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Abstract

Training state-of-the-art vision models has become pro-
hibitively expensive for researchers and practitioners. For
the sake of accessibility and resource reuse, it is important
to focus on adapting these models to a variety of down-
stream scenarios. An interesting and practical paradigm
is online test-time adaptation, according to which training
data is inaccessible, no labelled data from the test distri-
bution is available, and adaptation can only happen at test
time and on a handful of samples. In this paper, we inves-
tigate how test-time adaptation methods fare for a number
of pre-trained models on a variety of real-world scenarios,
significantly extending the way they have been originally
evaluated. We show that they perform well only in narrowly-
defined experimental setups and sometimes fail catastroph-
ically when their hyperparameters are not selected for the
same scenario in which they are being tested. Motivated
by the inherent uncertainty around the conditions that will
ultimately be encountered at test time, we propose a partic-
ularly “conservative” approach, which addresses the prob-
lem with a Laplacian Adjusted Maximum-likelihood Esti-
mation (LAME) objective. By adapting the model’s out-
put (not its parameters), and solving our objective with
an efficient concave-convex procedure, our approach ex-
hibits a much higher average accuracy across scenarios
than existing methods, while being notably faster and have
a much lower memory footprint. The code is available at
https://github.com/fiveai/LAME.

1. Introduction

In recent years, training state-of-the-art models has be-
come a massive computational endeavor for many machine
learning problems (e.g. [5, 13, 38]). For instance, it has
been estimated that each training of GPT-3 [5] produces an
equivalent of 552 tons of CO2, which is approximately the
amount emitted in six flights from New York to San Fran-
cisco [35]. As implied in the whitepaper on “foundation
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models” [4], we should expect that more and more efforts
will be dedicated to the design of procedures that allow for
the efficient adaptation of pre-trained large models under
a variety of circumstances. In other words, these models
will be “trained once” on a vast dataset and then adapted
at test time to newly-encountered scenarios. Besides be-
ing important for resource reuse, being able to abstract the
pre-training stage away from the adaptation is paramount
in privacy-focused applications, and in any other situation in
which preventing access to the training data is desirable. To-
wards this goal, it is important that, from the point of view
of the adaptation system, there is neither access to the train-
ing data nor the training procedure of the model to adapt.
With this context in mind, we are particularly interested in
designing adaptation methods ready to be used in realistic
scenarios, and that are suitable for a variety of models.

One aspect that many real-world applications have in
common is the need to perform adaptation online, and with
a limited amount of data. That is, we should be able to per-
form adaptation while the data is being received. Take for
instance the vision model with which an autonomous vehi-
cle or a drone may be equipped. At test-time, it will ingest
a video stream of highly-correlated data (non-i.i.d.), which
could be used for adaptation. We would like to be con-
fident that leveraging this information will be useful, and
not destructive, no matter the type of domain shift that may
exist between training and test data. Such shifts could be,
for instance, “low-level” (e.g. the data stream is affected by
snowy weather which has never been encountered during
the California-sunlit training stage), or “high-level” (e.g. the
data include the particular Art Deco architecture of Miami
Beach’s Historic District), or even a combination of both.
To summarize, we are interested in the design of test-time
adaptation systems that 1) are unsupervised; 2) can oper-
ate online and on potentially non-i.i.d. data; 3) assume no
knowledge of training data or training procedure; and 4) are
not tailored to a certain model, so that the progress made by
the community can be directly harnessed.

This problem specification falls under the fully test-
time adaptation paradigm studied in a handful of recent
works [1,27,29,56], where simple techniques like test-time
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learning of batch normalization’s scale and bias parame-
ters [56] have proven to be very effective in some scenar-
ios, like the one represented by low-level corruptions [17].
In our experimental results, we observe that existing meth-
ods [25,27,29,56] have to be used with great care in un-
certain yet realistic situations because of their sensitivity to
variables such as the model to adapt or the type of domain
shift. As a matter of fact, we show that, when selecting their
hyperparameters to maximize the average accuracy over a
number of scenarios, existing methods do not outperform a
non-adaptive baseline. For them to perform well, hyperpa-
rameters need to be adjusted in a scenario-specific fashion.
However, this is clearly not an option when the test-time
conditions are unknown in advance.

These findings suggest that, while being agnostic to both
training and testing circumstances is important, it is wise
to approach the problem of test-time adaptation prudently.
Instead of adapting the parameters of a pre-trained model,
we only adapt its output by finding the latent assignments
that optimize a manifold-regularized likelihood of the data.
The manifold-smoothness assumption has been successful
in a wide range of other problems, including graph cluster-
ing [45,46,52], semi-supervised learning [2,7,19], and few-
shot learning [62], as it enforces desirable and general prop-
erties on the solutions. Specifically, we embed Laplacian
regularization as a corrective term, and derive an efficient
concave-convex procedure for optimizing our overall objec-
tive, with guaranteed convergence. When aggregating over
different conditions, this simple and “conservative” strategy
significantly improves both over the non-adaptive baseline
and existing test-time adaptation methods in an extensive
set of experiments covering 7 datasets, 19 shifts, 3 training
strategies and 5 network architectures. Moreover, by virtue
of not performing model adaptation but only output correc-
tion, it reduces by half both the total inference time and the
memory footprint compared to existing methods.

