
ZZ-Net: A Universal Rotation Equivariant Architecture for 2D Point Clouds

Georg Bökmana, Fredrik Kahla, Axel Flintha,b

bokman@chalmers.se, fredrik.kahl@chalmers.se, axel.flinth@umu.se

aDepartment of Electrical Engineering, Chalmers University of Technology
bDepartment of Mathematics and Mathematical Statistics, Umeå University

Abstract

In this paper, we are concerned with rotation equivari-
ance on 2D point cloud data. We describe a particular set
of functions able to approximate any continuous rotation
equivariant and permutation invariant function. Based on
this result, we propose a novel neural network architecture
for processing 2D point clouds and we prove its universality
for approximating functions exhibiting these symmetries.

We also show how to extend the architecture to accept a
set of 2D-2D correspondences as indata, while maintaining
similar equivariance properties. Experiments are presented
on the estimation of essential matrices in stereo vision.

1. Introduction

The need to interpret and process point clouds arises in
many different application areas such as autonomous driv-
ing, augmented reality and robotics [18]. Basic problem ex-
amples in computer vision are classification, segmentation
and object detection as well as correspondence problems in
multiple view geometry [34] . Considering as input object a
point cloud or a pair of point clouds, it is a natural require-
ment that permuting the order of the points doesn’t change
the object in question. Such a permutation should there-
fore not change the way the points are processed. This per-
mutation symmetry needs to be considered when designing
a neural network for point cloud input, which is typically
done by having equivariant network layers. Another possi-
ble symmetry is rotation of the point clouds about the origin.
For an example of a single point cloud processing task that
is rotation equivariant, see Figure 1. We will also consider
rotational symmetries for pairs of point clouds.

Equivariance. Let us introduce some notation and pro-
vide a formal definition of equivariance. Given a group G
we consider sets which exhibit G-symmetries (in a sense to
be made precise shortly) and functions between such sets.
A G-set is a set X equipped with a G-action, i.e., a group
homomorphism φ from G to the group of bijections from

Figure 1. A simple example of rotation equivariance. The illus-
tration shows the task of determining the direction to the North
Star given other stars in the night sky. The input is the set of lo-
cations of the visible stars in some 2D coordinate frame. Rotation
equivariance of the point cloud processor f means here that the de-
termined direction should rotate if the night sky (or the observer)
rotates. (Picture of stars [2].)

X to X . One should think of a G-action φ as a way to re-
late elements of G to symmetries of X . Typically, we will
suppress the group homomorphism in the notation and write
gx or g∗x for φ(g)(x). An example of a G-set is Cm acted
on by the permutation group Sm. Note that Sm could act
on Cm in different ways and we must specify the action to
describe a G-set. The canonical action is to permute the
m dimensions, but another obvious action is the trivial ac-
tion given by πZ = Z for all π ∈ Sm and all Z ∈ Cm.
If we have two G-sets X and Y , we say that a function
f : X → Y is (G-)equivariant if it commutes with the G-
actions: f(gx) = gf(x). A special case is when the action
on Y is trivial and then we call f invariant: f(gx) = f(x).
For more information on groups, symmetries and equivari-
ance in general, we refer to e.g. [22].

In this paper, we focus on the group SO(2) × Sm. The
SO(2)-action on a point cloud is given by rotating all points
about the origin and the Sm-action is given by permuting
the points.1 More concretely, we are concerned with func-
tions that are invariant to permutations, but equivariant to

1Technical note: These two actions commute with each other and hence
define an SO(2)× Sm-action.

10976

rotations. Let us call the set of such functions R(m).
Additionally, we go further, and describe new results and

neural network architectures for the case of clouds of pair of
points, or correspondences. In this case, we deal with func-
tions that are permutation invariant, rotation equivariant to
one of the clouds, and rotation invariant with respect to the
other. We call this set of functions R2(m).

An obvious limitation with our work is that we only deal
with SO(2)-equivariance and not higher order rotations.
Still, it is an important case with many different applica-
tions. For instance, in many scenarios, invariance with re-
spect to rotation around one axis is the correct model. An-
other example is essential matrix estimation [16], which we
will explore in Section 5.2. Note that the derivations are
simplified and the computations can be made more efficient
as the group of 2D rotations is commutative, which is not
the case for SO(d) with d > 2.

The main contributions of this paper are as follows. First,
we describe a dense set of equivariant functions on 2D point
clouds (Theorem 2). With that set as a basis, we describe a
neural network architecture for approximating the function
space R(m) and prove its universality (Theorem 3). We
then present how to extend that architecture to also cover
R2(m) and discuss the extension’s universality properties.
We test our architecture on a (toy) rotation estimation prob-
lem and the estimation of essential matrices in stereo vision.

1.1. Related work

Equivariance for regular image grids has been studied in
various settings, ranging from classical CNNs for transla-
tion invariance [14, 24] to rotation and rigid transformation
invariance [42, 44, 45]. Equivariance on more general do-
mains and under general groups has also been investigated
in a recent line of research. In particular there has been a
focus on describing linear equivariant functions, which can
be alternated with non-linearities to obtain equivariant neu-
ral network architectures [1, 4, 5, 12, 23]. Recent surveys of
the theory include [3, 15, 43].

There exist a number of high-performing deep learning
architectures for 3D point cloud processing, mostly targeted
for recognition, classification and segmentation, including
methods that do not take rotation equivariance into account
[33, 54] and methods that do consider the effects of rota-
tions [7, 13, 31, 37]. The approach most similar in spirit to
ours is [47], but while we let every point in the point cloud
gather information from all others to obtain rotation invari-
ant and permutation equivariant features, they use the sorted
Gram matrix of local neighbourhoods to obtain local rota-
tion and permutation invariant features. They do not prove
the universality of their approach.

