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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1→L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1→L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.
Code available at github.com/moboehle/B-cos.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [29]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [24]) are accurately summarised by a linear transform
for every input [23]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [32, 43]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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ment, these transforms are explicitly designed to yield ex-
planations that highlight task-relevant patterns in the input.
(2) Specifically, the B-cos transform is designed such that
any sequence of B-cos transforms can be faithfully sum-
marised by a single linear transform. We show that this al-
lows to explain not only the models’ output neurons, but
also neurons from arbitrary intermediate network layers.
(3) We demonstrate that a plain B-cos convolutional neural
network without any additional non-linearities, batch-norm
layers [15], or regularisation schemes can achieve compet-
itive performance on CIFAR10 [18]. In an ablation study
we also show that the parameter B allows for fine-grained
control over the increase in weight alignment and thus the
interpretability of the B-cos networks.
(4) To highlight the generality of our approach, we show
that the B-cos transform can easily be integrated into var-
ious commonly used DNNs such as InceptionNet [39],
ResNet [13], VGG [34], and DenseNet [14] models, whilst
maintaining similar performance. More importantly, the re-
sulting architectures are highly interpretable under the B-
cos explanations and outperform other explanation methods
across all tested architectures, both under quantitative met-
rics as well as under qualitative inspection.

2. Related work
Approaches for understanding DNNs typically focus on
explaining individual model decisions post-hoc, i.e., they
are designed to work on any pre-trained DNN. Examples
of this include perturbation-based, [21, 26, 28], activation-
based, [8, 17], or backpropagation-based explanations, [3,
30, 32, 33, 35, 36, 38, 44]. In order to obtain explanations
for the B-cos networks, we also rely on a backpropagation-
based approach. In contrast to post-hoc explanation meth-
ods, however, we optimise the B-cos networks to be ex-
plainable under this particular form of backpropagation and
the resulting explanations are thus model-inherent.

The design of such inherently interpretable models has
gained increased attention recently. Examples include
prototype-based networks [7], BagNets [5], and CoDA
Nets [6]. Similar to the BagNets and the CoDA Nets, our
B-cos networks can be faithfully summarised by a single
linear transform. Moreover, similar to [6], we rely on a
structurally induced alignment pressure to make those trans-
forms interpretable. In contrast to those works, however,
our method is specifically designed to be compatible with
existing neural network architectures, which allows us to
improve the interpretability of a wide range of DNNs.
Weight-input alignment in DNNs has recently received in-
creased attention. E.g., it has been observed that adversarial
training promotes alignment [40] and recent studies suggest
that this could increase interpretability via gradient-based
explanations [16, 31]. Further, [37] introduce a loss to in-

crease alignment. Instead of relying on loss-based model
regularisation, the increase in alignment in B-cos networks
is based on architectural constraints that require weight-
input alignment for solving the optimisation task.
Non-linear transforms. While the linear transform is the
default operation for most neural network architectures,
many non-linear transforms have been investigated, [11,19,
20, 22, 42, 45]. Most similar to our work are [19, 20, 22],
which assess transforms that emphasise the cosine similar-
ity (i.e., ‘alignment’) between weights and inputs to im-
prove model performance. In fact, we found that amongst
other transforms, [19] evaluates a non-linear transform that
is equivalent to our B-cos operator with B=2. In contrast
to [19], we explicitly introduce this non-linear transform to
increase interpretability and show that such models can be
scaled to large-scale classification problems.

3. B-cos neural networks
In this section, we introduce the B-cos transform as a re-

placement for the linear units in DNNs, which are (almost)
“at the heart of every deep network” [27], and discuss how
this can increase the interpretability of DNNs.

For this, we first introduce the B-cos transform as a
variation of the linear transform in Sec. 3.1 and highlight
its most important properties. In Sec. 3.2, we show how
to construct B-cos networks and how to faithfully sum-
marise the network computations to obtain explanations
for their outputs (3.2.1). Then, we discuss how the B-
cos transform—combined with the binary cross entropy
(BCE) loss—affects the parameter optima of the models
(3.2.2). Specifically, by inducing alignment pressure, the B-
cos transform aligns the model weights with task-relevant
patterns in the input. Finally, in Sec. 3.3 we integrate the
B-cos transform into conventional DNNs by using it as a
drop-in replacement for the ubiquitously used linear units.