2. Related work

In general, domain adaptation aims at relaxing the as-
sumption that “train and test distributions should match”,
which is at the foundation of most machine learning algo-
rithms. Since real-world applications rarely reflect the text-
book assumption, this relaxation has generated a lot of inter-
est and motivated a large corpus of work. Doing this topic
justice would take several surveys (e.g. [10,34,57,58]), and
it is unfeasible given this paper format. Instead, in this sec-
tion we aim at describing the overall problem setups that are
more closely relevant to ours.

The applicability of early works in domain adaptation
was limited, in that methods required access to the target
domain [34] during training. Unsupervised domain adap-
tation [58] makes the scenario slightly more realistic by not
requiring labels from the target domain. Two common gen-

eral strategies are, for instance, explicitly learning domain-
invariant feature representations by minimizing some mea-
sure of divergence between source and target distributions
(e.g. [20,30,49]); or embedding a “domain discriminator”
component in the network and then penalizing its success in
the loss (e.g. [14,37]). Still, the necessity of having access,
during training, to both source and target domains limits the
usability of this class of methods.

Domain generalization (DG) foregoes the need to ac-
cess the target distribution by learning a model from
multiple domains, with the intent of generalizing to un-
seen ones [57]. Popular strategies to address this prob-
lem include: increasing the diversity of training data via
either augmentations (e.g. [36, 54]), adversarial learning
(e.g. [55,61]), or generative models (e.g. [39,47]); learn-
ing domain-invariant representations [3], and decoupling
the domain-specific and domain-independent components
(e.g. [18,21,32]). Notably, the recent work of Gulrajani
& Lopez-Paz [15] showed on a large testbed that learning
a vanilla classifier on a pool of datasets outperformed all
modern techniques, thus sending a strong message on the
importance of a carefully designed experimental protocol.

Despite the shared goal of generalizing across domains
and the constraint of not having access to the target dis-
tributions in advance, one fundamental difference of DG
with the setup we consider is the lack of test-time adaptabil-
ity. Instead, methods falling under the source-free domain
adaptation paradigm [9] require no access to the training
data during the process of adaptation. Liang et al. [28] as-
sume only to have access to the source dataset’s summary
statistics, and relate the models fitting the source and target
domains by surmising that class centroids are only moder-
ately shifted between the two datasets. Before adaptation,
Kundu et al. [22,23] consider a first “vendor-side” phase,
during which the target domain is not known and a model
is trained on an augmented training dataset aiming at mim-
icking possible domain shifts and category gaps that will be
encountered downstream. Li et al. [26] propose the Collab-
orative Class Conditional GAN, which integrates the output
of a prediction model into the loss of the generator to pro-
duce new samples in the style of the target domain, which
are in turn used to adapt the model via backpropagation. In
Test-time Training [50], Sun et al. perform test-time adapta-
tion via self-supervision by jointly optimizing two branches
(one supervised and one self-supervised) during training.

While being vastly more practical than the ones address-
ing vanilla domain adaptation, the methods listed above
are still quite limited in that they typically have an ad-
hoc training procedure. As mentioned in Section 1, we
would like to facilitate model reuse, so that the progress
made by the community in architecture design [13], self-
supervised learning [8] or multi-modal learning [38] can
be directly exploited. Our setup is mostly similar to what
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has been referred to in the TENT paper [56] as the fully
test-time adaptation scenario. In this case, the intent is
to perform unsupervised test-time adaptation while “not re-
stricting or altering model training” [56]. In TENT, this is
achieved with a simple entropy minimization loss, which
informs the optimization of scale and bias parameters of
batch normalization layers. As for batch normalization lay-
ers’ statistics, they are re-estimated on the test data, simi-
larly to what is done in adaptive batchnorm (AdaBN) meth-
ods [6,27,31,44], which have shown strong performance
on the perturbations of ImageNet-C [17]. In similar spirit,
Liang et al. [29] updates the parameters of the feature ex-
tractor of a given model by maximizing a mutual informa-
tion objective (SHOT-IM).

Although we share many of the motivations presented
in TENT and SHOT, we believe that our work differs un-
der two main aspects. First, given our model-independence
desideratum, we explicitly study the extent to which our ap-
proach works across training strategies and architectures.
This analysis is missing in prior works: as we will see in
Section 6, the type of model being adapted is a variable that
strongly affects the effectiveness of both TENT and SHOT.
Second, for the sake of usability, we are particularly focused
on online adaptation, which leads us to also consider non-
i.i.d. scenarios as an important part of our evaluation.

3. Problem Formulation

In (fully) test-time adaptation [29, 56] (TTA), we have
access to a parametric model gg(y|x) trained on an inac-
cessible labelled source dataset Dy = {(x,y) ~ ps(x,y)},
where x is an image and y € ) its associated label from the
set of source classes ). Additionally, we consider an unla-
belled target dataset sampled from an arbitrary target distri-
bution D; = {x ~ p;(x)}. We take the standard covariate
shift assumption [48] that ps(y|x) = p:(y|x) and ps(x) #
pt(x), which implies that shifts can only happen if there ex-
ists some class y such that py(y)ps(xly) # pe(y)pe(x]y).
This leads us to consider two types of shift throughout this
work: the prior shift, in which p;(y) differs from p4(y), and
the likelihood shift, in which p;(x|y) differs from p,(x|y).

