
Automatic Relation-aware Graph Network Proliferation

Shaofei Cai1,2, Liang Li1*, Xinzhe Han1,2, Jiebo Luo3, Zheng-Jun Zha4, Qingming Huang1,2,5

1Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China, 3University of Rochester

4University of Science and Technology of China, China, 5Peng Cheng Laboratory, Shenzhen, China
{shaofei.cai,xinzhe.han}@vipl.ict.ac.cn,liang.li@ict.ac.cn,
jluo@cs.rochester.edu,zhazj@ustc.edu.cn,qmhuang@ucas.ac.cn

Abstract

Graph neural architecture search has sparked much at-
tention as Graph Neural Networks (GNNs) have shown
powerful reasoning capability in many relational tasks.
However, the currently used graph search space overem-
phasizes learning node features and neglects mining hi-
erarchical relational information. Moreover, due to di-
verse mechanisms in the message passing, the graph search
space is much larger than that of CNNs. This hinders
the straightforward application of classical search strate-
gies for exploring complicated graph search space. We
propose Automatic Relation-aware Graph Network Pro-
liferation (ARGNP) for efficiently searching GNNs with
a relation-guided message passing mechanism. Specifi-
cally, we first devise a novel dual relation-aware graph
search space that comprises both node and relation learn-
ing operations. These operations can extract hierarchical
node/relational information and provide anisotropic guid-
ance for message passing on a graph. Second, analo-
gous to cell proliferation, we design a network proliferation
search paradigm to progressively determine the GNN archi-
tectures by iteratively performing network division and dif-
ferentiation. The experiments on six datasets for four graph
learning tasks demonstrate that GNNs produced by our
method are superior to the current state-of-the-art hand-
crafted and search-based GNNs. Codes are available at
https://github.com/phython96/ARGNP.

1. Introduction
Graph neural networks (GNNs), as a dominant paradigm

to handle graph-structured data, have significantly pro-
moted the performance in many relation reasoning tasks,
such as molecular prediction [7, 15, 18, 24], social network
analysis [35,40], 3D point cloud recognition [30,31,47,54],

*Corresponding author.

object detection [19,22], semantic segmentation [23,33,53],
few-shot learning [26, 50, 60], etc. Despite their great suc-
cess, the architectures of GNNs are usually manually de-
signed, which requires tremendous expert knowledge and
intensive trial and error. To explore advanced GNN archi-
tectures and reduce the human intervention, researchers at-
tempt to automate the design process with the help of neu-
ral architecture search (NAS) [17, 36, 43, 64, 65] and have
achieved superior performance. This is known as graph
neural architecture search, where there are two most critical
components: (1) graph search space and (2) search strategy.

The graph search space defines which graph neural net-
works can be represented in principle, determining the up-
per bound of networks’ reasoning capability. Current graph
search space mainly focuses on designing node-learning
operations, which is categorized into macro search space
[32, 43] and micro search space [11, 17, 36, 65]. The for-
mer explores the combinations of existing message pass-
ing mechanisms (i.e., using general-purpose GNNs as can-
didate operations), while the latter emphasizes the construc-
tion for novel ones (i.e., designing fine-grained operations
such as node aggregating and feature combining functions).
However, they all neglect mining the latent hierarchical
relational information associated with edges. In fact, re-
lational information can provide anisotropic guidance for
message aggregation of neighboring nodes, which is criti-
cal for constructing relation-guided message passing mech-
anisms. Motivated by this, in this paper, we explore de-
signing micro graph search space from the perspective of
learning both hierarchical relation and node features.

The search strategy details how to explore search space,
determining the search efficiency and effect. Some early
works [17, 64, 65] apply reinforcement learning (RL) based
strategy to search for GNNs by building, training, and
evaluating various graph neural architectures from scratch,
which is extremely time-consuming. Recently, due to
the high computational efficiency, one-shot differentiable
strategies [11, 32, 36] have attracted a lot of interest, which

10863

consists of three stages: supernet training, subnet searching,
and subnet retraining. They boost the search efficiency from
the parameter sharing among subnets and supertnet. Using
the auxiliary supernet can avoid training each child graph
neural architecture individually, but this may cause severe
subnet interference [62,63]. Besides, it is limited in search-
ing large GNN architectures due to the quadratic complex-
ity of storing and training the supernet. As a compromise,
researchers introduce the cell trick where the architecture
is a stack of several same building blocks [11, 32, 36, 39].
This shifts the searching objective from the whole architec-
ture to small cells but seriously narrows the original search
space. The above limitations, i.e. the subnet interference,
the high space-time complexity and the shrink of search
space, bring a severe negative impact for graph neural ar-
chitecture search.