We focus on 2D rather than 3D. While the approaches
for the 3D case could be modified to apply to the 2D case
as well, doing so would not take advantage of the fact that

the 2D case is simpler. Specifically, all rotations in 2D com-
mute and this fact plays a crucial role in our proofs.

Our work is inspired by fundamental theoretical results
in machine learning which aim to characterize equivariant
point cloud networks. In the seminal work of [52], all per-
mutation equivariant functions were shown to belong to a
particular family of functions from which equivariant net-
work architectures can be constructed. In more recent work,
the theory has been further developed and additional sym-
metries have been considered [20, 29, 30, 41, 50]. In [8], the
authors present a method for proving universality for ro-
tation equivariant point cloud networks in 3D. Their proof
technique is applicable to networks which allow latent fea-
tures consisting of arbitrary high order tensors, such as for
e.g Tensor Field Networks [37]. In contrast, our networks
only need to handle tensors of order two.

While finalizing this work, we were made aware of the
concurrent papers [40, 49], with an approach that is related
to ours. In fact, Proposition 10 of [40] is similar to our The-
orem 2 but for the group O(2) instead of SO(2) (in fact,
they deal with a d-dimensional underlying space and the
group O(d)). In particular, we make a more thorough de-
scription and analysis of neural network architectures.

From an application point-of-view, we are interested in
correspondence problems and more generally, robust fitting
problems in multiple view geometry. State-of-the-art deep
learning approaches in this context include early work such
as CNe [51] and OANet [53] but also the more recent ap-
proaches ACNe [36] where attentive context normalization
is shown to improve permutation-equivariant learning and
T-Net [55] which also consists of a permutation equivariant
network that is able to capture both global and channel-wise
contextual information. However, these methods only in-
corporate permutation equivariance, which make them de-
pendent on the coordinate frame of the points. We give ex-
perimental comparisons to some of these approaches.

Notation. Throughout the entire paper, we will iden-
tify R2 with C. The group SO(2) of rotations is then
naturally identified with the unit circle S ⊂ C. To
keep things simple, we understand point clouds as vectors
Z = (z0, . . . , zm−1) ∈ Cm, where m is the number of
points. Note that the action of SO(2) on Cm can be sim-
ply written θZ, where θ ∈ S and that this can be equiv-
alently read as complex multiplication or an action of the
rotation group. We write [m] for the set of indices from 0
to m − 1. The group of permutations is denoted Sm, and
for π ∈ Sm, we let π∗Z denote the permuted version of Z,
i.e., [π∗Z]i = Zπ−1(i). As in [29], we extend the latter to
tensors: for T ∈ (Cm)⊗2, [π∗T]ij = Tπ−1(i)π−1(j). Let us
further denote the subgroup of permutations which fix the
0-element, i.e., {π ∈ Sm |π(0) = 0} with Stab(0), which
is called the stabilizer of 0. Finally, we let τi ∈ Sm be the
transposition of i and 0.

10977

2. Approximating functions in R(m)

In this section we describe the theory underlying our per-
mutation invariant, rotation equivariant neural network ar-
chitecture. We denote the set of continuous rotation equiv-
ariant and permutation invariant functions, i.e., functions
f : Cm → C with f(θπ∗Z) = θf(Z) for all π ∈ Sm

and θ ∈ S with R(m).2 Throughout the paper, m is fixed.

2.1. A dense set of functions in R(m)

To get an idea of how to design a network for approxi-
mating functions on R(m), let us look at the DeepSet [52],
or PointNet [33], architectures. In a nutshell, the reason
that they are universal for approximating permutation in-
variant functions is that all such functions can be writ-
ten as χ(

∑
i∈[m] ϱ(zi)) for some K ∈ N and functions

ϱ : C → RK and χ : RK → C. A natural Ansatz for
approximating functions in R(m) is therefore to use a net-
work of the same structure, but letting ϱ and χ be rotation
equivariant. Unfortunately, this simple idea will provably
not succeed.

Proposition 1. For any m ≥ 5, there are functions f ∈
R(m) that cannot be uniformly approximated only using
functions as χ(

∑
i∈[m] ϱ(zi)) for χ and ϱ rotation equiv-

ariant.

The technical proof is given in Section A.2 in the sup-
plementary material. An idea for a design is instead given
by the following theorem.

Theorem 2. The set of functions on the form

f(Z) =
∑
i∈[m]

γ(τ∗i Z)zi, (1)

where γ is an arbitrary continuous, rotation invariant and
Stab(0)-invariant function, is dense in R(m).

We remind the reader that τi is the transposition of 0 and
i. The proof of Theorem 2, which rests upon the density of
polynomials and algebraic manipulations of them, is found
in Section A.3 in the supplementary material. Let us here
instead concentrate on intuitively explaining it.

It is fruitful to interpret the values (γ(τ∗i Z))i∈[m] as
scaled rotations ciθi, with ci ∈ R and θi ∈ S. Consider-
ing this, (1) can be interpreted as a weighted centroid of the
point cloud, where each point can be individually rotated
prior to calculation of the weighted centroid.

To calculate the rotation invariant weight γ(τ∗i Z) for
point zi, we are allowed to examine the entire cloud, and not
only zi. Hence, (1) can be interpreted as an attention mech-
anism (compare, e.g., [13,19,25,36,39,46,48]) – when cal-
culating ‘its’ weight, zi can attend to all other points in the

2R for rotation.

network. It does not however do so in an arbitrary fashion:
when calculating γ(Z), because of the Stab(0)-invariance,
the point z0 takes a special role, but the collective (zi)i≥1

is treated like a set. In the vector τ∗i Z, the special, first,
position is occupied by zi. Hence, when zi calculate ‘its’
weight, it is allowed to attend to its own position zi and to
the positions of the rest of the points (zj)j ̸=i as a set. Fi-
nally, note that the weight calculation function γ is shared
by all the points.