As the target distribution shifts from the source, the para-
metric model gg(y|x) no longer necessarily well approx-
imates the true, domain-invariant distribution p(y|x). A
toy illustration of this phenomenon can be found in Fig. 2,
where the linear classifier can only properly model the true
sinusoidal distribution over a limited region of the input
space. Therefore, TTA methods aim at adapting ¢g(y|x)
to maximize its predictive performance on the target distri-
bution. In particular, we focus on the online setting, where
the classifier receives a potentially non-i.i.d. stream of target
samples, and must simultaneously adapt and predict.

Typical large-scale datasets contain up to tens of thou-
sands of classes, and have been created with the purpose of

covering a large portion of the concepts that may be of in-
terest at test-time. As such, they likely contain classes of
a finer or equal (but not coarser) granularity than those re-
quired in specific TTA scenarios. Therefore, to make our
setting more practical, we relax the common assumption
that source classes must coincide with the target ones. In-
stead, we allow target classes to be superclasses, according
to some pre-defined hierarchy. Authors from [53] handle
this by max-pooling the softmax predictions across associ-
ated subclasses, but we empirically found average-pooling
to perform slightly better, and decided to proceed with this
strategy. More details in Appendix.

4. On the Risks of Network Adaptation

In order to better approximate the underlying distribu-
tion p(z|x) at test-time, TTA methods usually propose to
directly modify the parametric source model. We group
such methods under the term Network Adaptation Meth-
ods (NAMs). Specifically, such methods [29, 56] first par-
tition the network into adaptable weights 6% and frozen
weights 6/, and proceed by minimizing an unsupervised
loss £(x;0% U 87), x ~ py(x) wrt. 8°. TTA methods
mostly differ based on their choices of partition {6/,6°}
and loss function £. For instance, TENT [56] only adapts
the scale and bias parameters (v, 3) of the batch normal-
ization (BN) layers through entropy minimization, while
SHOT [29] adapts the convolutional filters of the model
through mutual information maximization.

While NAMs have the potential to substantially improve
the performance of a model on the target samples, they also
run the risk of dramatically degrading it. Consecutive up-
dates of the adaptable weights 8% on narrow portions of
the target distribution can cause the model to overspecial-
ize. Such behavior can be caused by the combination of a
sub-optimal choice of hyperparameters for a specific sce-
nario and the lack of sample diversity at the batch level.
Note that the latter does not arise exclusively in video sce-
narios, but also in situations characterized by a high class
imbalance. Moreover, adapting parameters across the net-
work and within an iterative optimization procedure such as
SGD (which spans many batches of data), can inherently
lead to the degeneration of the model over time. To make
this more intuitive, in Fig. 1 we showcase a failure mode
of the widely used entropy minimization principle. In a low
intra-batch diversity situation, entropy minimization can de-
generate the model silently. In other words, it can fail with-
out exhibiting any distinctive behaviour that, in the absence
of labels, would allow for a clear diagnosis. An illustrative
explanation of this phenomenon is conveyed in Fig. 2.

One may argue that choosing optimal hyperparameters
may solve the problems mentioned above. However, tuning
hyperparameters separately for each target scenario would
require access to the labels. Moreover, this approach would
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Figure 1. Adaption through entropy minimization in a non-i.i.d. scenario may silently degenerate the model. (Left) Non-i.i.d. streams
are generated by batching samples according to their class. (Middle) The conditional entropy of predictions is being minimized in an online
fashion on such non-i.i.d. streams. However, assessing whether the adaptation is being beneficial or detrimental solely from these curves is
impractical in an unsupervised scenario. (Right) Rather, monitoring the online accuracy (which would require access to the labels) would
reveal that the model is actually collapsing for two out of three learning rates considered.
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Figure 2. Minimizing the conditional entropy (as in TENT [56])
encourages the model go (y|z) to produce high confidence predic-
tions. Geometrically, this corresponds to increasing the margin
between the decision boundary and the samples from the current
batch. In the low-diversity scenario depicted above, the 1°* and
274 batches only contain red samples. This causes the boundary
to move away from red samples. When green samples are finally
observed in the 3" batch, the boundary has gone past the green
cluster, so that samples are (wrongly) assigned to the red class.

also require to know which scenario is going be encoun-
tered at test time. These two points defeat the whole pur-
pose of the TTA paradigm. Therefore, it would be desir-
able for NAMSs’ hyperparameters to generalize well across
scenarios. However, keeping the entropy minimization ap-
proach of TENT [56] as an example, we show on the left
matrix of Fig. 3 that such generalization is, in practice, far
from fulfilled. More specifically, to obtain this matrix, we
created a series of 12 validation scenarios (see Section 6),
providing a wide coverage of the shifts discussed in Section
3. Row ¢ is to be read in the following way: we tune hyper-
parameters considering only scenario ¢, and then observe to
which extent this choice of hyperparameters generalizes to
all scenarios j € {1,...,12}. The absolute improvement

(or degradation) w.r.t. the performance of the non-adapted
model is reported in the matrix. The clear trend emerging
from Fig. 3 is that the entropy minimization approach is
severely brittle w.r.t. its hyperparameter configuration, es-
pecially in non-i.i.d. and class-imbalanced scenarios, where
a sub-optimal choice can degrade the model’s accuracy by
up to an absolute 66% compared to the non-adaptive base-
line. We emphasize that Fig. 3 only shows validation re-
sults obtained when using scenario-specific hyperparame-
ters, and therefore only serves the purpose of empirically
demonstrating the issue with over-specific hyperparameters.
In Appendix, we show that the same trend can be observed
for all NAMs we experimented with.