In this paper, we propose the Automatic Relation-aware
Graph Network Proliferation (ARGNP) to efficiently search
the optimal GNN architectures with a relation-guided mes-
sage passing mechanism. First, we design a dual relation-
aware graph search space comprising both relation and
node search space, as shown in Figure 2. The rela-
tion search space introduces diverse relation-mining op-
erations to extract relational information hidden in edge-
connected nodes. It allows arbitrary valid connection
modes among relation-mining operations and forms the hi-
erarchical relation-learning structure. Different connection
modes result in the group of relation features with different
message-passing preferences, which favors different graph
tasks. The node search space defines a series of node-
learning operations which implements the anisotropic mes-
sage aggregation under the guidance of relation features.

Second, analogous to cell proliferation, we devise a
novel search paradigm called network proliferation to pro-
gressively explore the graph search space. Instead of di-
rectly optimizing the global supernet, we search the final
graph neural architecture by iteratively performing network
division and network differentiation. Figure 1 shows one it-
eration process. During network division, each intermediate
feature vertex is divided into two parts. One retains original
operations and connections while the other builds a local su-
pernet. Network differentiation aims to differentiate the lo-
cal supernet into a specific subnet. Theoretically, we proved
that such a search paradigm achieves the linear space-time
complexity. This enables our search to thoroughly free from
the cell trick. The network proliferation decomposes the
training of global supernet into sequential local supernets
optimization, which alleviates the interference among child
graph neural architectures.

Our contributions are summarized as follows: (1) A
novel dual relation-aware graph search space comprising
both node and relation search space. It can derive GNNs
with a relation-guided message passing mechanism. (2) A

F1 F2

FX

F3 F4

divison

F1 F2

FX

FY

F3 F4

(local supernet)

differentiation

F1 F2

FX

FY

F3 F4

Page 1

Figure 1. One iteration of the proposed network proliferation
search paradigm. F(·) denotes the intermediate feature vertex in
an architecture. The edges with different colors are associated with
different operations. FY is the newly divided part of FX , which
joins F1, F2 and FX to build a local supernet.

network proliferation search paradigm. It sequentially per-
forms network division and differentiation to explore the
optimal GNN architecture within linear space-time com-
plexity. (3) Experiment results on six datasets for four
classical graph learning tasks show that our method out-
performs human-crafted and other search-based GNNs by
a large margin. The code will be released publicly.

2. Related Work
Graph Neural Networks (GNNs) have been success-

fully applied to operate on the graph-structure data [8, 9,
14, 20, 28, 52, 58, 61]. Current GNNs are constructed on
message passing mechanisms and can be categorized into
two groups, isotropic and anisotropic. Isotropic GNNs [20,
28, 58] aim at extending the original convolution operation
to graphs. Anisotropic GNNs enhance the original mod-
els with anisotropic operations on graphs [44], such as gat-
ing and attention mechanism [8,41,42,52, 61]. Anisotropic
methods usually achieve better performance, since they can
weigh the importance of edges according to the node fea-
tures and implement the adaptive feature aggregation.

Neural Architecture Search (NAS) aims at automat-
ically finding the optimal neural architectures specific to
dataset [4, 10, 13, 31, 37, 39, 39, 45, 56, 66]. Search space
and strategy are the most essential components in NAS.
Search space defines which architectures can be represented
in principle. Search strategy details how to explore the
search space. Methods can be mainly categorized into three
groups, i.e., reinforcement learning (RL) [4, 45, 66], evo-
lutionary algorithms (EA) [38, 48, 49] and gradient-based
(GB) [10, 13, 31, 37, 39, 59]. Benefiting from the high ef-
ficiency, gradient-based differentiable search strategies at-
tracted the attention of increasing researchers.

Graph Neural Architecture Search (GNAS) is pro-
posed to automatically find the best GNNs for the given
specific graph task. The current GNAS methods [11,17,36,
43,64,65] mainly focus on designing graph search space by
introducing neighbor aggregation, activation functions, etc.,
but neglect the importance of relation mining. To our best
knowledge, we are the first to take mining relational infor-
mation into account during devising graph search space.

10864

node-learning operations

Vin0
Vin1

V1

V2V3

V4

Vout0 Vout1node features (Vi)

A. Node Search Space

+Ein0
+Ein1

+Ein0 +E1

+E3

+Ein1

+E3 +E2

V

E

relation-mining operations

Ein0
Ein1

E1

E2E3

E4

Eout0 Eout1 relation features (Ej)

B. Relation Search Space

+Vin0
+Vin1

+Vin0

+V1 +V1

+Vin1

+V3 +V2

0 1

23

4

5 6

E12
j

E23
j

E34
j

E45
j

E56
j

E61
j

E10
j

E20
jE30

j

E40
j

E50
j E60

j

V 0
i V 1

i

V 2
iV 3

i

V 4
i

V 5
i V 6

i

Page 1

Figure 2. Our dual relation-aware graph search space. It comprises node and relation search space. The vertex Vi and vertex Ej

denote a group of node and relation features on the graph, respectively. +Ej means that learning node features require the guidance of
relation features. +Vi means that the node features are required when extracting relational information.

