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Abstract

Implicit neural networks have been successfully used for
surface reconstruction from point clouds. However, many
of them face scalability issues as they encode the isosur-
face function of a whole object or scene into a single latent
vector. To overcome this limitation, a few approaches in-
fer latent vectors on a coarse regular 3D grid or on 3D
patches, and interpolate them to answer occupancy queries.
In doing so, they lose the direct connection with the in-
put points sampled on the surface of objects, and they at-
tach information uniformly in space rather than where it
matters the most, i.e., near the surface. Besides, relying
on fixed patch sizes may require discretization tuning. To
address these issues, we propose to use point cloud con-
volutions and compute latent vectors at each input point.
We then perform a learning-based interpolation on nearest
neighbors using inferred weights. Experiments on both ob-
ject and scene datasets show that our approach significantly
outperforms other methods on most classical metrics, pro-
ducing finer details and better reconstructing thinner vol-
umes. The code is available at https://github.com/
valeoai/POCO.

1. Introduction
Constructing a surface or volume representation from 3D

points sampled at the surface of an object or scene has nu-
merous applications, from digital twins processing to aug-
mented and virtual reality. Cheaper sensors directly produc-
ing 3D points (depth cameras, low-cost lidars) and mature
multi-view stereo techniques [88, 89] operating on images
offer increasing opportunities for such reconstructions.

Traditional 3D reconstruction approaches [4] generally
express the target surface as the solution to an optimiza-
tion problem under some prior constraints. Possibly lever-
aging visibility or normal information, they are generally
scalable to large scenes and offer a substantial robustness
to noise and outliers [47, 51, 71, 81, 94, 103, 110, 123]. Al-
though some try to cope with density variation [9, 42, 43],
a common limitation of these approaches is their inability
to properly complete parts of the scene that are less densely

Input (65536 pts) SA-ConvONet POCO (ours)
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(b) Scene 2 1 h 38 min 17 min 22 s

Figure 1. MatterPort3D. POCO trains on Synthetic Rooms 10k.

sampled or that are missing (typically due to occlusions). A
variety of hand-crafted priors try to address this complete-
ness issue: local or global smoothness [58], decomposition
into geometric primitives [87] (in particular for piecewise-
planar man-made environments [3, 6, 14, 28, 72]) and struc-
tural regularities [53,79]. Data-driven priors have also been
explored, based on shape retrieval [30], possibly with de-
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Figure 2. Overview of our method (inference). Given 3D points sampled on a surface, we construct latent vectors at each input point.
Then, to estimate the occupancy of a given query point in space, we interpolate with inferred weights the relative occupancy scores in a
neighborhood. Last, a mesh is reconstructed based on occupancy queries (white blur indicates uncertainty) using a form of Marching cubes.

formations [73]. But it remains limited in applicability.
To use richer priors, learning-based methods have been

proposed, using explicit shape representations. Voxel-based
approaches leverage a regular grid structure, extending 2D
image-based techniques to 3D, but suffer from resolution
limitations due to large memory consumption [20, 68, 111].
Directly generating a mesh with a neural network remains
difficult [33] and is limited in practice to template deforma-
tion [35]. Some forms of implicit representations have been
used for point cloud generation, but providing much weaker
geometrical and topological information [29, 55, 119].

More success has been achieved with explicitly-designed
implicit representations, where the network encodes a func-
tion R3 →R expressing a volume occupancy [15, 69] or a
distance to the surface [70,77]. Such models require no dis-
cretization and can address arbitrary topologies. More pre-
cisely, discretization only occurs at mesh generation stage,
using an algorithm such as the Marching cubes [63]. Yet,
due to fully-connected architectures that lack translational
equivariance, most existing approaches only operate on a
single object and cannot apply to arbitrary scenes.

A few recent methods [17, 18, 22, 45, 80, 102], however,
obtain a form of translational equivariance via Convolu-
tional Neural Networks (CNNs). At least in theory, they can
thus scale to larger scenes, possibly benefiting both from lo-
cal and non-local information. But they operate on a vox-
elized discretization whose vertices may be far from the in-
put point cloud. They thus lose the direct connection with
points sampled on the surface of objects. They are also sub-
optimal in that the features or latent vectors holding the oc-
cupancy or distance information are more or less uniformly
distributed in space rather than focused where difficult de-
cisions have to be made, i.e., near the surface.