3.1. The B-cos transform
Typically, the individual ‘neurons’ in a DNN compute

the dot product between their weights w and an input x:

f(x;w) = wT x = ||w|| ||x|| c(x,w) , (1)
with c(x,w) = cos (∠(x,w)) . (2)

Here, ∠(x,w) returns the angle between the vectors x and
w. In this work, we seek to improve the interpretability of
DNNs by promoting weight-input alignment during optimi-
sation. To achieve this, we propose the B-cos transform:

B-cos(x;w)= ||ŵ||︸︷︷︸
=1

||x|||c(x, ŵ)|B × sgn (c(x, ŵ)) . (3)

Here, B is a hyperparameter, the hat-operator scales ŵ to
unit norm, and sgn denotes the sign function. Note that this
only introduces minor changes (highlighted in blue) with
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respect to Eq. (1); e.g., note that for B=1, the B-cos trans-
form is equivalent to a linear transform with ŵ. However,
albeit small, these changes are important for three reasons.
First, they bound the output of B-cos neurons, i.e.,

||ŵ|| = 1 ⇒ B-cos(x;w) ≤ ||x|| . (4)

As becomes clear from Eq. (3), equality in Eq. (4) is only
achieved if x and w are collinear, i.e., aligned.
Secondly, by increasing the exponent B, the output for
badly aligned weights can be further suppressed,

B ≫ 1 ∧ |c(x, ŵ)| < 1 ⇒ B-cos(x;w) ≪ ||x|| , (5)

and the respective B-cos unit can only produce outputs close
to its maximum (i.e., ||x||) for a small range of angular
deviations from x. In combination, these two properties
can significantly alter the optima of the weight vectors w.
To illustrate this, we show in Fig. 2 how increasing B af-
fects a simple linear classification problem. In particular,
Eqs. (4) and (5) shift the optimum of the optimisation prob-
lem such that for large B the optimal weights align with
the red data cluster, independent of the other class. In con-
trast to the discriminative explanation of a linear classifier,
which is highly task-dependent (see, e.g., first row in Fig. 2)
the B-cos transform allows for a similarity-based explana-
tion: a sample is confidently classified as the red class if it
is aligned well with the corresponding weight vector.
Lastly, these changes maintain an important property of the
linear transform: similar to sequences of linear transforms,
sequences of B-cos transforms can still be faithfully sum-
marised by a single linear transform (Eq. (13)). Given the
bound (Eq. (4)) and the suppression of outputs for badly
aligned weights (Eq. (5)) these linear transforms will align
with discriminative patterns when optimising a B-cos net-
work for classification, see Sec. 3.2.2. As a result, these
transforms are well suited to explain the model outputs.

3.2. Simple (convolutional) B-cos networks
In this section, we first discuss how to construct simple

(convolutional) DNNs based on the B-cos transform. Then,
we show how to summarise the network outputs by a single
linear transform and, finally, why this transform aligns with
discriminative input patterns in classification tasks.
B-cos networks. The B-cos transform is designed as a
drop-in replacement of the linear transform, i.e., it can be
used in exactly the same way. For example, first consider
a conventional fully connected multi-layer neural network
f(x; θ) of L layers, represented by

f(x; θ) = lL ◦ lL−1 ◦ ... ◦ l2 ◦ l1(x) , (6)

with lj denoting layer j with parameters wk
j for neuron k

in layer j, and θ the collection of all model parameters. In

BCE Loss for different angles of w
Problem 1 Problem 2

Arrows denote the direction of w (x-axis)

B=1
(linear)
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Optimal weights
per B (arrows)