2.2. A universal architecture for R(m)

We now describe how a neural network for approxima-
tion of functions in R(m) can be built. In the light of The-
orem 2, we should design a weight unit α : Cm → C which
is invariant to both rotations and Stab(0)-permutations, ap-
proximating the function γ. As for the rotation invariance,
we propose to let the network simply act on the tensor
Z⊗Z = (zizj)i,j∈[m] instead of Z – since Z⊗Z is invari-
ant to rotations of the network, the entire network will then
automatically also be. Note that the real part of Z ⊗ Z is
the Gram matrix of scalar products (⟨zi, zj⟩)i,j∈[m], where
we see the zi as vectors in R2. This strategy hence has clear
connections to [47], which uses sorted Gram matrices of
local neighbourhoods. Compared to them, we apply a dif-
ferent way of handling the Stab(0)-invariance. We follow
a canonical design idea for equivariant networks – first al-
ternately apply equivariant linear layers and pointwise non-
linearities, add an invarizing step, and thereafter apply fully
connected layers. We denote the resulting set of neural net-
works NS(m).3 In the following closer description, ‘linear
layer’ always refer to a real-linear layer with bias term.

The NS(m) architecture is constructed as follows (cf.
Figure 2):

Early layers. The very first layer consists of applying a
Stab(0)-equivariant linear layer

B0 : (Cm)⊗2 → (Cm)ℓ1

to Z ⊗Z. Here, as in the following, ℓj refers to the number
of channels in layer j. Then, a nonlinearity ρ : C → C
is applied pointwise, i.e., ρ(X)i = ρ(xi). Concretely, we
use a standard activation function separately applied to real-
and imaginary parts.

Subsequently, L Stab(0)-equivariant layers

Bi : (Cm)ℓi → (Cm)ℓi+1

are applied in alternation with a pointwise linearity ρ : C →
C. The final output of the early layers is a multivector V ∈
(Cm)ℓL

Invarization step. Next, we calculate v =
∑

i∈[m] vi .
Note that this transforms the Stab(0)-equivariant multivec-
tor V into a Stab(0)-invariant multiscalar v. In fact, we

3N for network and S for stabilizer.

10978

Figure 2. The NS(m) (left) and NS+(m) (right) architectures. Note that one of the points take on a special role in the left architecture,
whence the highlightings.

could here instead apply any Stab(0)-invariant functional,
but we concentrate on summation for simplicity.

Late layers. Finally, a number of fully connected layers
are applied to v.

Importantly, the very first linear layer maps into a space
of multivectors, rather than multitensors. This saves a sig-
nificant amount of memory compared to letting all early
layers handle multitensors, which would be the naive way
to process the tensor Z ⊗ Z. In fact, it is even possible to
apply the first layer without explicitly calculating Z ⊗ Z –
see Section C of the supplementary material.

When implementing NS(m), one of course needs a way
to parametrize the Stab(0)-equivariant linear layers. In
Section A.4 of the supplementary material, heavily building
on the results from [29] about permutation equivariant
linear maps, we provide such a parametrization. It is
not needed to know this construction in order to follow
the rest of the paper. Let us just note that the number of
parameters needed to describe each input-output-channel
pair is independent of m (just as for the permutation
invariant layers in [29]).

In order to build a provably universal architecture for
R(m), it turns out that the above approximation of the γ-
function is not enough. We instead need to add another
component, a ‘vector unit’ ψ : C → C acting on the indi-
vidual points zi. These units use fully connected complex-
linear linearities without bias and complex ReLUs ρC,

ρC(z, η) = ReLU(|z| − η) z
|z|

as nonlinearities. Here, η ∈ R+ is a learnable parameter,
and ReLU is the real ReLU. Note that ρC is rotation equiv-
ariant. Since the complex-linear maps also are, the entire
ψ-unit automatically becomes rotation equivariant. Let us
call the set of such rotation equivariant networks NC.4

Using α-units from NS(m) and ψ-units in NC, we may

4N for network and C for complex.

now build a set NR(m)5 of rotation equivariant, permuta-
tion invariant Ψ networks through

Ψ(Z) =
∑
i∈[m]

α(τ∗i Z)ψ(zi). (2)

Our main result is now that this architecture is universal for
R(m).

Theorem 3. NR(m) is universal for R(m).

Proof Sketch. The entire proof is too long to present here,
and is postponed to Section A.5 of the supplementary ma-
terial. Let’s however sketch it.

Step 1: Universality of NS(m). First, one proves that
for any ϵ > 0, NS(m) is dense in the set of Stab(0)- and
rotation invariant function when restricting to point clouds
with |z0| > ϵ. Intuitively, we apply the Stone-Weierstrass
Theorem [35, 7.32] to show that α can approximate any
function of the form ϕ(|z0|2, z0Z), where ϕ is permuta-
tion invariant with respect to the second argument. Since
we are only concerned with the case of |z0| ≠ 0, the map
Z → (z0, z0Z) is injective. From that, we obtain the claim.

Step 2: Universality of NR(m). The first step shows
that for any fixed ϵ > 0, α can be chosen so that α(τ∗i Z) ≈
γ(τ∗i Z) as long as |zi| > ϵ. However, since the product
γ(τ∗i Z) · zi is small if |zi| < ϵ, we can still achieve a good
approximation anywhere. This is the technical reason for
the inclusion of the vector unit – it can eliminate any prob-
lem with large α(τ∗i Z)-values when zi is small.