As an alternative, in Section 5 we propose an adaptation
strategy which only affects the output of the model (not its
parameters), only considers one batch of data at a time, and
has only one hyperparameter to tune.

5. The LAME method

In order to address the aforementioned issues, we in-
troduce a method that only aims at providing a correction
of the output probabilities of a classifier instead of modify-
ing the internal parameters of its feature extractor. On the
one hand, freezing the source classifier prevents our method
from accumulating knowledge across batches. On the other,
it mitigates the risk of degenerating the classifier, reduces
compute requirements (as gradients are neither computed
nor stored), and inherently removes the need for searching
over delicate hyperparameters such as learning rate or mo-
mentum of the optimizer. Overall, we empirically demon-
strate that such an approach is more reliable and practical
than NAMs when the test-time conditions are unknown.
Formulation. Assume we are given a batch of data sam-
pled from the target distribution X € RV*4 ~ plN(x),
with N the number of samples and d the feature dimen-
sion. Our method finds a latent assignment vector z; =
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Figure 3. Cross-shift validation for TENT [56] (left) and our proposed LAME (right). A cell at position (, j) shows the absolute improve-
ment (or degradation) of the current method w.r.t. to the baseline when using the optimal hyperparameters for scenario ¢, but evaluating in
scenario j. Legend: A =i.i.d., B=noni.i.d., C =1i.i.d. + prior shift, D = non i.i.d. + prior shift. More details on the scenarios in Sec. 6

(Zik)1<k<ik € AK=1 for each data point x;, which aims to
approximate the true distribution p(z|x), with K the num-
ber of classes and AKX~ = {7z € [0,1]X | 17z = 1} the
probability simplex. A principled way to achieve this is to
find assignments Z that maximize the log-likelihood of the
data subject to simplex constraints z; € AK~1 Vi:

N K
£(z) =log | [T ][] pxi- k)" | = ZZTlog pi) (1)

1=1k=1 =1

where Z € [0, 1]V¥ is the vector that concatenates all as-
signment vectors Z;, p; = (p(k[x;)), << € AF7L, and

£ stands for equality up to an additive constant. In or-
der to prevent over-confident assignments, we consider a
negative-entropy regularization that discourages one-hot as-
signements for Z. Note that such regularization also acts
as a barrier that restricts the domain of Z; to non-negative
values, hence implicitly handling the z; > 0 constraint.
Maximizing the regularized log-likelihood objective there-
fore amounts to minimizing the following Kullback—Leibler
(KL) divergences subject to 17'z; = 1, Vi:

—Zleog pi +Zz log(z;)

Problem (2) is minimized for z; = p;, Vi. Taking a step
back, we don’t have access to p;, but only to the source
parametric model q; = (go(k|x;))1<k<x Which, recall,
might be a poor approximation of the true distribution when
evaluated on target samples x ~ p;(x). In fact, simply re-
placing p; by q; in Eq. (2) yields the predictions from the
source model as optimum: z; = q;.

To compensate for the inherent error of this approxi-
mation, we focus on Laplacian regularization, which en-

ZKL zil|pi) ()

=1

courages neighbouring points in the feature space to have
consistent latent assignments. Laplacian regularization is
widely used in semi-supervised learning [2, 7, 19], where
it is optimized jointly with supervised losses over labelled
data points, or in graph clustering [45, 46, 52], where it is
optimized subject to class-balance constraints. The TTA
problem is different as, unlike semi-supervised learning,
cannot count on any supervision and, unlike clustering,
class-balance constraints are irrelevant (or even detrimen-
tal). Hence, we introduce Laplacian Adjusted Maximum-
likelihood Estimation (LAME), which minimizes the like-
lihood in (2) jointly with a Laplacian correction, subject to
constraints 17%; = 1, Vi:

ZKL Zilla) — > wiz z;  (3)
0,J

where w;; = w(¢(x;), ¢(x;)), with ¢ denoting our pre-
trained feature extractor and w is a function measuring the
affinity between ¢(x;) and ¢(x;). The closer the points in
the feature space, the higher their affinity. Clearly, when the
affinity is high (w;; is large), minimizing the Laplacian term
in (3) seeks the largest possible value of dot product ZZTZ s
thereby assigning points ¢ and j to the same class. There-
fore, our model in (3) could be viewed as a graph clustering
of the batch data, penalized by a KL term discouraging sub-
stantial deviations from the source-model predictions.