B�1
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Optimal weights
per B (arrows)
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ea
sin

g
B

Fig. 2. Col. 2: BCE loss for different angles of w for B-cos clas-
sifiers (Eq. (3)) with different values of B (rows) for two classi-
fication problems. Cols. 1+3: Visualisation of the classification
problems and the corresponding optimal weights (arrows) per B.
For B=1 (first row) the weights w represent the decision bound-
ary of a linear classifier. Although the red cluster is the same in
both cases, the optimal weight vectors differ significantly (com-
pare within row). In contrast, for higher values of B the weights
converge to the same optimum in both tasks (see last row).

such a model, each layer lj typically computes

lj(aj ;Wj) = ϕ (Wj aj) , (7)

with aj the input to layer j, ϕ a non-linear activation func-
tion (e.g., ReLU), and the row k of Wj given by the weight
vector wk

j of the k-th neuron in that layer. Note that the non-
linear activation function ϕ is required to be able to model
non-linear relationships with multiple layers in sequence.
A corresponding B-cos network f∗ with layers l∗j can be
formulated in exactly the same way as

f∗(x; θ) = l∗L ◦ l∗L−1 ◦ ... ◦ l∗2 ◦ l∗1(x) , (8)

with the only difference being that every dot product (here
between rows of Wj and the input aj) is replaced by the
B-cos transform in Eq. (3). In matrix form, this equates to

l∗j (aj ;Wj) = |c(aj ;Ŵj)|B−1 ×
(
Ŵj aj

)
. (9)

Here, the power, absolute value, and × operators are ap-
plied element-wise, c(aj ;Ŵj) computes the cosine simi-
larity between input aj and the rows of Ŵj , and the hat
operator scales the rows of Ŵj to unit norm. To see the
equivalence of Eqs. (3) and (9), note that Ŵj aj computes
the scalar product between each row of Ŵj and aj , which
includes a cosine factor. We account for this by reducing the
exponent to B–1 in Eq. (9); for a derivation, see supplement
(Sec. D). Finally, note that for B>1 the layer transform l∗j is
non-linear. As a result, a non-linearity ϕ is not required for
a B-cos network to model non-linear relationships.
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The above discussion readily generalises to convolu-
tional neural networks (CNNs): in CNNs, we replace the
linear transforms computed by the convolutional kernels by
B-cos, see Alg. 1 in supplement. Further, although we as-
sumed a plain multi-layer network without add-ons such as
skip connections, we show in Sec. 5 that the benefits of B-
cos also transfer to more advanced architectures (Sec. 3.3).

3.2.1 Computing explanations for B-cos networks
As can be seen by rewriting Eq. (9), a B-cos layer effec-
tively computes an input-dependent linear transform:

l∗j (aj ;Wj) = W̃j(aj)aj , (10)

with W̃j(aj) = |c(aj ;Ŵj)|B−1 ⊙ Ŵj . (11)

Here, ⊙ scales the rows of the matrix to its right by the
scalar entries of the vector to its left. Hence, the output of a
B-cos network, see Eq. (8), is effectively calculated as

f∗(x; θ) = W̃L(aL)W̃L−1(aL−1)...W̃1(a1=x)x . (12)

As multiple linear transforms in sequence can be collapsed
to a single one, the output f∗(x; θ) can be written as

f∗(x; θ) = W1→L(x)x , (13)

with W1→L (x) =
∏L

j=1 W̃j (aj) . (14)

Thus, W1→L(x) faithfully summarises the network com-
putations (Eq. (8)) by a single linear transform (Eq. (13)).

To explain an activation (e.g., the class logit), we can
now either directly visualise the corresponding row in
W1→L, see Figs. 1 and 10, or the contributions according to
W1→L coming from individual input dimensions. We use
the resulting spatial contributions maps to quantitatively
evaluate the explanations. In detail, the input contributions
slj(x) to neuron j in layer l for an input x are given by

slj(x) = [W1→l(x)]
T
j ⊙ x , (15)

with [W1→l]j denoting the jth row in matrix W1→l; as
such, the contribution from a single pixel location (x, y) is
given by

∑
c[s

l
j(x)](x,y,c) with c the color channels.

