








architectures affects their classification performance and in-
terpretability. In order to ‘convert’ such models to B-cos
networks we proceed as follows. First, every convolutional
kernel / fully connected layer is replaced by the correspond-
ing B-cos version with two MaxOut units (see Sec. 3.2.3).
Secondly, any other non-linearities (e.g., ReLU, MaxPool,
etc.), as well as any batch norm layers are removed to main-
tain the alignment pressure and to ensure that the model can
be summarised via a single linear transform.

4. Experimental setting
Datasets. We evaluate the accuracies of several B-cos net-
works on the CIFAR-10 [18] and the ImageNet [9] datasets.
We use the same datasets for the qualitative and quantitative
evaluations of the model-inherent explanations.
Models. For the CIFAR10 experiments, we develop a sim-
ple fully-convolutional B-cos DNN, consisting of 9 con-
volutional layers, each with a kernel size of 3, followed
by a global pooling operation. We evaluate a network
without additional non-linearities as well as with MaxOut
units, see Sec. 3.2.3. For the ImageNet experiments, we
rely on the publicly available [25] implementations of the
VGG-11 [34], ResNet-32 [13], InceptionNet (v3) [39], and
DenseNet-121 [14] model architectures. We adapt those ar-
chitectures to B-cos networks as described in Sec. 3.3. For
details on the training procedure, see supplement (Sec. C).
Image encoding. We add three additional channels and en-
code images as [r, g, b, 1−r, 1−g, 1−b], with r, g, b∈ [0, 1]
the red, green, and blue color channels. On the one hand,
this reduces a bias towards bright regions in the image2 [6].
On the other hand, colors with the same angle in the orig-
inal encoding—i.e., [r1, g1, b1] ∝ [r2, g2, b2]—are unam-
biguously encoded by their angles under the new encoding.
Therefore, the linear transformation W1→l can be decoded
into colors just based on the angles of each pixel, see Fig. 1.
For a detailed discussion, see supplement (Sec. D).
Evaluating explanations. To compare explanations for the
model decisions and evaluate their faithfulness, we employ
the grid pointing game [6]. That means we evaluate the
trained models on a synthetic 3x3 grid of images of different
classes and for each of the corresponding class logits mea-
sure how much positive attribution an explanation method
assigns to the correct location in the grid; for a visualisation
of a 2x2 grid, see Fig. 3. Following [6], we construct 500
image grids from the most confidently and correctly classi-
fied images. We compare the model-inherent contribution
maps, see Eq. (15), against several commonly employed
post-hoc explanation methods under two settings. First, we
evaluate all methods on the B-cos networks to investigate
which method provides the best explanation for the same
2The network is trained to maximise its output, which is bounded by the
input norm. In the conventional encoding, however, black pixels, e.g.,
have a norm of zero and thus cannot contribute to the class logits.
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Fig. 3. 2×2 example for the pointing game. Column 1: input
image. Columns 2 – 5: explanations for individual class logits.

model. Secondly, we further evaluate the post-hoc meth-
ods on pre-trained versions of the original models (VGG,
ResNet, DenseNet, InceptionNet). This allows to compare
explanations between different models and to assess the ex-
plainability gain obtained by converting conventional mod-
els to B-cos networks. Lastly, all non-perturbation-based
attribution maps are smoothed by a 15×15 (3×3) kernel to
better account for negative attributions in the localisation
metric for ImageNet (CIFAR-10) images, which is negligi-
ble with respect to the overall image size.
Visualisations details. For generating the visualisations
of the linear transforms for individual neurons n in layer
l (cf. Figs. 1 and 10), we proceed as follows. First, we se-
lect all pixel locations (x, y) that positively contribute to
the respective activation (e.g., class logit) as computed by
Eq. (15); i.e., {(x, y) s.t.

∑
c [s

l
n(x)](x,y,c)>0} with c the

6 color channels (see image encoding). Then, we normalise
the weights of each color channel such that the correspond-
ing weights (e.g., for r and 1−r) sum to 1. Note that this
normalisation maintains the angle for each color channel
pair (i.e., r and 1−r), but produces values in the allowed
range r, g, b∈ [0, 1]. These normalised weights can then di-
rectly be visualised as color images. The opacity of a pixel
is set to min(||w(x,y)||2/p99.5, 1), with p99.5 the 99.5th per-
centile over the weight norms ||w(x,y)||2 across all (x, y).

5. Results
In this section, we analyse the performance and inter-

pretability of B-cos networks. For this, in Sec. 5.1 we show
results of ‘simple’ B-cos networks without advanced ar-
chitectural elements such as skip connections or inception
modules. In this context, we investigate how the B parame-
ter influences B-cos networks in terms of performance and
interpretability. Thereafter, in Sec. 5.2, we present quanti-
tative results of the advanced B-cos networks, i.e., B-cos
networks based on common DNN architectures (Sec. 3.3).
Finally, in Sec. 5.2.1, we present and qualitatively discuss
explanations for outputs of individual neurons.

5.1. Simple B-cos networks
In the following, we discuss the experimental results of

simple B-cos networks evaluated on the CIFAR-10 dataset.
Accuracy. In Tab. 1, we present the test accuracies of var-
ious B-cos networks trained on CIFAR-10. We show that
a plain B-cos network (B=2) without any add-ons (ReLU,
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