3. Modifications of the universal architecture
Although the architecture in the previous section is uni-

versal, we will modify it in a number of ways before using
them for our experiments.

3.1. A richer, parallel architecture

In the NR(m)-nets, note that each permuted version
τ∗i Z of the cloud is sent through the α-unit individually. It

5N for network and R for rotation.

10979

would intuitively be better to calculate all weights in paral-
lel, and in that process let the weight values ‘communicate’
with each other. A simple way to achieve this is the follow-
ing modification, which we denote NS+(m).

The NS+(m) architecture consists of the following:
(see also Figure 2).

Early layers. Apply an Sm-equivariant linear layer

B+
0 : (Cm)⊗2 → ((Cm)⊗2)ℓ1

to Z ⊗ Z. Subsequently, apply, in alternation, a point-wise
non-linearity and Sm-equivariant layers

B+
i : ((Cm)⊗2)ℓi → ((Cm)⊗2)ℓi+1 .

The final output of the early layers is then a multitensor
T ∈ ((Cm)⊗2)ℓL .

Invarization step. Next, V = (
∑

j∈[m] Tij)i∈[m]

is calculated, which transforms the Sm-equivariant multi-
tensor T to an Sm-equivariant multivector V .

Late layers. Now apply, in alternation, Sm-equivariant
layers Ci : (Cm)ℓL+i → (Cm)ℓL+i+1 and pointwise non-
linearities. The final network output is α+(Z) ∈ Cm.

We also modify the architecture for calculating the ψ-
units: We still use ρC as the non-linearity and apply C-linear
layers, however Sm-equivariant such to the entire cloud Z.
The final output of such networks is thus a vector ψ+(Z) ∈
Cm. The set of these networks are called NC+.

Given an α+ ∈ NS+(m) and a ψ+ ∈ NC+, we now
build a network Ψ+ through

Ψ+(Z) =
∑
i∈[m]

α+(Z)i · ψ+(Z)i

Let us denote the set of these networks NR+(m). These
networks are still equivariant, and are at least as expressive
as the non-modified ones.

Proposition 4. (i) The new architecture has the correct
equivariance, i.e., NR+(m) ⊆ R(m).
(ii) The new architecture is at least as expressive as the non-
modified, i.e., NR(m) ⊆ NR+(m).

See Section A.6 in the supplement for a proof.
It does take more parameters to parametrize each input-

output-channel pair of the linear layers in the NR+(m), but
this can be compensated by using less input-output-channel
pairs. As for the memory requirements, we have to handle
2-tensors in memory, which leads to a quadratic cost. This
is worse than the NR(m)-architecture, whose memory cost
is only linear. However, recall that we need to calculate m
values α(τ∗i Z), i ∈ [m] for each application of the net-
work. If we want to parallelize those calculations, which
we should do for efficiency, we need to handle m vectors,
again resulting in a quadratic memory cost.

A subtle, but nonetheless reasonable, reason for using
the NR+(m)-architecture instead of the NR(m) architec-
ture is that it allows for more exchange of information be-
tween the points. As an example, notice that when calcu-
lating the weight α(τ∗i Z), each early layer in an NR(m)-
net is only allowed to attend to one vector, which can be
seen as a preliminary version of the vector weight. In
the NR(m)+-architecture, it is additionally allowed to at-
tend to all the ‘preliminary weight vectors’, i.e., the other
columns of the input tensor (as a set). This arguably makes
the modified architecture more versatile.

4. Approximating functions in R2(m)

In our experiments, we will actually consider tasks
which take pairs (Z,X) of point clouds as indata. Thereby,
we assume that for each i, the points zi and xi correspond
to each other, meaning that we only get invariance towards
simultaneous permutations of both clouds. The tasks we
consider will be (or will be transformed into ones that are)
rotation equivariant with respect to one cloud, and rotation
invariant with respect to the other. That is, we will have to
approximate functions f such that for every π ∈ Sm and
θ, ω ∈ S, we have

f(θπ∗Z, ωπ∗X) = θf(Z,X).

We denote the set of such functions R2(m).
We can use the same ideas as above to build an architec-

ture for them. We propose to use the exact same scheme,
with the only difference that the very first layer L of the
α-unit depends on Z ⊗ Z and X ⊗X , as

L(Z,X) = A(Z ⊗ Z) +B(X ⊗X),

where A and B are linear layers of the same flavor as for
NR(m) and NR(m)+, respectively. This yields architec-
tures NR2(m) and NR+

2 (m). In Section A.7 of the sup-
plementary material, we prove that NR2(m) is not dense
for the whole of R2(m). We however also prove that if we
only consider cloud pairs (Z,X) for which no points close
to the origin in X correspond to points far away from the
origin in Z, we again obtain universality for both versions.

4.1. A deeper architecture

We can easily combine several weight and vector units
αk ∈ NS+(m), ψk ∈ NC+, to build an iterative architec-
ture. If Z = Z0 is the input cloud, we iteratively define new
clouds Zk through

zk+1
i = α+

k (Z
k)i · ψ+

k (Z
k)i,

i ∈ [m]. A particular case where such chains of units can
be especially beneficial is the case when the cloud is filled
with outliers. The weight units of early layers can then be

10980

Figure 3. The architecture of a ZZ-unit. Two clouds are fed into
SO(2)-invariant weight units and SO(2)-equivariant vector units,
and then combined to produce a new pair of clouds. Best viewed
in color.

used to filter those out, by giving the outliers small weights.
They will then cluster around the origin, which can safely
be ignored by later weight units. This is in spirit similar to
(attentive) context normalization [36, 51].