3.2.2 Optimising B-cos networks for classification
In the following, we discuss why the linear transforms
W1→L (see Eq. (13)) can be expected to be interpretable,
i.e., to align with relevant input patterns.

For this, first note that the output of each neuron—and
thus of each layer—is bounded, cf. Eqs. (4) and (9). Since
the output of a B-cos network is computed as a sequence
of such bounded transforms, see Eq. (12), the output of the
network as a whole is also bounded. Secondly, note that a
B-cos network as a whole can only achieve its upper bound
for a given input if the units in each layer achieve their up-
per bound. Importantly, as discussed in Sec. 3.1 (Eq. (4)),

the individual units, in turn, can only achieve their maxima
by aligning with their inputs. Hence, optimising a B-cos
network to maximise its output over a set of inputs will op-
timise the model weights to align with those inputs.

In order to take advantage of this when optimising for
classification, we train the B-cos networks with the binary
cross entropy (BCE) loss

L(xi,yi) = BCE (σ(f∗(xi; θ) + b),yi) , (16)

for input xi and its corresponding one-hot encoded class la-
bel yi. Here, σ denotes the sigmoid function, b a bias, and
θ the model parameters. In particular, we choose the BCE
loss because it directly entails output maximisation. Specif-
ically, in order to reduce the BCE loss, the network is opti-
mised to maximise the (negative) class logit for the correct
(incorrect) classes. As discussed in the previous paragraph,
this will optimise the weights in each layer of the network
to align with their inputs. In particular, they will need to
align with class-specific input patterns such that these result
in large outputs for the respective class logits.

Finally, note that increasing B allows to specifically re-
duce the output of badly aligned weights in each layer
(cf. Eq. (4)). This will decrease the layer’s output strength
and thus the output of the network as a whole for badly
aligned weights, which increases the alignment pressure
during optimisation (thus, higher B→higher alignment).

3.2.3 MaxOut to increase modelling capacity
As discussed in Sec. 3.2, a deep B-cos network with B>1
does not require a non-linearity between subsequent lay-
ers to model non-linear relationships. This, of course, does
not mean that it could not benefit from it. While there are
many potential non-linearities to choose from, in this work,
we specifically explore the option of combining the B-cos
transform with the MaxOut [12] operation. In particular, we
model every neuron in a B-cos network by 2 B-cos trans-
forms1 of which the maximal activation is forwarded:

MaxOut(x) = maxi∈{1,2} {B-cos(x;wi)} . (17)

We do so for two reasons. First, in order to forward a large
signal, one such MaxOut unit still needs to have at least one
weight vector that highly aligns with a given input and the
alignment pressure is thus maintained during optimisation.
Secondly, while the latter is also true for the ReLU [24]
operation, we noticed that networks with the MaxOut oper-
ation were much easier to optimise. This could be due to
the ‘dying neuron’ problem, cf. [12], and could potentially
be remedied by better initialisation schemes.

3.3. Advanced B-cos networks
To test the generality of our approach, we evaluate how

integrating the B-cos transform into commonly used DNN
1Initial experiments showed no added benefit when using more than 2 units.
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architectures affects their classification performance and in-
terpretability. In order to ‘convert’ such models to B-cos
networks we proceed as follows. First, every convolutional
kernel / fully connected layer is replaced by the correspond-
ing B-cos version with two MaxOut units (see Sec. 3.2.3).
Secondly, any other non-linearities (e.g., ReLU, MaxPool,
etc.), as well as any batch norm layers are removed to main-
tain the alignment pressure and to ensure that the model can
be summarised via a single linear transform.