Our approach, based on point convolution, overcomes

these issues. It is illustrated on Fig. 2. Our contributions are:
• We attach features representing the implicit function to

input points. Not only does it preserve point positions
until later processing stages, rather than abstract them
away too soon, but it concentrates the information to
learn where it matters the most: close to the surface.

• We compute features using point convolution, which
yields a natural coverage and scalability to scenes of
arbitrary size. (Rather than tailor yet another specific
network architecture, we rely on a general point convo-
lution backbone, which offers prospects for improve-
ment when better point convolutions are designed.)

• Rather than relying on hand-designed forms of aver-
aging, we extend prior learning to interpolation, which
we apply to query-relative features rather than global
features, as others do, as it leads to better results.

• We propose an efficient test-time augmentation to treat
inputs of high density or large size.

• While simple, our approach outperforms other meth-
ods both on object and scene datasets, yielding finer
details. It is robust to domain shift (training on ob-
jects, testing on scenes) and faster than methods that
overfit to a scene or infer from scratch for each query.

2. Related work
2.1. 3D representations

Voxels have been a natural choice for learning to rep-
resent 3D volumes [20, 68, 111, 113–115]. However, they
come with a cubic complexity in space, leading to coarse
discretizations due to memory constraints. Multi-scale re-
finement [23,39] and sparsity-based octrees [84,85,98] only
partly reduce the impact of conforming to a 3D grid.
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Figure 3. Real World. Model from Real World reconstructed by POCO in different settings and by Points2Surf

Points clouds are also produced as a sparse 3D repre-
sentation, with various density and sampling distribution
[1, 29, 55, 65, 108, 119, 120]. Point processing and gener-
ation do not suffer from the complexity and discretization
induced by 3D grids; yet, the range of applications is lim-
ited regarding representing actual surfaces and volumes.

Meshes are a preferred representation for many uses,
such as visualizations and simulations, but they are harder
to directly produce from a neural network (vertex regres-
sion and face construction) [74]. Most existing approaches
thus prefer to operate by deforming geometric primitives
[35, 56, 104, 107], voxelized approximations [33, 54] or
learned templates [36, 46]. Rather than actually inferring
vertices, a mesh can also be extracted from labels inferred
on a Delaunay tetrahedralization [64].

Implicit representations rely on a neural network to
model a function expressing the occupancy of a given 3D
point [15,69] or its distance to the surface, either signed [34,
70, 77], unsigned [18] or sign-agnostic [2, 8]. The signed
or unsigned distance field (SDF, UDF) is often truncated
(TSDF, TUDF) and estimated via a multi-layer perceptron
(MLP). The isosurface can then be extracted from this occu-
pancy or distance field with various methods such as March-
ing cubes [63]. Whereas voxels, points and mesh vertices
are intrinsically discrete representations, implicit represen-
tations offer a virtually infinite resolution. Moreover, while
mesh-based approaches struggle to enforce watertightness,
to limit self-intersections and to address complex topologies
(non genus-0), meshes reconstructed from implicit repre-
sentations are guaranteed to be watertight and have no self-
intersections. Besides, they can easily model arbitrary com-
plex topologies. These advantages may explain the recent
success of this representation, including to model 3D shapes
from images without 3D supervision [60, 75, 93], with tex-
turing [76] or specific rendering [61]. Departing from occu-
pancy or distance fields, ShapeGF [10] models a shape by
learning the gradient field of its log-density, then samples
points on high likelihood regions of the shape and meshes
them. Other work also study the decomposition of shapes
and implicit surfaces into parts [26,31,32,44,78,101], possi-
bly overfitting networks to generate or render a single object

or scene [59, 67, 92, 95, 109, 118, 121].
Scalability, however, is an issue for all these methods.