3. Method
3.1. Preliminaries

A graph neural architecture uses graph-structured data as
input and outputs high-dimensional node and edge features
(relation features). The input data can be represented as
{G,Vin,Ein}, where G is the input graph structure with n
nodes and m edges, Vin ∈ Rn×dV denotes the input node
features, Ein ∈ Rm×dE denotes the input edge features, dV
and dE denote the feature dimension. Notably, if there is no
original edge feature in the dataset, we initalize Ein with
[1, · · · , 1] ∈ Rm×1 for subsequent relation learning. Our
dual relation-aware graph search space comprises both node
and edge search space. The derived computation structure
of node or relation search space is a directed acyclic graph
(DAG). To avoid confusion, the node and edge in the DAG
is renamed to “vertex” and “link”, where “vertex” denotes
an intermediate features (Vi or Ej), the “link” is associated
with an operation o or a mixture operation ō.

3.2. Relation-aware Graph Search Space

In this subsection, we detail how our dual relation-aware
graph search space is devised. As shown in Figure 2, it com-
prises node search space and relation search space. These
two spaces are not individual in essence, instead, they com-
municate information with each other. The relational infor-
mation is extracted from node features. In turn, it provides
anisotropic guidance for learning better node features.
Node search space. The computation structure derived by
node search space is a directed acyclic graph, which con-
sists of an ordered sequence of N+4 vertices, which consti-
tutes the set {Vin0

,Vin1
,V1, · · · ,VN ,Vout0 ,Vout1}. Each

vertex is a latent representation denoted as Vi (i.e., node
features in a GNN layer, as shown in the left of Figure
2), where i is its topological order in the DAG. In order
to be compatible with the cell trick, we introduce two in-
put vertices and two output vertices. Vin0

and Vin1
are

the outputs of previous two cells while Vout0 and Vout1

are the inputs of post two cells. In fact, our method can
thoroughly free from the cell trick. In this situation, we
have Vin0

= Vin1
,Vout0 = Vout1 . Each directed link

(i, j) in the DAG is associated with one node-learning oper-
ation o

(i,j)
V , that transforms the information from Vi to Vj ,

guided by relation features Ei. The transformed informa-
tion is denoted as Vi→j = o

(i,j)
V (Vi,Ei, fi,j), where fi,j is

an aggregating function which takes multiset as input, such
as mean, max, sum, std, etc. We leverage feature-wise
linear modulation (FiLM) mechanism [9] to implement the
anisotropic guidance of message propagation. This allows
the model to dynamically up-weight and down-weight node
features based on the relational information. Specifically,
we compute an element-wise affine transformation γ and β
based on the input relation features Ei and use it to modu-
late the incoming messages during message passing. Given
a node t on the graph, its transformed feature V t

i→j is for-
mulated as follows

V t
i→j = fi,j({γs,t⊙V s

i + βs,t|s ∈ N (t)}),
γs,t,βs,t = g(Es,t

i ;θ),
(1)

where g(·) is a two-layer multilayer perceptron to compute
affine transformation with the learnable parameters θ,N (t)
denotes the set of neighbors of target node t on the graph.
Following previous works [11, 32, 36, 39], we allow two in-
puts for each intermediate vertex, i.e., Vi = Vp1→i+Vp2→i,
where p1, p2 ∈ {in0, in1, 1, 2, · · · , i − 1}. For each node-
learning operation, its aggregating function is optional. Dif-
ferent aggregating function fi,j captures different types of
information. For example, sum captures the structural in-
formation [58], max captures the representative informa-
tion, mean and std captures the statistical information from
the neighboring nodes. The node search space has 8 candi-
date node-learning operations: V MAX, V SUM, V MEAN,
V STD, V GEM2, V GEM3, skip-connect, and zero opera-
tion. We detail all eight node-learning operation options in
the supplementary material.

10865

Xin0
Xin1

X1

Xout0 Xout1

differentiation

(0)

Xin0
Xin1

X1

Xout0 Xout1

division

(1)

Xin0
Xin1

X1

X2

Xout0 Xout1

differentiation

(1)

Xin0
Xin1

X1

X2

Xout0 Xout1

division

(2)

Xin0
Xin1

X1

X2X3

X4

Xout0 Xout1

differentiation

(2)

Xin0
Xin1

X1

X2X3

X4

Xout0 Xout1

Page 1

Figure 3. Illustration of network proliferation search paradigm. It comprises two procedures of network divison and differentiation.
The edges with different colors are associated with different operations. A group of dashed edges denotes a mixture operation. A local
supernet comprises of three mixture operations pointing to one feature vertex. (i) denotes the i-th iteration.