In the cloud pair case, we can iteratively construct new
pairs of clouds by chaining pairs of weight and vector units
(see Figure 3):

zk+1
i = α+

k (Z
k, Xk)i · ψ+

k (Z
k)i,

xk+1
i = β+

k (Xk, Zk)i · ϕ+k (X
k)i.

The final output of such a network is then a pair of scalars
(F0(Z,X), F1(X,Z)), where the first scalar is equivariant
to rotations in the first cloud, and invariant to rotations in
the second, and vice versa. If we let αk = βk and ψk =
ϕk, we will even obtain a network which is equivariant to
switching the pairs. This is the version we are using in our
experiments. Since the weight-units are using tensors of the
formZ⊗Z as input, we will refer to such layers as ZZ-units.

To obtain a rotation equivariant output of the network,
we sum over i in the final (respective) cloud. The set of
such obtained architecture will be referred to as ZZ-nets.

4.2. Limitations of the architecture

Although our architecture is provably universal, it has its
limitations. First and foremost, it operates on tensors rather
than vectors, making its memory requirement quadratic in
the number of points per cloud. Secondly, all linear layers
of our architecture are global in nature, which could hurt
performance.

A simple way to mitigate these issues would be to let the
weight units α only operate on the nearest neighbors to zi
when calculating the weight for i – we would then return
to a memory requirement which is linear in the cloud sizes,
and induce locality. However, such an architecture would
not be universal.

Figure 4. A pair of noisy point clouds as used in the rotation esti-
mation experiments. The inlier points are larger and colored green
for illustration purposes. Here the outlier ratio r is 0.4.

5. Experiments

Here we present two experiments to demonstrate our net-
work in action. Further details about the experiments are
given in Section B of the supplementary material. Code for
the experiments is available at github.com/georg-bn/zz-net.

5.1. Estimating rotations between noisy point clouds

Let us, as a proof of concept more than anything else,
test our model on a toy problem: Given a point pair (Z,X),
estimate a rotation R(Z,X) so that X = R(Z,X)Z.
This rotation responds to rotations of either cloud through
R(θZ, ωX) = ωθR(Z,X).

If Z and X are completely noise-free, this is of course
trivial (one can e.g. calculate z0/x0). In order to make the
problem more challenging, we consider a setting with both
inlier and outlier noise.

Data. We synthetically generate data. The details of
the data generation are presented in the supplementary B.1.
Each point cloud pair (Z,X) contains m = 100 correspon-
dences out of which a fraction r are outliers. The inliers lie
on a triangle with low-level inlier noise. An example pair is
shown in Figure 4.

Models. We test two versions of our model: A ‘broad’
and a ‘deep’ one. The ‘broad’ model consists of a single
ZZ-unit, with 2 early and 3 late layers in the weight unit,
and 2 layers in the vector unit. The ‘deep’ model consists
of three ZZ-units, where each unit only has 1 early and 2
late weight-layer units, and 1 vector layer, and each such
layer is smaller than for the broad model. The broad unit
has around 4k, and the deep around 7k, parameters in total.

We train a unit with weights shared, thus outputting two
scalars F (Z,X) and F (X,Z). The final output of our
model θ̂(X,Z) = F (X,Z)F (Z,X) ∈ C then responds
correctly to rotations of either cloud.

For comparison, we implement two alternative models.
A PointNet and a simplified version of ACNe [36] which
we call ‘ACNe−’. They have 34k and 11k parameters re-
spectively. Details about these models are presented in the
supplementary B.1.

Experiments. We test each of the models on four outlier
ratios: 0.4, 0.6, 0.8 and 0.85. We use an ℓ2-loss between

10981

Outlier ratio r = 0.4
Threshold 1◦ 5◦ 10◦

Broad ZZ-net .42 .97 .99
Deep ZZ-net .85 .99 1.0

PointNet .02 .45 .78
ACNe− .05 .63 .96

Outlier ratio r = 0.8
Threshold 1◦ 5◦ 10◦

Broad ZZ-net† .03 .46 .81
Deep ZZ-net .32 .90 .96

PointNet .03 .25 .54
ACNe− .01 .27 .69

r = 0.6
1◦ 5◦ 10◦

.21 .87 .96

.84 .99 .99

.03 .34 .67

.04 .54 .90
r = 0.85

1◦ 5◦ 10◦

.02 .24 .50

.11 .73 .90

.03 .21 .37

.02 .45 .75

Table 1. Results for rotation estimation with varying outlier ratios.
†This experiment was stopped early due to severe overfitting.

the ground truth rotation and the output of the networks,
and manually tune hyperparameters to optimize the mean
error on the validation set.

To evaluate the experiments, we test how many of the
ground truth rotations the models can estimate within an
error that corresponds to a difference 1◦, 5◦ and 10◦ for
two normalized complex numbers (note that the output of
our models is not necessarily normalized), respectively. The
results are presented in Table 1. The broad model easily
beats the PointNet model, and also the ‘ACNe−’-model for
low outlier ratios, but starts to struggle against the context-
normalization based model for r = 0.85. The deep model
however easily outperforms all other models.

We notice that some models struggled somewhat on the
r = 0.8-data set. We had to stop the broad model early
due to severe overfitting, and the ‘ACNe−’ model did worse
on the 0.8-set than on the 0.85-set. We suspect that this ul-
timately boils down to the fact that due to our data genera-
tion method, the actual outlier ratios are random. Therefore,
the 0.8 dataset could contain some especially hard examples
just by chance.