While they can encode reasonably well one object or a class
of objects, they cannot cope with the variability and size of
an arbitrary scene involving several objects. Even consider-
ing a single object and assuming a powerful decoder, the en-
coding of a single or a few latent vectors hardly can develop
into detailed shape information. Using periodic activation
functions [92, 96] or adding a 2D convolutional component
on input images [86, 116] helps, but is not enough.

A solution is to split the input points on a regular 3D grid
and to optimize one latent vector per voxel [11] (DeepLS),
possibly from overlapping input patches. Patch splitting
can also be irregular and optimization-driven to favor self-
similarities, with a global post-optimization to flip inconsis-
tent local signs [121] (SAIL-S3). But whether these meth-
ods optimize only the latent vectors or a whole network as
well, for patch decoding, they make surface reconstruction
significantly slower, leading to reduced test sets.

Besides, these methods rely on fully-connected architec-
tures whereas, we believe, convolutions, and in particular
point convolutions [5, 7, 40, 52, 62, 66, 100, 105, 112, 117],
are the key to scalability and increased details.

2.2. Convolutions for implicit representations

LIG [45] divides the input point cloud along a regular
3D grid to create 3D patches and capture local geometric
shapes shared by several objects at a medium scale. For
each of these patches, a 3D CNN then computes a local
feature vector, which goes through a reduced IM-NET [16]
for SDF decoding. However, later on, only the learned de-
coder is exploited; no local embedding is inferred. Given
an input point cloud, latent vectors on the grid are opti-
mized from scratch to minimize an objective function sim-
ilar to the loss used for training. LIG additionally requires
to be provided with oriented normals to make use of points
known to be inside or outside the shape. This, however,
may introduce artificial back-faces, which can partly be ad-
dressed in a postprocessing stage. In contrast, we can work
without normals, we directly operate with convolutions on
surface points rather than on a regular grid, and we directly
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Figure 4. SceneNet. Partial view of a full scene. The color on point clouds indicates the orientation of normals.

use inferred embeddings without any heavy optimization.
IF-Net [17] introduces a multi-scale pyramid of 3D con-

volutional encoders aligned on a discrete voxel grid and
trained on voxels at different scales. The occupancy of a
query point is decided by a decoder taking as input the in-
terpolated features extracted at this point for each pyramid
level. In contrast, we do not discretize into voxels; we use
point cloud convolution. Also, we learn how to interpolate
the latent vectors rather than use a basic trilinear interpola-
tion. Last, we provide results on scenes, not just on objects.

NDF [18] uses the same multi-scale encoding as IF-Net
but relies on a UDF rather than occupancy for decoding. It
allows the generation of very dense points clouds that can
directly be meshed into possibly open surfaces.

SG-NN [22] uses a sparse 3D convolution [19] to learn
a TSDF in a self-supervised setting, training for completion
from partial scans. In contrast, we use point convolution and
infer occupancy rather than SDF, which is easier to learn.

ConvONet [80] also uses a grid-based convolution, train-
ing an autoencoder that predicts occupancy. (It generalizes
ONet [69], which only uses a single encoding and full con-

nection.) For input point clouds, the encoder is a shallow
PointNet [82] operating on points rather than on a voxelized
discretization, and the decoder is a 3D U-Net [21]. The
occupancy of a 3D point is inferred from a trilinear inter-
polation of grid features. Besides 3D convolution, variants
based on a combination of 2D convolutions in a few spa-
tial directions are proposed. DP-ConvONet [57] is a variant
that considers a dynamic family of such directions. SA-
ConvONet [97] overfits a pre-trained ConvONet model on
the input using a sign-agnostic optimization of the implicit
field. It improves accuracy at the cost of computation time.

As inference applies to grids, whose vertices or centers
may be far from input points, the above methods lose the
direct connection with the input surface samples. They are
also suboptimal in that the latent vectors holding the infor-
mation are uniformly distributed in space rather than con-
centrated where it matters the most, i.e., near the surface. To
address these issues, we use point convolution and compute
latent vectors at each input point. We then interpolate occu-
pancy decisions of nearest neighbors using learned weights.