4. Experimental setting
Datasets. We evaluate the accuracies of several B-cos net-
works on the CIFAR-10 [18] and the ImageNet [9] datasets.
We use the same datasets for the qualitative and quantitative
evaluations of the model-inherent explanations.
Models. For the CIFAR10 experiments, we develop a sim-
ple fully-convolutional B-cos DNN, consisting of 9 con-
volutional layers, each with a kernel size of 3, followed
by a global pooling operation. We evaluate a network
without additional non-linearities as well as with MaxOut
units, see Sec. 3.2.3. For the ImageNet experiments, we
rely on the publicly available [25] implementations of the
VGG-11 [34], ResNet-32 [13], InceptionNet (v3) [39], and
DenseNet-121 [14] model architectures. We adapt those ar-
chitectures to B-cos networks as described in Sec. 3.3. For
details on the training procedure, see supplement (Sec. C).
Image encoding. We add three additional channels and en-
code images as [r, g, b, 1−r, 1−g, 1−b], with r, g, b∈ [0, 1]
the red, green, and blue color channels. On the one hand,
this reduces a bias towards bright regions in the image2 [6].
On the other hand, colors with the same angle in the orig-
inal encoding—i.e., [r1, g1, b1] ∝ [r2, g2, b2]—are unam-
biguously encoded by their angles under the new encoding.
Therefore, the linear transformation W1→l can be decoded
into colors just based on the angles of each pixel, see Fig. 1.
For a detailed discussion, see supplement (Sec. D).
Evaluating explanations. To compare explanations for the
model decisions and evaluate their faithfulness, we employ
the grid pointing game [6]. That means we evaluate the
trained models on a synthetic 3x3 grid of images of different
classes and for each of the corresponding class logits mea-
sure how much positive attribution an explanation method
assigns to the correct location in the grid; for a visualisation
of a 2x2 grid, see Fig. 3. Following [6], we construct 500
image grids from the most confidently and correctly classi-
fied images. We compare the model-inherent contribution
maps, see Eq. (15), against several commonly employed
post-hoc explanation methods under two settings. First, we
evaluate all methods on the B-cos networks to investigate
which method provides the best explanation for the same
2The network is trained to maximise its output, which is bounded by the
input norm. In the conventional encoding, however, black pixels, e.g.,
have a norm of zero and thus cannot contribute to the class logits.

lawn mower cab Egyptian cat jacamar

Ou
rs

Input image

Fig. 3. 2×2 example for the pointing game. Column 1: input
image. Columns 2 – 5: explanations for individual class logits.

model. Secondly, we further evaluate the post-hoc meth-
ods on pre-trained versions of the original models (VGG,
ResNet, DenseNet, InceptionNet). This allows to compare
explanations between different models and to assess the ex-
plainability gain obtained by converting conventional mod-
els to B-cos networks. Lastly, all non-perturbation-based
attribution maps are smoothed by a 15×15 (3×3) kernel to
better account for negative attributions in the localisation
metric for ImageNet (CIFAR-10) images, which is negligi-
ble with respect to the overall image size.
Visualisations details. For generating the visualisations
of the linear transforms for individual neurons n in layer
l (cf. Figs. 1 and 10), we proceed as follows. First, we se-
lect all pixel locations (x, y) that positively contribute to
the respective activation (e.g., class logit) as computed by
Eq. (15); i.e., {(x, y) s.t.

∑
c [s

l
n(x)](x,y,c)>0} with c the

6 color channels (see image encoding). Then, we normalise
the weights of each color channel such that the correspond-
ing weights (e.g., for r and 1−r) sum to 1. Note that this
normalisation maintains the angle for each color channel
pair (i.e., r and 1−r), but produces values in the allowed
range r, g, b∈ [0, 1]. These normalised weights can then di-
rectly be visualised as color images. The opacity of a pixel
is set to min(||w(x,y)||2/p99.5, 1), with p99.5 the 99.5th per-
centile over the weight norms ||w(x,y)||2 across all (x, y).

5. Results
In this section, we analyse the performance and inter-

pretability of B-cos networks. For this, in Sec. 5.1 we show
results of ‘simple’ B-cos networks without advanced ar-
chitectural elements such as skip connections or inception
modules. In this context, we investigate how the B parame-
ter influences B-cos networks in terms of performance and
interpretability. Thereafter, in Sec. 5.2, we present quanti-
tative results of the advanced B-cos networks, i.e., B-cos
networks based on common DNN architectures (Sec. 3.3).
Finally, in Sec. 5.2.1, we present and qualitatively discuss
explanations for outputs of individual neurons.