5.2. Essential matrix estimation

The input in the problem is a (noisy) set of calibrated
2D-2D correspondences {(p1, p2)}, where p1, p2 ∈ R2 are
points of interest in two images of the same object. The task
is then to estimate the essential matrix E ∈ R3×3 such that
p̃T2 Ep̃1 = 0 for the (correct) correspondences. Here, p̃ is the
homogeneous representation of p obtained by adding a third
coordinate 1 to p. See [16] for an in depth description of
essential matrices. Considering the points {p1} as elements
of C and stacking them into a vector yields the Z vector
considered in earlier sections, and similar for {p2} and X .

Rotation equivariance of E. If p̃T2 Ep̃1 = 0 for a set of
correspondences {(p1, p2)}, it follows that if we rotate p1
by an image plane rotation R ∈ SO(2), say to q1 = Rp1,

then p̃T2 ER̃
T q̃1 = 0 where R̃ ∈ SO(3) is the rotation

obtained by applying R as a rotation around the z-axis.
Hence, ER̃T is an essential matrix for the correspondences
{(q1, p2)}. Similarly one shows that a rotation of p2 to
q2 = Rp2 yields an essential matrix R̃E for the correspon-
dences {(p1, q2)}.

The essential matrix has an SVD of the form E =
USV T , where U and V are orthogonal and S =
diag(1, 1, 0). Since E is only determined up to scale, we
can choose U and V as rotation matrices. It is then possible
to decompose U and V into Euler rotations about the z- and
y-axes: E = Rz,2Ry,2Rz′,2SR

T
z′,1R

T
y,1R

T
z,1 where we can

merge Rz′,2 and Rz′,1 as they commute with S. We obtain
E = Rz,2Ry,2Rz′SRT

y,1R
T
z,1 and we have one degree of

freedom for each R, thus five in total, as expected.
The equivariance properties of E imply that Rz,1 is

equivariant to rotations in p1 and Rz,2 is equivariant to ro-
tations in p2, both while being invariant to rotations of the
other cloud. The other matrices are invariant to rotations
in both clouds. We design the network to output five com-
plex numbers on the unit circle S, where two of them lie in
R2(m), and three are invariant to rotations in either cloud.

The model: ZZ-net. We use a back-bone architecture B
with three ZZ-units, the first two units having 2 early, 2 late
and 2 vector layers and the last unit having 1 early, 1 late and
1 vector layer. We also add skip-connections between the
units in the back-bone for ease of training. This back-bone
outputs 8 channels of point clouds which are fed into two
further units. One is a ZZ-unit E which is responsible for
predicting the equivariant Rz,2 and Rz,1. The second is a
PointNet I that takes as input the α+-values of the last layer
of the back-bone (which are rotation invariant) to predict the
invariant Ry,2, Ry,1 and Rz′ .

To account for the symmetry of changing order of the
clouds, we approximate Rz,1 with E(B(Z,X)), and Rz,2

with E(B(X,Z)). In turn, I(B(Z,X)) yields two rotations:
Ry,1 and Rz′,1, while I(B(X,Z)) yields Ry,2 and Rz′,2.
Rz′,1 and Rz′,2 are combined to form Rz′ = Rz′,2R

T
z′,1.

In total, the architecture thus outputs five rotations. It has
around 55k parameters.

Similar to OANet [53], we use a geometric loss based on
virtual matches generated from the ground truth essential
matrix. For further information on the model and training
setup, see the supplementary B.2.

Data. We use the subset of the YFCC100M data [38]
corresponding to the sequence ‘Reichstag’ compiled by
[17]. Two example images can be seen in Figure 5. The
image sequence is processed to obtain SIFT-matches [28]
between image pairs using code supplied by the authors of
CNe [51]. Some image pairs are discarded due to visibil-
ity issues and for each remaining image pair 2000 corre-
spondences are found, many of which might be incorrect
matches. The obtained dataset is quite small – the training

10982

Figure 5. Two images from the ‘Reichstag’ data.

set consists of 3302, the validation set of 56 and the test set
of 52 point cloud pairs6. Therefore our experiments should
be viewed as a limited data case study.

Evaluation metric. From the essential matrix we can re-
cover the rotation between the two views and the translation
between the views up to scale. We evaluate the estimated es-
sential matrix in terms of the mAP score proposed by [51],
which is a measure of error in angle of the estimated trans-
lation and rotation axes.

Comparisons. We compare against CNe [51],
OANet [53] and ACNe [36]. These methods build on the
idea of learning inlier weights for the correspondences and
using a weighted formulation of the 8 point method [27]
as a final layer in the network. They are all very good at
handling outliers, as they are explicitly trained on classify-
ing each correspondence as an inlier or outlier as well as
outputting a reasonable essential matrix. In contrast, our
network is only trained to output a reasonable essential ma-
trix but does it in a way that is resilient to rotations of the
data, which is not part of the other frameworks. We do not
compare against T-net [55] as they have not published their
code at the time of writing.

We retrain the implementation of the authors of CNe,
OANet and ACNe on the ‘Reichstag’ dataset. For the sake
of fairness, we do not use RANSAC at test time. Note
that therefore our reported numbers for CNe are below what
they report in their paper. CNe has 394k parameters, ACNe
400k parameters and OANet 2347k parameters.

Rotated test data. To demonstrate the resilience of our
method to rotation perturbations of the data, we evaluate
both on the original test data as well as versions of the
test data where the p1 points are rotated a random amount
(and the ground truth essential matrix is altered correspond-
ingly, as described earlier). We sample rotations for each
test example uniformly in the interval (−a, a) and con-
sider three different values for the maximum rotation angle:
a = 30°, 60°, 180°. All methods are evaluated on the same
rotated versions of the test set for consistency.

Results. We present results in Table 2 for mAP at 20°.
The results for our method are averaged over two training
runs. The maximum difference in mAP scores between the
two runs was 0.01. mAP scores at 10° and 30° are presented
in the supplementary B.2 and they tell a similar story.