AdaConv [102] uses point convolution like us but ag-
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Figure 5. Architecture. The latent vectors zp (red squares) produced by the convolution-based encoder E of k neighboring points p of a
query point q are: (1) augmented with the relative query position q−p (yellow squares), (2) re-encoded with a 3-layer point-wise MLP R
(green frame) into relative latent vectors zp,q (green squares), (3) combined (blue frame) with inferred weights sp,q (gray squares) into a
latent vector zq (blue squares), (4) decoded with a linear layer D (pink frame) into occupancy logits oq and probablities oq (pink squares).

gregates multi-scale information on an adaptive voxel grid,
while we attach features to points, closer to the surface. Be-
sides, it requires oriented normals, contrary to us.

RetrievalFuse [91] splits a scene along a regular grid and
encodes each 3D chunk as a latent vector via convolutional
layers. But rather than using them for decoding, it retrieves
similar chunks from the training set and combines their dis-
tance field to create a surface, enhancing the completion ca-
pability. In contrast, we are fully convolutional and the im-
plicit function is directly obtained by interpolating inferred
features, without the need to maintain the dataset samples
used for training and with more generalization capacity.

Points2Surf [27] collects, for each query point, both a
patch of neighbors (which gives a convolution flavor) and
globally-sampled input points to help to provide a sign to
the local distance field. The local patch and the global sub-
sampling go through an MLP to create latent vectors that are
concatenated and decoded into a signed distance. In con-
trast, we directly get non-local information as our receptive
field is much larger. Besides, we are faster as we only com-
pute a limited number of latent vectors (one per input point)
that we later use for interpolation given a query point, while
Points2Surf samples local+global points and goes through
the whole encoder for each query point, i.e., a large number
of times, that grows with the Marching-cubes resolution.

To infer occupancy or distance of a query point, meth-
ods that compute several latent vectors for a single object
or scene either select the most appropriate latent vector to
decode, typically in a multi-scale grid [102], or interpolate
the latent vectors of query neighbors [17, 18, 45, 57, 80, 97].
We perform interpolation too, based on features computed
on input points. However, given a query point, we do not
interpolate the features themselves but the occupancy logits,
as our experiments shows it leads to better results. Besides,
we use a learned interpolation rather than the usual tri-linear
interpolation [17, 18, 45, 57, 80, 97] or the inverse-distance
distance weighting [83]. Although different in nature, learn-
ing has also been used in [91] to blend retrieved chunks.

3. Our method
Goal. Given as input a set of 3D points P sampled on a

surface, possibly with noise, our goal is to construct a con-

tinuous function ω : R3 → [0, 1] indicating the probability
of occupancy oq =ω(q) at any given query point q ∈ R3.
We learn this function with a neural network using data con-
sisting of point clouds sampled in the whole space and la-
beled with 0 (in empty space) or 1 (within the shape). The
surface of the shape can then be extracted as the isosurface
of the implicit function ω with occupancy level 0.5.

Overview. Our method consist of the following steps:

1. We encode input points p∈P into latent vectors zp.
2. Given an arbitrary query point q, we consider a neigh-

borhood Nq of input points in P to interpolate from.
3. For each neighbor p∈Nq, we construct a relative la-

tent vector zp,q from zp and local coordinates q−p.
4. We extract significance weights sp,q to sum the rela-

tive latent vectors zp,q: zq =
∑

p∈Nq
sp,q zp,q.

5. We decode the resulting feature vector zq as two full-
empty logits oq, and turn them into probabilities oq.

These steps, illustrated on Figure 5, are detailed below.
Absolute encoding. A point convolution first produces a

latent vector zp =E(p) for each input point p∈P . The en-
coder E can be implemented by any point cloud segmenta-
tion backbone, only changing the last layer to yield a vector
of some chosen dimension n as the size of vectors zp. (In
our experiments, the convolution backbone is FKAConv [7]
and n=32.) To also use normals (optionally), the input
points are just augmented with the 3 normal coordinates.

Query neighborhood. Given an arbitrary query point q
(when training or to predict occupancy at test time), we con-
struct a set of neighbors Nq from input points P . (In our ex-
periments, Nq is the k nearest neighbors of q, with k=64.)