ELAME

Efficient optimization via a concave-convex procedure.
In what follows, we show that our Problem (3) can be min-
imized using the Concave-Convex Procedure (CCCP) [60],
which allows us to obtain a highly efficient iterative algo-
rithm, with convergence guarantee. Each iteration updates
the current solution Z(™ as the minimum of a tight upper
bound on the objective. This guarantees that the objective
does not increase at each iteration. For the sum of a con-
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Figure 4. Results across the 7 testing scenarios, using the same Original RN-50 that was used for validation. The average for each scenario
is reported in the legend. The batch size is 64. Each experiment is run 10 times with different random seeds. Experiments with prior shift
tend to exhibit larger variance, since each random run uses new class proportions, each sampled from a Zipf distribution.

cave and a convex function, as is the case of our objective
in (3), a CCCP replaces the concave part by its linear first-
order approximation at the current solution, which is a tight
upper bound, while keeping the convex part unchanged. In
our case, the Laplacian term is concave when the affinity
matrix W = [w; ;] is positive semi-definite, while the KL
term is convex. The concavity of the Laplacian for positive
semi-definite W could be verified by re-writing the term
as follows': — 37, w;;z] 2; = —Z"(W ® I)Z, where ®
denotes the Kronecker product and I is the K-by-K iden-
tity matrix. We thus replace the Laplacian term in (3) by
—((W @ I)Z"™)TZ, which yields the following tight up-
per bound, up to an additive constant independent of Z:

£(Z) £ ST KL a) — (W 0 DZWY'Z @)

Solving the Karush-Kuhn-Tucker (KKT) conditions corre-
sponding to minimizing convex upper bound (4), subject to
constraints 17z; = 1, Vi, yields the following decoupled
updates of the assignment variables:

do (k]x;) exp(3 wis20))

> qo(K'[x;) exp(3-; wz-jéﬁ’;b

which have to be iterated until convergence. The full deriva-
tion of Eq. (5) is provided in Appendix.

S(n+1) _
Zik =

®)

6. Experimental design

The design of our experimental protocol is mainly
guided by the desire to assess both model and domain in-
dependence of TTA methods. For model independence, we
need to evaluate the performance of methods under a va-
riety of pre-trained models. As for domain independence,

"W positive semi-definite implies W ® I positive semi-definite.

a single fixed trained model must allow to evaluate a TTA
method under multiple adaptation scenarios. This implies
that the source classes encoded in the pre-trained model
must be able to adequately cover the classes of interest that
may be encountered at test time. Note that, in practice, this
is a reasonable requirement, as modern large-scale datasets
span tens of thousands of classes [24,42,43,59].

Networks. Because of their popularity within the com-
munity and the large number of classes covered, ImageNet-
trained models represent an ideal playground for our exper-
iments. In particular, they allow to evaluate model inde-
pendence along two axis. First, with respect to the train-
ing procedure, by experimenting with the same ResNet-
50 architecture (RN-50 herein), but trained in three dif-
ferent ways: the original release from Microsoft Re-
search Asia (MSRA) [16], Torchvision’s [33], and using
the self-supervised SimCLR [8]. Second, with respect to
the architecture itself, by providing results on 5 different
backbones, including RN-18, RN-50, RN-101, Efficient-
Net (EN-B4) [51] and the recent Vision Transformer ViT-
B [13]. All models used were trained on the standard Ima-
geNet ILSVRC-12 training set, except for ViT-B which uses
an additional ImageNet-21k [12] pre-training step.

Hyperparameter search. For validation purposes, we
consider 3 datasets. First, we use the original validation set
of ImageNet [43]. To represent likelihood shift, we consider
ImageNet-C-Val, which augments the original images with
9 realistic perturbations of varying intensity (the other 10
from the original ImageNet-C [17] are reserved for testing).
Finally, we consider ImageNet-C1¢, a variant of ImageNet-
C that simulates an easier but practical scenario where a
subset of ImageNet classes is mapped to 16 superclasses.
By reducing the total number of classes, ImageNet-C;¢ also
reduces class diversity at the batch level, which we identi-
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ViT-B RN-18

LAME (60.7)
Baseline (56.9)
SHOT (55.0)
PseudoLabel (54.0)

TENT (47.7)

RN-50 RN-101

Figure 5. Transferability of hyperparameters across models.
For each TTA method, we use the optimal set of hyperparameters
obtained during validation and using the original release of RN-
50 [16] as backbone. Each vertex on the chart represents the aver-
age across our 7 test scenarios for a specific architecture. The val-
ues in the legend represent the average over all the vertices. (Top):
We test these hyperparameters using the same backbone but differ-
ent training procedures. Torchvision refers to the model available
in PyTorch’s model zoo, SIimCLR to the model obtained from the
self-supervised approach of [8], and original refers to the same
model used to choose the hyperparameters. (Bottom): The same
set of hyperparameters is used for different architectures, ranging
from a RN-18 to the recent vision transformer ViT-B [13]. To al-
low similar setups across architectures, a batch size of 16 is used
to generate the above results.

fied as a potentially critical factor for NAMs approaches in
Section 4. In order to mimic realistic prior shifts, we modify
the class ratios to follow a Zipf distribution [4 1]. Finally, to
cover non-i.i.d. scenarios, we present the model with a se-
quence of “tasks”, where each task either represents a set
of samples perturbed with the same corruption (in the case
of ImageNet-C), or belonging to the same class otherwise.
All the combinations of 3 datasets, 2 prior shifts (with and
without Zipf-unbalanced class distribution) and 2 sampling
schemes (i.i.d. or non-i.i.d.) add up to the 12 validation sce-
narios. For each method, a grid-search over salient hyper-
parameters is carried out, and the single hyperparameter set

that obtains best average performance over the 12 validation
scenarios is selected, and kept fixed for test experiments
in Fig. 4 and 5. The exact definition of the grid-search for
each method is available in the Appendix.