6In fact half of the 3302 (resp. 56, 52) pairs correspond to the other
half but with the two images in the pair swapped.

Max. test rot. a = 0° 30° 60° 180°
ZZ-net (Ours) 0.26 0.26 0.26 0.26

ACNe 0.67 0.25 0.15 0.038
CNe 0.43 0.14 0.12 0.0048

OANet 0.42 0.24 0.077 0.0048

Table 2. Results for essential matrix estimation. mAP at 20° error
in the estimated translation and rotation vectors for different values
of image plane rotations a at test time.

Discussion. Our method does not compete well on
the base problem (a = 0°). This may in part be due to
the order of magnitude fewer parameters of our network.
Note that we had to limit the number of parameters due to
the quadratic memory cost of the weight-units. We how-
ever demonstrate the resilience to rotation perturbations of
ZZ-net. Already at modest rotations uniformly sampled
from −30° to 30° it is on par with the more mature competi-
tors. At larger rotations ZZ-net is superior. It should how-
ever be noted that for this dataset, all images are oriented
close to parallel with the ground. There is hence a clear
bias in the training data, so that the comparison to the other
models on artificially rotated test data is not completely fair.

We still believe that rotation equivariance can add robust-
ness to methods attacking the essential matrix estimation
problem and regard it as an interesting future research di-
rection to try to merge our approach with the outlier robust
methods, using for instance the weighted 8-point method.
Furthermore, it would be interesting to develop methods
which are equivariant only to small rotations – rotations
larger than 60° will typically not be seen in practice. This
would require leaving the mathematical framework of group
theory, as such bounded rotations do not form a group.

6. Conclusions
We have presented a foundational framework for learn-

ing tasks based on a rotation equivariant and permutation in-
variant neural network architecture. A proof is given show-
ing that this architecture is indeed universal. We have de-
scribed several ways of modifying the architecture, in par-
ticular, how to extend it to pairs of point clouds as appearing
in correspondence problems and how to perform efficient
computations. As for limitations, the framework is only ap-
plicable in two dimensions. Our architecture further lacks
locality and has a high memory requirement. To mitigate
the latter issues are examples of interesting future work.

Acknowledgements
The authors acknowledge support from CHAIR, SSF, as

well as WASP funded by the Knut and Alice Wallenberg
Foundation. The computations were enabled by resources
provided by SNIC at C3SE.

10983

References
[1] Jimmy Aronsson. Homogeneous vector bundles

and G-equivariant convolutional neural networks.
arXiv:2105.05400 [cs, math, stat], May 2021. 2

[2] BreakdownDiode. Big Dipper 20210116.jpg, used under
Creative Commons Attribution-ShareAlike 4.0 International
license // Stars in main constellation brightened. https:
//commons.wikimedia.org/wiki/File:Big_
Dipper_20210116.jpg, 2021. 1

[3] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar
Veličković. Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges. arXiv:2104.13478 [cs,
stat], May 2021. 2

[4] Taco Cohen and Max Welling. Group equivariant convolu-
tional networks. In Int. Conf. Machine Learning, 2016. 2

[5] Taco S. Cohen. Equivariant Convolutional Networks (PhD
Thesis). PhD thesis, University of Amsterdam, June 2021. 2

[6] George Cybenko. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and sys-
tems, 2(4):303–314, 1989. 17

[7] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,
Andrea Tagliasacchi, and Leonidas J. Guibas. Vector neu-
rons: A general framework for so(3)-equivariant networks.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 12200–12209, October
2021. 2

[8] Nadav Dym and Haggai Maron. On the universality of ro-
tation equivariant point cloud networks. In ICLR, 2021. 2,
13

[9] JA Eidswick. A proof of Newton’s power sum formulas. The
American Mathematical Monthly, 75(4):396–397, 1968. 18

[10] William Falcon and The PyTorch Lightning team. PyTorch
Lightning, Mar. 2019. 24

[11] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A
Practical Method for Constructing Equivariant Multilayer
Perceptrons for Arbitrary Matrix Groups. arXiv:2104.09459
[cs, math, stat], Apr. 2021. 15

[12] Marc Finzi, Max Welling, and Andrew Gordon Gordon Wil-
son. A practical method for constructing equivariant mul-
tilayer perceptrons for arbitrary matrix groups. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th In-
ternational Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 3318–
3328. PMLR, 18–24 Jul 2021. 2

[13] Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, and Max
Welling. SE(3)-Transformers: 3D roto-translation equivari-
ant attention networks. In NeurIPS, 2020. 2, 3

[14] K. Fukushima. Neocognitron: A self-organizing neural net-
work model for a mechanism of pattern recognition unaf-
fected by shift in position. Biol. Cybernetics, 36:193––202,
1980. 2

[15] Jan E. Gerken, Jimmy Aronsson, Oscar Carlsson, Hampus
Linander, Fredrik Ohlsson, Christoffer Petersson, and Daniel
Persson. Geometric Deep Learning and Equivariant Neural
Networks. arXiv:2105.13926 [hep-th], May 2021. 2

[16] Richard Hartley and Andrew Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press,
Cambridge, UK ; New York, 2nd ed edition, 2003. 2, 7

[17] Jared Heinly, Johannes L. Schonberger, Enrique Dunn, and
Jan-Michael Frahm. Reconstructing the world* in six days.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3287–3295, Boston, MA, USA,
June 2015. IEEE. 7

[18] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. Kinectfusion: Real-time 3d recon-
struction and interaction using a moving depth camera. In
UIST ’11 Proceedings of the 24th annual ACM symposium
on User interface software and technology, pages 559–568.
ACM, October 2011. 1

[19] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
koray kavukcuoglu. Spatial transformer networks. In C.
Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. 3