Relative encoding. We augment the latent vector zp of
each neighbor p∈Nq with the local coordinates q−p of
query point q relatively to p. These augmented latent vec-
tors are then processed by an MLP R to produce relative la-
tent vectors zp,q = R(zp ∥q−p), where ∥ is the concate-
nation. (In our experiments, zp and zp,q have size n=32.)

Feature weighting. As PRNet [106], we observe that the
norm of embeddings zp,q tends to correlate with their sig-
nificance, hinting how much an input point p matters for de-
ciding the occupancy of query point q, given p’s neighbors
and the position of q w.r.t. p. We use it to infer significance
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weights for relative latents vectors zp,q. Concretely, we use
an attention mechanism (blue frame in Fig. 5): The relative
embeddings zp,q go through a linear layer parameterized by
a weight vector w, also of size n, producing relative weights
wp,q =w ⊙ zp,q, that are normalized by softmax over Nq

into positive interpolation weights sp,q summing to 1. We
actually use a multi-head strategy to obtain a form of en-
sembling. We learn h independent linear layers, parameter-
ized by h corresponding weight vectors (wi)i=1..h, produc-
ing h relative weights wp,q,i =wi ⊙ zp,q, that are finally
softmaxed as sp,q,i and averaged as sp,q = 1

n

∑
i sp,q,i. (In

our experiments, we use h=64.)
Interpolation. The feature vector zq at query point q is

interpolated from the relative latent vectors zp,q of neigh-
bors p, as the weighted sum zq =

∑
p∈Nq

sp,q zp,q.
Decoding. A linear layer D decodes the feature vector

zq into occupancy scores oq =D(zq), which is a two-logit
vector classifying position q as occupied or not, that is then
turned via softmax into occupancy probabilities oq.

Loss function. To train the network, we use a cross-
entropy loss that penalizes wrong occupancy predictions.
Please note that using a binary cross-entropy, like in IF-Net
[17] or ConvONet [80], leads to identical results.

4. Refinements
Adapting to high density. We train our network with a

fixed number Ntrain of input points for easy mini-batching.
(In our experiments, Ntrain = 3k or 10k.) At test time, if the
surface is more densely sampled, the receptive field of the
backbone may lack enough global context to decide which
side of the surface is full or empty, unless oriented normals
are also provided with points. A way to broaden enough the
receptive field is to downsample the input point cloud, but
it then naturally leads to a loss of details.

To reduce this effect, we rely on test-time augmentation
(TTA) [50], which can be seen as a form of ensembling: we
average several runs on different subsamples. However, ag-
gregating final results, as often done in TTA [90], would be
very time consuming in our case as we would have to do it to
answer the occupancy of each query, basically multiplying
the inference running time by the number of subsamples.

Instead, we perform TTA at latent vector level, thus run-
ning several times only the first step of our approach (ab-
solute encoding), before query decoding. It depends on the
number of input points (to attach a latent vector on), rather
than on the number of query points, which is much larger.
Concretely, we randomly create enough subsamples so that
each point p∈P is seen at least Nview times, and average
each zp over all samples. (In experiments, Nview =10.) The
subsamples are randomly generated by sequentially picking
a point p∈P with a priority that is the opposite of the num-
ber of times p appears in previous subsamples.

Adapting to large size. As our method is convolutional,

GT Input ConvONet POCO (ours)

Figure 6. ShapeNet. The methods train and test on 3k noisy pts.

it naturally adapts to input point clouds P of arbitrary size.
Yet, while P may contain millions of points, GPU mem-
ory limits in practice the number of points Ntest that can be
treated together by the backbone. (We use Ntest = 100k.)

As with semantic segmentation [7], we can use a sliding-
window with overlapping chunks of P of maximum size
Ntest. Alternatively, as above, we can make subsamples of
P by iteratively picking a low-priority point p∈P and its
Ntest−1 nearest neighbors. (In our experiments, Nview =3.)

