-
ment. We start off by showing the significance of language
understanding in STVQA . Then, we show the effective-
ness of language and layout information and discuss the bi-
ases existing in STVQA benchmarks. Next, we study the
effect of pre-training as a function of dataset size and type.
Finally, we showcase our model’s robustness towards vo-
cabulary and OCR errors. All the numbers are obtained by
using the TextVQA validation set.

Zero-shot Language Models on TextVQA To quantify
the importance of language understanding in STVQA , we
devise a novel zero-shot setting where we use the T5 lan-
guage model pre-trained on C4 and only fine-tuned on
SQuAD [54], a reading comprehension dataset. Tab. 3
presents the performance of this setting while varying the
OCR system. Interestingly, even without any visual fea-
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Model 2-D Pre-training OCR Visual Acc.

LaTr

7 7 7 7 11.18
7 7 7 V 11.74
7 7 random 7 41.77
7 7 X 7 50.37
X 7 X 7 51.22
X 7 X V 52.29
X X X 7 57.38
X X X F 58.11

X X X V 58.03

LaTr‡
X X X 7 58.92
X X X F 58.45
X X X V 59.53

Table 4. LaTr Ablation Studies on TextVQA. We ablate LaTr -
Base by varying the building blocks of our method, including pre-
training, input types and fine-tuning data. V refers to ViT and F
refers to FRCNN as visual backbone, random means OCR tokens
are provided but presented in a random reading order.

tures or fine-tuning, T5 reaches a performance of 16.05%
and 21.93% with Rosetta and Amazon-OCR, respectively.
More importantly, a zero-shot “blind” model with the per-
fect OCR (ground truth OCR annotation [59]) can get to
as high as 25%, experimentally demonstrating the need for
language understanding in STVQA . However, one needs
to be careful attributing the entirety of the performance to
language understanding since deep models are known to ex-
ploit dataset biases [64]. Thus, we investigate if there are
any biases in the data and if it is possible to categorize them.

Dataset Bias or Task Definition? To get a better sense of
the biases in TextVQA, we start by training a model where
only questions are given as input. As can be seen in Tab. 4,
our model is able to achieve 11.18% in a task that requires
reading and reasoning about the text without the text. Next,
we study the effect of the OCR system by dividing the in-
formation provided by it into text token transcription, read-
ing order and 2-D positional information. Reading order is
the order where OCR tokens are extracted from left to right
and top to bottom with respect to line boxes or text blocks.
Reading order is so intertwined with OCR systems that it is
not thought of as a detached feature.

As shown in Tab. 4, adding OCR tokens without any
reading order gives us 41.77% and a fixed reading or-
der already gets us to 50.37%, showing the importance of
reading order for given OCR tokens. The gain becomes
marginal when adding the 2-D positional and visual in-
formation without pre-training, +0.85% and +1.09%, re-
spectively. However, when performing layout-aware pre-
training on documents, obtaining alignment between the
layout information and the semantic representations, LaTr’s
performance increases significantly by +7.01% to 57.38%.

Model Pre-training Data Acc.

LaTr-Base

7 50.37
TextVQA 51.81

TextVQA,ST-VQA,TextCaps,OCR-CC 54.22
IDL - 1M 55.12
IDL - 11M 56.28
IDL - 64M 58.03

IDL-64M,TextVQA,ST-VQA,TextCaps,OCR-CC 58.51

LaTr‡-Base
IDL - 64M 59.53

IDL-64M,TextVQA,ST-VQA,TextCaps,OCR-CC 59.06

Table 5. The Effect of Pre-training. Ablation studies on pre-
training as a function of different datasets type and size.

In other words, we can already achieve SOTA on a Vi-

sual Question Answering task without any visual features
(other than using the images for OCR extraction). Fi-
nally, adding visual features still marginally increases per-
formance by around +0.7%. Recently, [69] showed a sim-
ilar phenomenon using the M4C [21] architecture, where
visual information only slightly contributed to the perfor-
mance, validating that this is not specific to our technique.

Regarding the comparison of the different visual back-
bones, we train our model with visual features extracted ei-
ther from FRCNN [4] or ViT [13]. We note that the perfor-
mance difference is very marginal when only TextVQA is
used in fine-tuning. However, when TextVQA and ST-VQA
are used together, the model with FRCNN features perform
worse than the model without any visual features while ViT
increases performance by +0.61%, demonstrating that ViT
features can scale better with more data.