Testing. For testing, we design 4 i.i.d. and 3 non-i.i.d. test
scenarios. For the i.i.d. cases, we use the 4 combinations
obtained by coupling ImageNet-C-Test and ImageNet-V2
[40] with the presence or absence of Zipf class-imbalance.
As for the 3 non-i.i.d. scenarios, we use again ImageNet-
V2 (with a different split), along with two video datasets:
ImageNet-VID [43] and the LaSOT subset from TAO [11].
Keeping the idea of feeding the model with a sequence of
tasks, video datasets allow us to evaluate realistic scenarios
by simply grouping frames from the same video together.
We use 10 random runs for each test experiment. More de-
tails on all datasets (and class mappings) in Appendix.

Methods. As a first baseline, we evaluate the source-
trained model without any adaptation, referred to as Base-
line. For Network Adaptation Methods (NAMs), we repro-
duce and evaluate four state-of-the-art TTA methods that
can be run in an online fashion: TENT [56] based on en-
tropy minimization, SHOT-IM based on mutual informa-
tion maximization, PseudoLabel [25] based on min-entropy
minimization and AdaBN [27] based on batch normaliza-
tion statistics alignment. Finally, we evaluate LAME.

7. Experimental results

Towards domain-independent test-time adaptation. As
motivated in Section 4, most scenario-sensitive hyperpar-
fameters come from the optimization of the network. By
virtue of completely freezing the classifier, our LAME
approach is free of such burden. Instead, LAME only
tries to find optimal shallow assignments through a bound-
optimization procedure that does not introduce any hyper-
parameter. Therefore, we are only left with the tuning of the
affinity function w from Eq. (3), which is less sensitive than
the optimization-related hyperparameters of NAMs. This
claim is first supported by inspecting LAME’s cross-shift
validation matrix, already used earlier to illustrate NAMs’
brittleness. Looking this time at the right plot of Fig. 3,
we can see drastic improvements both in terms of average
performance and worst-case degradation across all cases
w.r.t. TENT. ? A second empirical evidence supporting this
claim comes from the results on the test scenarios, shown
in Fig. 4. Consistent with the validation results in Fig. 3,
Fig. 4 confirms that LAME does not help in standard i.i.d.
likelihood shifts, and fares around 0.5% below the base-
line in worst cases. However, when prior shifts are in-
troduced, NAMs’ performance does not improve over the

2We speculate that introducing more hyperparameters in LAME (e.g.
weighting the different terms of our loss) would result in worse off-
diagonal terms in Fig. 3, but also higher overall performance.
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baseline, whereas LAME exhibits very noticeable improve-
ments. This is particularly evident in non-i.i.d. scenarios,
where the average improvement is of (absolute) 6.7%, and
goes up to 15% in the case of ImageNet-v2. Note that such
improvement comes almost independently of the batch size
used, as shown in Appendix.

NAMs are brittle w.r.t. the training procedure. As for
model-independence, we first inspect whether methods are
robust to changes to the training procedure. Such robust-
ness is desired, for instance, in the case where the provider
of the source model has released an update: in such a case,
a TTA method should not require a new round of valida-
tion. As a first scenario, we investigate whether the set of
hyperparameters obtained using the Original RN-50 [16]
generalizes to the same methods, but when using the RN-
50 provided by Torchvision. Given that both models were
trained with standard supervision and minor experimental
differences, one would expect the optimal set of hyperpa-
rameters to be very similar in the two cases. Results on
the top chart of Fig. 5 suggest quite the opposite. While
LAME preserves the same improvement w.r.t. the baseline,
all NAMs lose significant ground, with TENT performing
particularly poorly. We further experiment with a RN-50
trained using the self-supervised SimCLR, and observe that
LAME once again retains its relative improvement of 4%
w.r.t. the baseline, with no other method beating it.

LAME generalizes across architectures, NAMs don’t.
Generalizing across different architectures should be a de-
sirable property for any TTA method. In particular, for
very large models, an exhaustive validation can become
prohibitively expensive, thus making “model plug-and-
play” an attractive feature. Results using five architectures
(EfficientNet-B4 [51], the three ResNet variants, and the
larger ViT-B [13] transformer) are shown on the bottom
chart of Fig. 5. Across the board, LAME is the only method
able to retain a consistently significant improvement w.r.t.
the baseline, which remains a better option than any of the
NAMs, especially with small backbones such as RN-18.

LAME runs twice as fast, while requiring twice less
memory than NAMs. Provided that several direct appli-
cations of test-time adaptation involve real-time adaptation
to data streams, the ability to run as efficiently as possible
can also be a critical factor for practitioners. To measure
runtimes, we divide inference into 3 stages: 15! forward,
optimization (corresponding to SGD for NAMs and to the
bound-optimization procedure of Section 5 for LAME),
and 2"¢ forward (only needed for methods that modify the
parameters of the model). Altogether, these three contribu-
tions account for the total runtime of each method. Results
provided in Fig. 6 testify the clear advantage of LAME over
the representative TENT (runtimes of other NAMs were
found roughly similar to TENT). Memory-wise, LAME
does not require to keep any gradient or intermediary buffer,

which roughly halves the amount of GPU memory needed
w.r.t. NAMs.