Scene scaling. At inference time, the scale of the input
point cloud may differ from the scales in the training set.
As point-based backbones can be sensitive to variations of
scale and density, we rescale the input such that the aver-
age distance between a point and its nearest neighbor is the
same both in the training set and in the test point cloud.

5. Experiments
We experiment both on objects and scenes, in different

point density regimes, with or without normal information
depending on the baseline methods we compare with.

Because existing methods often perform well in some
setting but not in others, most published papers tend to eval-
uate on different datasets or in specific configurations: num-
ber of train/test points, added noise, normals, generaliza-
tion, etc. Some methods are also too slow to be evaluated
on full datasets and report results only on dataset fractions.
To be fair with these methods, we evaluate in their setting
(when enough information is provided to do so) rather than
impose them specific settings. It also illustrates the ability
of our method to adapt to various configurations.
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5.1. Datasets, baselines and metrics

ShapeNet [13], as pre-processed by [20], contains wa-
tertight meshes of shapes in 13 classes, with train/val splits
and 8500 objects for testing. As [80], we sample 3000
points from each mesh (at each epoch) and apply a Gaus-
sian noise with zero mean and standard deviation 0.05.

Synthetic Rooms [80] has 5000 synthetic scenes with
random walls and populated with ShapeNet objects. We use
[80]’s protocol for sampling 10k pts on the meshes to create
train/val/test data, with noise as for ShapeNet. Shapes are
scenes in terms of complexity, objects in terms of size.

ABC [48] is a set of CAD models, mainly mechanical
parts. We use splits and point preprocessing from [27]: 4950
shapes for training, 100 for validation and 100 for testing.

Famous [27] contains 22 shapes of various origins, e.g.,
from the Stanford 3D Scanning Repository [49].

Thingi10k [122], as prepared by [27], has 100 shapes.
SceneNet [37,38] is a synthetic dataset of indoor scenes.

Data prepared in the same way as [41] yield 34 scenes.
MatterPort3D [12] has indoor scenes too. We use the

same 2 scenes as prepared and used by [97]: with 65k pts.
Baselines are drawn among the state-of-the-art methods

presented in Section 2.2. We also compare to SPR [47], a
popular, non-learning-based reconstruction method that re-
quires oriented normals (which is a strong hypothesis) and,
possibly, a trimming parameter tuning (factor 6 in Tab. 4).

Our method, unless otherwise stated, uses the FKA-
Conv backbone [7], feature size n=32 as in ConvONet [80]
or LIG [45], k=64 neighbors, h=64 interpolation heads,
and does not use normals nor TTA.

Mesh Generation, for implicit functions, is done with
the Marching cubes [63] with resolution 2563 for objects,
1 cm for SceneNet, 2 cm for MatterPort3D.

Metrics. We use the following common metrics: vol-
umetric IoU, symmetric Chamfer L1-distance ×102 (CD),
normal consistency (NC), i.e., mean absolute cosine of nor-
mals in one mesh and normals at nearest neighbors in the
other mesh, and F-Score [99] with threshold value 1% (FS).
Surface metrics are approximated by point sampling.

5.2. Alternative and ablation studies

To justify our algorithmic choices, we experiment on
ShapeNet in generalization mode, training on chairs but
evaluating on all the classes. We use the same train/test
split as [69, 80], evaluating on 130 shapes (10 per class).

As can be seen in Table 1(a), the convolutional backbone
FKAConv [7] is more efficient by a large margin than the
PointNet-based segmentation network with residual con-
nections [69, 82], which loses small scale information [83].

Though interpolating from k=64 neighbors rather than
k=128 has a slightly worse CD and NC (cf. Tab. 1(b)), it
has a better IoU and it is faster; we use this setting in the
following. We note we get better results with a multi-head

(a) Point backbone IoU ↑ CD ↓ NC ↑
Residual PointNet 0.661 10.583 0.817
FKAConv 0.882 4.069 0.929

(b) No. interpolation neighbors IoU ↑ CD ↓ NC ↑
k = 1 0.799 6.951 0.867
k = 8 0.819 6.723 0.912
k = 64 0.882 4.069 0.929
k = 128 0.876 3.611 0.930