5.1. Simple B-cos networks
In the following, we discuss the experimental results of

simple B-cos networks evaluated on the CIFAR-10 dataset.
Accuracy. In Tab. 1, we present the test accuracies of var-
ious B-cos networks trained on CIFAR-10. We show that
a plain B-cos network (B=2) without any add-ons (ReLU,
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Explanations of Models Trained with Increasing BInput Image

B=1.00 B=1.25 B=1.50 B=1.75 B=2.50
Fig. 4. Col. 1: Input images. Cols. 2-6: Explanations for classes
‘horse’ and ‘car’ of models trained with increasing values of B.
With higher B, the linear transforms W1→l increasingly align
with discriminative patterns and thus become more interpretable.
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Fig. 5. Accuracy (crosses) and localisation (box plots) results for
a B-cos network trained with different B values. While decreasing
accuracy, a higher B yields significant gains in localisation.

plain MaxOut B-cos networks
B 2.00 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Accuracy (%) 91.5 93.5 93.8 93.7 93.7 93.2 92.6 92.4

Tab. 1. CIFAR-10. Model accuracy of a B-cos network without
any additional non-linearity (plain) and for B-cos networks with
MaxOut (Sec. 3.2.3) and increasing values for B (left to right).

batch norm, etc.) can achieve competitive3 performance.
By modelling each neuron via 2 MaxOut units (Sec. 3.2.3),
the performance can be increased and the resulting model
(B=2) performs on par with a ResNet-56 (achieving 93.0%,
see [13]). Further, we see that an increase in the parameter B
leads to a decline in performance from 93.8% for B=1.25
to 92.4% for B=2.5. Notably, despite its simple design,
our strongest model with B=1.25 performs similarly to the
strongest ResNet model (93.6%) reported in [13].
Model interpretability. As discussed in Sec. 3.2.2, we ex-
pect an increase in B to increase the alignment pressure on
the weights during optimisation and thus influence the mod-
els’ optima, similar to the single unit case in Fig. 2. This is
indeed what we observe. For example, in Fig. 4, we vi-
sualise [W1→l(xi)]yi (see Eq. (13)) for different samples
i from the CIFAR-10 test set. For higher values of B, the
weight alignment increases notably from piece-wise linear
models (B=1) to B-cos networks with higher B (B=2.5).
Importantly, this does not only lead to an increase in the
visual quality of the explanations, but also to quantifiable
gains in model interpretability. In particular, as we show in
Fig. 5, the spatial contribution maps defined by W1→l(xi)
(see Eq. (15)) of models with larger B values score signifi-

3A ResNet-20 achieves 91.2% [13] under the same data augmentation.
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Fig. 6. Localisation results of model-inherent contribution maps
(‘Ours’), Eq. (15), and post-hoc methods. For more results (VGG-
11, ResNet-34, pretrained baselines), see supplement (Sec. B).

cantly higher in the localisation metric (see Sec. 4).

5.2. Advanced B-cos networks
In this section, we first quantitatively evaluate the perfor-

mance and interpretability of the advanced B-cos networks,
see Secs. 3.3 and 4. Then, we qualitatively investigate the
interpretability of the B-cos networks in more detail.

VGG-11 ResNet-34 DenseNet-121 InceptionNet
pre B-cos pre B-cos pre B-cos pre B-cos

69.0 69.6 73.3 71.7 74.4 73.3 77.3 75.4

∆=+0.6 ∆=−1.6 ∆=−1.1 ∆=−1.9

B-cos DenseNet-121 training+ 74.4 (∆=0.0)

Tab. 2. ImageNet. Top-1 accuracy (%) for various conventional
pre-trained models (pre) and their respective B-cos version.
Bottom row: Top-1 accuracy of a B-cos DenseNet-121 trained for
more epochs and a cosine learning rate schedule (training+).