0.7 VIT-B
1% Forward

0.6 Optimization
— 2" Forward o
205
<
= EN-B4
204
~ ViT-B RN-50
£03
"é ENB4 RN-101

i RN-18

& 0.2 RN-50

01 RN-18

0.0 LAME TENT

Figure 6. Runtime per batch of LAME vs TENT for 5 different
backbones: RN-18, RN-50, EN-B4, RN-101 and ViT-B. Batch
64 is used for the RN-* family, and 16 for EN-B4 and ViT-B (as
both use 380x380 images instead of 224x224). LAME provides
corrected outputs without requiring a second forward pass.

8. Conclusion

Motivated by the high cost of training new models, we
proposed a novel approach for online test-time adaptation
(TTA) that is agnostic to both training and testing condi-
tions. We introduced an extensive experimental protocol
covering several datasets, realistic shifts and models, and
evaluated existing TTA approaches by making sure that test-
time domain information would not leak to inform the hy-
perparameters’ choice. Across the board, these methods un-
derperform a non-adaptive baseline and can even lead to
a catastrophic degradation of performance. We identified
over-adaptation of the model parameters as a strong suspect
for the poor performance of these methods, and opted for
a more conservative approach that only corrects the output
of the model. We proposed Laplacian Adjusted Maximum-
likelihood Estimation (LAME), an unsupervised objective
that finds the optimal set of latent assignments by discourag-
ing deviations from the prediction of the pre-trained model,
while at the same time encouraging label propagation under
the manifold smoothness assumption. Averaging accuracy
over the many scenarios considered, LAME outperfoms all
existing methods and the non-adaptive baseline, while re-
quiring less compute and memory. Nonetheless, being re-
stricted to the classifier’s output, LAME is also inherently
limited. For one, it does not noticeably help in standard i.i.d.
and class-balanced scenarios. We hope that our work will
motivate further developments in this line of research. In
particular, we believe that methods adopting a hybrid adap-
tation/correction approach, if choosing their hyperparame-
ters under a strict regime, will have the potential to effec-
tively tackle an even wider variety of scenarios.

8351



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

Fatemeh Azimi, Sebastian Palacio, Federico Raue, Jorn
Hees, Luca Bertinetto, and Andreas Dengel. Self-supervised
test-time adaptation on video data. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, 2022. 1

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Man-
ifold regularization: A geometric framework for learning
from labeled and unlabeled examples. Journal of machine
learning research, 7(11), 2006. 2, 5

Shai Ben-David, John Blitzer, Koby Crammer, Fernando
Pereira, et al. Analysis of representations for domain adap-
tation. Advances in neural information processing systems,
2007. 2

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 1

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 1

Collin Burns and Jacob Steinhardt. Limitations of post-hoc
feature alignment for robustness. In CVPR, 2021. 3, 12
Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien.
Semi-Supervised Learning. The MIT Press, Ist edition,
2010. 2,5

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In /ICML, pages 1597-1607.
PMLR, 2020. 2, 6,7

Boris Chidlovskii, Stephane Clinchant, and Gabriela Csurka.
Domain adaptation in the absence of source domain data. In
Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2016. 2
Gabriela Csurka. Domain adaptation for visual applications:
A comprehensive survey. arXiv preprint arXiv:1702.05374,
2017. 2

Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia
Schmid, and Deva Ramanan. Tao: A large-scale benchmark
for tracking any object. In ECCV, pages 436-454. Springer,
2020. 7, 13

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 6

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In /ICLR, 2021. 1, 2,
6,7,8

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In ICML. PMLR, 2015. 2
Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In /CLR, 2021. 2

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

8352

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770-778, 2016. 6, 7, 8

Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. ICLR, 2019. 2,3, 6

Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and
Max Welling. Diva: Domain invariant variational autoen-
coders. In Medical Imaging with Deep Learning. PMLR,
2020. 2

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondre;j
Chum. Label propagation for deep semi-supervised learning.
In CVPR, 2019. 2,5

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Haupt-
mann. Contrastive adaptation network for unsupervised do-
main adaptation. In CVPR, 2019. 2

Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz,
Alexei A Efros, and Antonio Torralba. Undoing the dam-
age of dataset bias. In ECCV, 2012. 2

Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu,
et al. Universal source-free domain adaptation. In CVPR,
2020. 2

Jogendra Nath Kundu, Naveen Venkat, Ambareesh Revanur,
R Venkatesh Babu, et al. Towards inheritable models for
open-set domain adaptation. In CVPR, 2020. 2

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig,
and Vittorio Ferrari. The open images dataset v4: Unified
image classification, object detection, and visual relationship
detection at scale. IJCV, 2020. 6

Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, page 896, 2013. 2,7

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and
Si Wu. Model adaptation: Unsupervised domain adaptation
without source data. In CVPR, 2020. 2

Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and
Jiaying Liu. Adaptive batch normalization for practical do-
main adaptation. Pattern Recognition, 80, 2018. 1, 2, 3, 7,
11