(c) Interpol. features glob. rel. IoU ↑ CD ↓ NC ↑
Max ✓ 0.882 4.069 0.929
Mean ✓ 0.883 3.703 0.933
Mean ✓ 0.854 5.331 0.902
Inverse distance ✓ 0.877 3.947 0.935
Inverse distance ✓ 0.851 4.724 0.912
Single-head attention ✓ 0.879 3.686 0.934
Multi-head attention ✓ 0.895 3.702 0.938

Table 1. Alternative study. We train on ShapeNet chairs, with-
out normals, 3k input points, with noise, and unless otherwise
stated, FKAConv backbone, k=64 neighbors, and max interpola-
tion. We test on 10 models from each of the 13 ShapeNet classes.
We interpolate either global features zp or relative features zp,q.

attention (using h=64 rather than h=1) and when inter-
polating relative rather than global features (cf. Tab. 1(c)).

Last, Tab. 2 and Fig. 3 show the benefits of the TTA strat-
egy with models trained with 3k and 10k points on ABC.

5.3. Reconstruction

Reconstruction without normals. Because of long run-
ning times, only a few published methods evaluate on the
whole ShapeNet dataset. We outperform them on all met-
rics with a significant margin (Table 3). We reconstruct finer
details (Figure 6) and we do not have the same tendency as
ConvONet to fill volumes; we can instead generate more
easily thin surfaces, which explain our superior IoU. We
outperform other methods as well on Synthetic Rooms (Ta-
ble 4), where also we capture much finer details.

Generalization. LIG is specifically designed for scal-
ability and generality. It learns to reconstruct small shape
patches from a given dataset, and then applies it to any new
object or scene. Points2Surf is a patch-learning method too,
although its requirement for a global view of the input and
its running time make it less suited for scene reconstruction.

We compare to LIG, training both methods on ShapeNet
objects (with normals as LIG requires them) and testing on
SceneNet. We generalize better (Tab. 5) at all densities, cap-
turing finer details and not erasing thin objects (Fig. 4).

We compare to Points2Surf, training on ABC in the same
setting. We outperform Points2Surf on most of their set-
tings (Tab. 2), both on ABC and when generalizing to Fa-
mous and Thingi10k. Points2Surf outperforms POCO only
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Test set ABC (100 shapes) Famous (22 shapes) Thingi10k (100 shapes)
Method Noise setting no-n. var-n. max-n. no-n. med-n. max-n. sparse dense no-n. med-n. max-n. sparse dense

DeepSDF [77] 8.41 12.51 11.34 10.08 9.89 13.17 10.41 9.49 9.16 8.83 12.28 9.56 8.35
AtlasNet [35] 4.69 4.04 4.47 4.69 4.54 4.14 4.91 4.35 5.29 5.19 4.90 5.64 5.02
SPR [47] 2.49 3.29 3.89 1.67 1.80 3.41 2.17 1.60 1.78 1.81 3.23 2.35 1.57
Points2Surf [27] 1.80 2.14 2.76 1.41 1.51 2.52 1.93 1.33 1.41 1.47 2.62 2.11 1.35

POCO Ntrain=Ntest=3k 1.87 2.26 2.90 1.56 1.75 2.99 1.99 1.70 1.47 1.64 3.21 2.00 1.55
POCO Ntrain=Ntest=3k, Nview=10 1.77 2.10 2.68 1.40 1.54 2.93 1.78 1.50 1.39 1.46 2.55 1.83 1.40
POCO Ntrain=Ntest=10k 1.72 2.15 2.72 1.57 1.61 3.04 1.92 1.57 1.50 1.57 2.82 2.08 1.51
POCO Ntrain=Ntest=10k, Nview=10 1.70 2.01 2.50 1.34 1.50 2.75 1.89 1.50 1.35 1.44 2.34 1.95 1.38

Table 2. ABC, Famous, Thingi10k. Training on ABC shapes with 10 scans, variable Gaussian noise (σ uniformly picked in [0, 0.05L],
L largest box length). Chamfer distance × 100 on ABC, Famous and Thingi10k test sets, as prepared by [27]: ‘no-n.’ (no noise), ‘var-n.’
(variable noise, as training), ‘max-n.’ (σ=0.05L), ‘med-n.’ (σ=0.01L), ‘sparse’ (5 scans), ’dense’ (30 scans). Only SPR uses normals.