Classification accuracies of the pretrained [1] models
and their corresponding B-cos counterparts (trained from
scratch) are presented in Tab. 2. The B-cos networks (except
bottom row in Tab. 2) were trained for 100 epochs with the
Adam optimiser, a learning rate of 2.5e−4, a batch size of
256 and no weight decay. The learning rate was decreased
by a factor of 10 after 60 epochs and we used RandAugment
for data augmentation; for further details on training and
evaluation, see supplement (Sec. C). We would like to high-
light that these results are thus obtained ‘out of the box’, i.e.,
with a simple and commonly used optimisation scheme for
all models. Thus, in spite of the drastic changes to the model
architectures (no batch norm, no ReLU, no MaxPool), we
are able to achieve competitive results: our B-cos VGG-
11 outperforms its conventional counterpart and we only
observe minor drops in accuracy w.r.t. the baseline models
for the other networks, e.g., 1.1 p.p. for the DenseNet-121
(74.4% vs. 73.3%). By training a DenseNet-121 model for
200 epochs, a batch size of 128, learning rate warm-up and
a cosine learning rate schedule, we are able to close the gap
between the pretrained DenseNet-121 model and its B-cos
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Fig. 7. Comparison between model-inherent explanations and the
strongest post-hoc methods. More results in supplement (Sec. A.)

counterpart (see last row in Tab. 2, ‘training+’).
Model interpretability. In Fig. 6, we present the explana-
tion quality results as assessed by the localisation metric for
various post-hoc attribution methods as well as the model-
inherent contribution maps (Eq. (15)). We evaluated the
post-hoc methods both on the conventional pretrained mod-
els (cf. Tab. 2) as well as on their corresponding B-cos coun-
terparts; in Fig. 6, we show results for two B-cos networks,
for the remaining results we kindly refer the reader to the
supplement (Sec. B). In particular, we evaluated various
gradient-based methods (the ‘vanilla gradient’ (Grad) [4];
Input×Gradient (IxG), cf. [2]; Integrated Gradients (Int-
Grad) [38]; DeepLIFT [32]; GradCam (GCam) [30]) and
two perturbation-based methods (LIME [28], RISE [26])
for comparison. We would like to highlight the following
two results. First, for all converted B-cos architectures, the
model-inherent explanations not only outperform any post-
hoc explanation for the models’ decisions, but achieve close
to optimal scores on the localisation metric. Secondly, as we
show in the supplement (Sec. B), none of the post-hoc meth-
ods that we evaluated for the conventional models provides
a better explanation for those models than the linear trans-
form W1→l(x) provides for the B-cos networks. Hence, by
using B-cos networks instead of conventional models, it is
possible to drastically improve the models’ interpretability.
For a qualitative comparison between the model-inherent
explanations and post-hoc methods, see Fig. 7.

5.2.1 Qualitative evaluation of explanations
The following results are based on the DenseNet-121
training+ model, cf. Tab. 2; other advanced B-cos networks
yield similar results, see supplement (Sec. A).

Every activation in a B-cos network is the result of a
sequence of B-cos transforms. Hence, every neuron n in
any layer l can be explained via the corresponding linear
transform [W1→l(x)]n, see Eq. (13).

For example, in Fig. 1, we visualise the linear trans-
forms of the respective class logits for various input images.
Given the alignment pressure during optimisation, these lin-
ear transforms align with class-discriminant patterns in the
input and thus actually resemble the class objects.
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Fig. 8. Explanations for high activations of neurons from vari-
ous layers. In early layers the neurons seem to encode low-level
concepts (e.g., curves, see layer 38) and represent more high-level
concepts in later layers (e.g., layers 87 and 120), see also Fig. 10.

Similarly, in Figs. 8 and 10, we visualise explanations
for intermediate neurons. Specifically, in Fig. 8, we show
explanations for some of the most highly activating neurons
over the validation set. We find that neurons in early layers
seem to represent low-level concepts (e.g., curves), and be-
come more complex in later layers (l=87: hands, l=120:
streetcars); for additional results, see supplement Sec. A.