[20] Nicolas Keriven and Gabriel Peyré. Universal invariant and
equivariant graph neural networks. NeurIPS, 32:7092–7101,
2019. 2, 11

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 26

[22] Yvette Kosmann-Schwarzbach. Groups and Symmetries.
Springer New York, New York, NY, 2010. 1

[23] Leon Lang and Maurice Weiler. A wigner-eckart theorem
for group equivariant convolution kernels. In International
Conference on Learning Representations, 2021. 2

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1(4):541–551, 1989. 2

[25] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-
work for attention-based permutation-invariant neural net-
works. In Proceedings of the 36th International Conference
on Machine Learning, pages 3744–3753, 2019. 3

[26] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz,
Joseph E Gonzalez, and Ion Stoica. Tune: A research plat-
form for distributed model selection and training. arXiv
preprint arXiv:1807.05118, 2018. 24

[27] H. C. Longuet-Higgins. A computer algorithm for re-
constructing a scene from two projections. Nature,
293(5828):133–135, Sept. 1981. 8

[28] David G. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vi-
sion, 60(2):91–110, Nov. 2004. 7

[29] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron
Lipman. Invariant and equivariant graph networks. In ICLR,
2018. 2, 4, 14, 15, 17, 27

10984

[30] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lip-
man. On the universality of invariant networks. In Int. Conf.
Machine Learning, pages 4363–4371, 2019. 2, 11, 13

[31] Pavlo Melnyk, Michael Felsberg, and Mårten Wadenbäck.
Embed me if you can: A geometric perceptron. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 1276–1284, October 2021. 2

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 24

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, pages 652–660, 2017. 2, 3

[34] Joshua Rapp, Julian Tachella, Yoann Altmann, Stephen
McLaughlin, and Vivek K Goyal. Advances in single-photon
lidar for autonomous vehicles: Working principles, chal-
lenges, and recent advances. IEEE Signal Processing Maga-
zine, 37(4):62–71, 2020. 1

[35] Walter Rudin. Principles of Mathematical Analysis.
McGraw-Hill, 1953. 4, 17

[36] Weiwei Sun, Wei Jiang, Eduard Trulls, Andrea Tagliasacchi,
and Kwang Moo Yi. ACNe: Attentive context normalization
for robust permutation-equivariant learning. In CVPR, 2020.
2, 3, 6, 8, 25

[37] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann
Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field
networks: Rotation- and translation-equivariant neural net-
works for 3D point clouds. arXiv:1802.08219 [cs], May
2018. 2

[38] Bart Thomee, David A. Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. YFCC100M: The new data in multimedia research.
Commun. ACM, 59(2):64–73, Jan. 2016. 7

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Il-
lia Polosukhin. Attention is All you Need. In Advances in
Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. 3

[40] Soledad Villar, David W. Hogg, Kate Storey-Fisher, Weichi
Yao, and Ben Blum-Smith. Scalars are universal: Equiv-
ariant machine learning, structured like classical physics.
Preprint. arXiv: 2106.06610, 2021. 2

[41] Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar
Posner, and Michael A. Osborne. On the limitations of rep-
resenting functions on sets. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 6487–6494.
PMLR, 09–15 Jun 2019. 2

[42] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant
steerable cnns. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. 2

[43] Maurice Weiler, Patrick Forré, Erik Verlinde, and Max
Welling. Coordinate Independent Convolutional Networks
– Isometry and Gauge Equivariant Convolutions on Rieman-
nian Manifolds. arXiv:2106.06020 [cs, stat], June 2021. 2

[44] Maurice Weiler, Fred A. Hamprecht, and Martin Storath.
Learning steerable filters for rotation equivariant CNNs. In
CVPR, 2018. 2

[45] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukham-
betov, and Gabriel J. Brostow. Harmonic networks: Deep
translation and rotation equivariance. In CVPR, 2017. 2

[46] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-
tentional ShapeContextNet for Point Cloud Recognition. In
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4606–4615, June 2018. 3

[47] Jianyun Xu, Xin Tang, Yushi Zhu, Jie Sun, and Shiliang
Pu. Sgmnet: Learning rotation-invariant point cloud rep-
resentations via sorted gram matrix. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10468–10477, October 2021. 2, 3

[48] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, Attend and Tell: Neural Image Caption Gen-
eration with Visual Attention. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, pages 2048–
2057. PMLR, June 2015. 3

[49] Weichi Yao, Kate Storey-Fisher, David W. Hogg, and
Soledad Villar. A simple equivariant machine learning
method for dynamics based on scalars. arXiv:2110.03761
[cs], Oct. 2021. 2

[50] Dmitry Yarotsky. Universal approximations of invariant
maps by neural networks. Constructive Approximation,
pages 1–68, 2021. 2, 13

[51] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,
Mathieu Salzmann, and Pascal Fua. Learning to find good
correspondences. In CVPR, 2018. 2, 6, 7, 8, 26, 27

[52] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Russ R Salakhutdinov, and Alexander J Smola.
Deep sets. In NeurIPS, volume 30, 2017. 2, 3

[53] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei
Zhou, Tianwei Shen, Yurong Chen, Long Quan, and Hon-
gen Liao. Learning two-view correspondences and geome-
try using order-aware network. International Conference on
Computer Vision (ICCV), 2019. 2, 7, 8

[54] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and
Vladlen Koltun. Point transformer. In ICCV, pages 16259–
16268, October 2021. 2

[55] Zhen Zhong, Guobao Xiao, Linxin Zheng, Yan Lu, and Jiayi
Ma. T-Net: Effective permutation-equivariant network for
two-view correspondence learning. In ICCV, 2021. 2, 8

10985