Jian Liang, Ran He, Zhenan Sun, and Tieniu Tan. Distant
supervised centroid shift: A simple and efficient approach to
visual domain adaptation. In CVPR, 2019. 2

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In /CML, pages 6028-6039.
PMLR, 2020. 1, 2, 3, 12

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation net-
works. In International conference on machine learning,
pages 97-105. PMLR, 2015. 2

Zachary Nado, Shreyas Padhy, D Sculley, Alexander
D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating prediction-time batch normalization for robust-
ness under covariate shift. arXiv preprint arXiv:2006.10963,
2020. 3



(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

(45]

Li Niu, Wen Li, and Dong Xu. Multi-view domain general-
ization for visual recognition. In CVPR, 2015. 2

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. pages
8024-8035, 2019. 6

Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama
Chellappa. Visual domain adaptation: A survey of recent
advances. IEEE signal processing magazine, 2015. 2

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud
Texier, and Jeff Dean. Carbon emissions and large neural
network training. arXiv preprint arXiv:2104.10350, 2021. 1
Aayush Prakash, Shaad Boochoon, Mark Brophy, David
Acuna, Eric Cameracci, Gavriel State, Omer Shapira, and
Stan Birchfield. Structured domain randomization: Bridg-
ing the reality gap by context-aware synthetic data. In In-
ternational Conference on Robotics and Automation (ICRA).
IEEE, 2019. 2

Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon,
and Yan Liu. Variational recurrent adversarial deep domain
adaptation. In ICLR, 2016. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. arXiv preprint arXiv:2103.00020, 2021. 1, 2
Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Bak-
tashmotlagh, and Sridha Sridharan. Multi-component im-
age translation for deep domain generalization. In 2019
IEEE Winter Conference on Applications of Computer Vision
(WACV),2019. 2

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In ICML, pages 5389-5400. PMLR, 2019. 7
William J Reed. The pareto, zipf and other power laws. Eco-
nomics letters, 74(1):15-19, 2001. 7

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi
Zelnik-Manor. Imagenet-21k pretraining for the masses. In
NeurIPS, 2021. 6

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211-252, 2015. 6,7, 13

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
robustness against common corruptions by covariate shift
adaptation. NeurlPS, 2020. 3

Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz
Nadler, and Yuval Kluger. Spectralnet: Spectral clustering
using deep neural networks. In /CLR, 2018. 2, 5

[46]

(47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

(591

[60]

(61]

(62]

8353

Jianbo Shi and Jitendra Malik. Normalized cuts and image
segmentation. PAMI, 22(8):888-905, 2000. 2, 5

Nathan Somavarapu, Chih-Yao Ma, and Zsolt Kira. Frus-
tratingly simple domain generalization via image stylization.
arXiv preprint arXiv:2006.11207, 2020. 2

Amos Storkey. When training and test sets are different:
characterizing learning transfer. Dataset shift in machine
learning, 30:3-28, 2009. 3

Baochen Sun and Kate Saenko. Deep coral: Correla-
tion alignment for deep domain adaptation. arXiv preprint
arXiv:1607.01719, 2016. 2

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
ICML. PMLR, 2020. 2

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In /ICML, pages
6105-6114. PMLR, 2019. 6, 8

Meng Tang, Dmitrii Marin, Ismail Ben Ayed, and Yuri
Boykov. Kernel cuts: Kernel and spectral clustering meet
regularization. IJCV, 127:477-511, 2019. 2, 5

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Car-
lini, Benjamin Recht, and Ludwig Schmidt. Measuring ro-
bustness to natural distribution shifts in image classification.
Advances in Neural Information Processing Systems, 2020.
3,11

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to the
real world. In IEEE/RSJ international conference on intelli-
gent robots and systems (IROS). IEEE, 2017. 2

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John
Duchi, Vittorio Murino, and Silvio Savarese. Generalizing
to unseen domains via adversarial data augmentation. In
NeurIPS, 2018. 2

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. ICLR, 2021. 1,2,3,4,5,7, 11
Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
Wenjun Zeng, and Tao Qin. Generalizing to unseen do-
mains: A survey on domain generalization. arXiv preprint
arXiv:2103.03097,2021. 2

Garrett Wilson and Diane J Cook. A survey of unsupervised
deep domain adaptation. ACM Transactions on Intelligent
Systems and Technology (TIST), 2020. 2

Baoyuan Wu, Weidong Chen, Yanbo Fan, Yong Zhang, Jin-
long Hou, Jie Liu, and Tong Zhang. Tencent ml-images: A
large-scale multi-label image database for visual representa-
tion learning. IEEE Access, 7:172683-172693, 2019. 6
Alan L. Yuille and Anand Rangarajan. The concave-convex
procedure (CCCP). In NeurlIPS, 2001. 5

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao
Xiang. Deep domain-adversarial image generation for do-
main generalisation. In AAAIL 2020. 2

Imtiaz Ziko, Jose Dolz, Eric Granger, and Ismail Ben Ayed.
Laplacian regularized few-shot learning. In ICML, pages
11660-11670. PMLR, 2020. 2, 12



	. Introduction
	. Related work
	. Problem Formulation
	. On the Risks of Network Adaptation
	. The LAME method
	. Experimental design
	. Experimental results
	. Conclusion