Fig. 10 shows additional results for neurons in layer 87.
We observed that some neurons become highly specific to
certain concepts, such as wheels (neuron 739), faces (neu-
ron 797), or eyes (neuron 938). These neurons do not just
learn to align with simple, fixed patterns—instead, they
represent semantic concepts and are robust to changes in
colour, size, and pose. Further, we found that several neu-
rons respond preferentially to watermarks, emphasising the
importance of explainability for debugging DNNs: while

rapeseed container ship 50.27% rapeseed 49.73% ∆-Explanation

worm fence worm fence 49.15% ram 48.72% ∆-Explanation

power drill power drill 49.42% beer bottle 46.77% ∆-Explanation

Fig. 9. Col. 1: Input image. Cols. 2+3: Explanations for most
likely classes under the model. Col. 4: Difference of contribution
maps to the two class logits, i.e., sLc1(x) − sLc2(x), see Eq. (15);
positive values shown in orange (c1), negative values in blue (c2).
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Fig. 10. Explanations of 5 individual neurons in layer 87 of a DenseNet-121. For each neuron, we provide its index number n and its
concept description and specificity4(left). Further, we show the 7 most activating images for each neuron (top row per neuron), in which
we visualise the explanation for the highest (blue squares) activation; i.e., visualise the 72×72 center patch of the weighting [W1→l(x)]n
for neuron n. For some images, we additionally show the explanation for the 2nd highest activation (orange squares). Lastly, we show
the explanations of the highest activations (corresponding to the blue squares) for the next 30 images to highlight the neurons’ specificity.

watermarks do not seem semantically meaningful, they can
represent an informative feature for classification if they are
only present in a subset of classes, see supplement (Sec. B).

Lastly, in Fig. 9, we show explanations of the two most
likely classes for images for which the model produces pre-
dictions with high uncertainty; additionally, we show the ∆-
Explanation, i.e., the difference in contribution maps for the
two classes, see Eq. (15). By means of the model-inherent
linear mappings W1→L, the model can provide a human-
interpretable explanation for its uncertainty: there are in-
deed features in each of those images that provide evidence
for both of the predicted classes.

5.2.2 Limitations
By normalising the weights and computing the additional
down-scaling factor (see Eq. (3)), the B-cos transform adds
computational overhead, which we observed to increase
training and inference time by up to 60% in comparison to
baseline models of the same size. However, we expect this
cost to decrease significantly in the future with an optimised
implementation of the B-cos transform.

Moreover, in this work we specifically investigated how
to integrate the B-cos transform into CNNs for image clas-
sification. How to integrate the B-cos transform into other
types of architectures, such as (vision) transformers [10,41],

4We manually evaluated the first 100 images for each neuron and found the
respective neurons to reliably highlight the assigned concept, i.e., their
linear explanations [W1→87(x)]n are similar to those shown in Fig. 10.

and how it affects model interpretability on other tasks and
domains, remains an open question. Given the increas-
ing dominance of transformers, we believe extending our
method to such models to be an important next step.

6. Conclusion
We presented a novel approach for endowing deep neu-

ral networks with a high degree of inherent interpretability.
In particular, we developed the B-cos transform as a mod-
ification of the linear transform to increase weight-input
alignment during optimisation and showed that this can sig-
nificantly increase interpretability. Importantly, the B-cos
transforms can be used as a drop-in replacement for the
ubiquitously used linear transforms in conventional DNNs
whilst only incurring minor drops in classification accuracy.
As such, our approach can increase the interpretability of
a wide range of DNNs at a low cost and thus holds great
potential to have a significant impact on the deep learn-
ing community. In particular, it shows that strong perfor-
mance and interpretability need not be at odds. Moreover,
we demonstrate that by structurally constraining how the
neural networks are to solve an optimisation task—in the
case of B-cos networks via alignment—allows for extract-
ing explanations that faithfully reflect the underlying model.
We believe this to be an important step on the road towards
interpretable deep learning, which is an essential ingredient
for building trust in DNN-based decisions, specifically in
safety-critical situations.
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