Method IoU ↑ CD↓ NC ↑ FS↑
ONet [69] 0.761 0.87 0.891 0.785
ConvONet [80] 0.884 0.44 0.938 0.942
DP-ConvONet [57] 0.895 0.42 0.941 0.952

POCO (ours) 0.926 0.30 0.950 0.984

Table 3. ShapeNet. The methods train and test on 3k noisy pts.

Method IoU ↑ CD ↓ NC ↑ FS ↑
ONet [69] 0.475 2.03 0.783 0.541
SPR [47] - 2.23 0.866 0.810
SPR trimmed [47] - 0.69 0.890 0.892
ConvONet [80] 0.849 0.42 0.915 0.964
DP-ConvONet [57] 0.800 0.42 0.912 0.960

POCO (ours) 0.884 0.36 0.919 0.980

Table 4. Synthetic Rooms. Learning-based methods train and test
on 10k noisy pts. Only SPR uses normals. Numbers from [57,80].

on very noisy or dense inputs, and only with a small margin.
Scene reconstruction without normals. We compare

to SA-ConvONet on MatterPort3D scenes (Fig. 1) in their
same actual setting (downsampling to 65536 pts). Our re-
construction is less smooth than SA-ConvONet but has finer
details. As SA-ConvONet overfits many networks at infer-
ence time on top of ConvONet, it is notably slower too.

5.4. Discussion and limitations

Our approach is suited both for single-object and whole-
scene reconstruction. However, although it can cope with
a substantial variation of point density, it cannot complete
shapes when large parts are missing. Apart from a few
methods like [22, 24, 25, 91], only object-targeted methods
can presently do it, for classes known at training time, but
they cannot reconstruct scenes at all.

Inferring surface orientation, when normals are not pro-
vided, requires wide context information. But a high den-
sity may reduce the receptive field, yielding orientation fail-

pts/m2 Method CD ↓ NC ↑ FS ↑
20 SPR [47] 5.27 0.772 0.4392

Neural Splines [110] 3.76 0.815 0.6563
LIG [45] 1.52 0.923 0.8757
POCO (ours) 0.84 0.960 0.9600

100 SPR [47] 1.96 0.853 0.7709
Neural Splines [110] 1.15 0.931 0.9228
LIG [45] 0.97 0.961 0.9643
POCO (ours) 0.57 0.984 0.9941

500 SPR [47] 0.86 0.936 0.9787
Neural Splines [110] 0.60 0.982 0.9958
LIG [45] 0.87 0.975 0.9773
POCO (ours) 0.53 0.992 0.9987

1000 SPR [47] 0.73 0.967 0.9957
LIG [45] 0.84 0.978 0.9750
POCO (ours) 0.53 0.993 0.9987

Oracle (4M pts) 0.50 0.995 0.9998

Table 5. SceneNet. LIG and POCO train on ShapeNet with 10k
pts with normals (no noise). Test is on SceneNet with normals (no
noise). Neural Splines uses a grid size of 1024, 10k Nyström sam-
ples, 8×8×8 chunks. Numbers differ from [45] as we had to re-
generate the unavailable watertight meshes: we used [41] with res-
olution 500k, higher than in [45], getting finer and thinner details
where CAD models have no volume; as [45], we ignore scenes
with volume-to-area ratio > 0.13, getting 34 scenes. ‘Oracle’ is
the ground truth evaluated against itself (two different samplings).

ures and artifacts. Our TTA only partly addresses the issue;
handling it directly at backbone level would be better.

Nevertheless, POCO reaches the state of the art for both
object and scene reconstruction, with or without oriented
normals. It shows good generalization capabilities to shapes
and scenes that are very different from the training set.

More details on the method and on the experiments are
in the supplementary material.

Acknowledgments to Gilles Puy for fruitful discussions.
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