At this point, we would like to take a step back and dis-
cuss STVQA as a task. As we see it, our analysis can be
interpreted from two viewpoints. The first viewpoint is how
STVQA is defined as a task. In particular, is the STVQA
task defined such that all (or a majority of) questions should
require reasoning over all modalities (including visual fea-
tures)? Regardless of the answer, we present a second view-
point, a dataset bias. To better explore the bias perspective,
in Appendix G we visualize question-image pairs sorted by
the information required to answer them. Clearly, generat-
ing questions from the final category (i.e. questions which
require reasoning over all modalities) is not an easy task.
Furthermore, we quantitatively showed that at-least 60% of
the questions do not fall under the final category, allowing
the model to extensively exploit language priors and make
educative guesses. Both viewpoints lead us to wonder are
visual features even needed for STVQA? Or better yet, is
vision an artifact in STVQA task? We believe that visual
features are of importance for the task of STVQA, however
current benchmarks do not reflect it, making it harder to
evaluate how much V matters in STVQA.
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Model
All InVoc. OutVoc. Gap

5000 3731 1269

M4C [21] 47.84 51.07 38.37 12.7

LaTr-Base 59.53 59.93 58.35 1.58

Table 6. Vocabulary Reliance. Accuracy gap between answers
with words in and out of vocabulary used by [21, 25, 74]. InVoc.
and OutVoc. stand for in and outside the vocabulary, respectively.

The Effect of Large-Scale Pre-Training Tab. 5 demon-
strates the benefits of pre-training while varying the datasets
type and scale. First, we explore the effect of pre-training
on natural images with visual features (as done in [74]) us-
ing our architecture. In particular, we add the image-text
matching objective and leverage the same datasets (which
we term TAP-datasets) as in [74]. Pre-training only on
TextVQA (Tab. 5), provides only +1.5% improvement for
us compared to [74] reporting +5%. The same behaviour of
diminished gain is also observed with TAP-datasets.

Next, we compare IDL and TAP-datasets in pre-training.
Even pre-training on 1M documents, LaTr’s performance
increases by almost +5%, which is more than the combi-
nation of all TAP-datasets. This is inspiring for two rea-
sons, one of which is 1M documents are less than two thirds
the size of TAP-datasets [74]. Secondly, our model is pre-
trained with a simple de-noising objective and no visual fea-
tures, making the pre-training significantly faster (around
23 times) compared to TAP [74] which is pre-trained with
visual features, scene text features and multiple losses. We
also argue that IDL is a better bed for layout-aware pre-
training since it provides varied layouts to better align with
language. Finally, we discuss the effect of increasing the
size of IDL. Adding an order of magnitude more data only
result in +1% or +2% increase. We emphasize that 64M
documents hardly seems the saturation point for LaTr, i.e.
more pre-training data can still improve the performance,
especially when also increasing the model capacity.

Vocabulary Reliance and Robustness Towards OCR Er-

rors Current state-of-the-art methods predict the answer
through an amalgamation of a pointer mechanism and a
dataset-specific 5K most frequent vocabulary. The usage
of a vocabulary is limiting in a real-world scenario and
may result in high performance on in-vocabulary answers
but lead to poor performance on out-of-vocabulary ones,
in other words, lack of generalization. This is clearly ob-
served in Tab. 6 where M4C [21] exhibits a heavy reliance
on the fixed vocabulary as the gap between categories is
-12.7%. Contrary to that, LaTr is not limited to any hand-
crafted dataset-specific vocabulary. Its gap between in and
out of the training vocabulary is only -1.58%.

Finally, we experimentally display that our model is
more robust to OCR errors compared to M4C architecture.

Figure 5. Robustness towards OCR Errors. OCR Error Prob-
ability refers to the percentage of OCR tokens that we replace a
single character by a random one, simulating OCR engine errors.
LaTr’s relative robustness is higher compared to [21] and increases
with the probability of OCR errors.

To validate our claim we introduce a new setting where we
replace a single character for certain amount of OCR to-
kens. Whether to replace a character in each word is de-
cided according to the threshold from a Bernoulli distribu-
tion, called OCR Error Probability in Fig. 5. To simulate
real-world OCR errors, we utilized the publicly available
nlp-augmenter from [45]. LaTr is more robust than [21] and
in fact the lead increases as more OCR errors are added.

6. Conclusion

We convey a couple of important take-home messages
for the STVQA community. Firstly, language and layout

are essential. Language indirectly is utilized for questions
that need world/prior knowledge or simply for language un-
derstanding. Layout information allows the model to reason
over spatial relations. In our work, we methodologically
demonstrated their importance to STVQA. Secondly, we
propose a layout-aware pre-training and show a new sym-
biosis between scanned documents and scene text, where
the layout information of scanned documents promotes a
better understanding of scene text information. This is ex-
citing news since scanned documents are more abundantly
available than natural images that contains scene text. Text
in documents appears in a variety of complex layouts, mak-
ing our model spatially aware without any complex archi-
tectural changes. Last but not least, we replace the ex-
tensive need of FRCNN for feature extraction. We ex-
hibit that using a ViT as a feature extractor can scale better
than FRCNN, i.e. leading to better performance. However,
perhaps more crucially, we diagnose a condition in which
STVQA models (ours included) make use of the visual fea-
tures marginally. This begs the question whether this is be-
cause of the dataset bias, and we as a community need to
make V matter again in VQA.
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