Relation search space. The computation structure de-
rived by relation search space is also a directed acyclic
graph with the same number of vertices. Each vertex Ei

is a latent relation representation (i.e., edge features in a
GNN layer, as shown in the right of Figure 2). The directed
link (i, j) in the DAG is associated with a relation-mining
operation o

(i,j)
E . It extracts relational information from

node features Vi. The extracted information is joined with
Ei to obtain higher order relation representation Ei→j =

o
(i,j)
E (Vi,Ei, hi,j). hi,j is a relation-mining function, such

as substraction, hardmard product, gauss kernel, etc. Given
a specific edge (s, t) on the graph, Es,t

i→j can be computed
using feature-wise linear modulation (FiLM):

Es,t
i→j = γs,t ⊙Es,t

i + βs,t,

γs,t,βs,t = hi,j(V
s
i ,V

t
i ;θ),

(2)

where γs,t,βs,t is the affine transformation learned by hi,j ,
θ is the learnable parameters. This allows adaptive rela-
tional information fusion. Similar to node search space,
we assume that each intermediate vertex has and only has
two inputs, i.e., Ei = Ep1→i + Ep2→i, where p1, p2 ∈
{in0, in1, 1, 2, · · · , i − 1}. Different relation-mining oper-
ations focus on extracting different types of relational in-
formation. For example, substraction captures the relative
change while hardmard product emphasizes on the com-
monalities between the edge-connected nodes. The relation
search space has 8 candidate relation-mining operations:
E SUB, E GAUSS, E HAD, E MAX, E SUM, E MEAN,
skip-connect, and zero operation. Eight candidate options
of the relation-mining function are detailed in the supple-
mentary material.

3.3. Network Proliferation Search Paradigm

We detail how the proposed network proliferation search
paradigm explores a single search space (e.g., node or rela-

Algorithm 1 Network Proliferation Search Paradigm
Input: a search algorithm A, architecture size S
Output: a graph neural architecture defined by {V,L}
Define: e(Xs, Xt, O) is a link from Xs to Xt with an

operation O, where O ∈ {o, ō}, ō is the mixture operation
1: V← {X1}
2: L← {e(Xin0

, X1, ō), e(Xin1
, X1, ō)}

3: while True do
4: // network differentiation
5: Vr ← V ∪ {Xin0 , Xin1}
6: Create a graph neural architecture G from {Vr,L}
7: Initialize G with new parameters
8: Perform search algorithm: L← A(G)
9: if len(V) ⩾ S then

10: return {Vr,L}
11: // network division
12: Vtmp ← V, Ltmp ← L, l← len(V)
13: for Xi in Vtmp do
14: V← V ∪ {Xi+l}
15: L← L ∪ {e(Xi, Xi+l, ō)}
16: for e(Xs, Xt, O)|t=i in Ltmp do
17: L← L ∪ {e(Xs, Xi+l, ō)}
18: Ltmp ← L
19: for e(Xs, Xt, O)|s∈Vtmp,s+l ̸=t in Ltmp do
20: L← L ∪ {e(Xs+l, Xt, O)}/{e(Xs, Xt, O)}

tion search space) for simplicity. Since our dual relation-
aware graph search space comprising node and relation
search space is symmetric, it can be generalized to search
the whole dual space simultaneously.

Motivated by the observation that a well-performed
small architecture can provide a good skeleton for build-
ing a larger one (shown in Figure 4), we can efficiently ob-
tain the expected large architecture through iterative search

10866

0.16 0.18 0.20 0.22 0.24 0.26 0.28
MAE

RR

SR

RS

SS

A
rc

hi
te

ct
ur

e

Figure 4. Boxplots of 8-layer architectures on ZINC. “R” and
“S” denote the random and SGAS [31] search strategies, respec-
tively. e.g., architecture “RS” is constructed by sequentially per-
forming random search, network division and SGAS search. The
architecture size after the first and the second search is 4 and 8.
Comparing “RR” with “SR”, “RS” with “SS”, we find that a pre-
searched architecture is useful for subsequent search.

based on the current small architecture. We detail this
procedure in Figure 3 and Algorithm 1. Each iterative
search comprises of two subprocedures, i.e., network divi-
sion, and network differentiation. Network division builds
a 2× larger architecture based on the current architecture,
where each feature vertex is divided into two parts. One part
that retains original operations and connections is called
parent vertex (Xp), whose role is to provide the archi-
tecture skeleton. The other one is called newly divided
vertex (Xn), which joins Xp and Xp’s two input vertices
Xp1 , Xp2 to build a local supernet. We define the mix-
ture operation is parameterized by architectural parame-
ters α(i,j) as a softmax mixture over all the possible op-
erations within the operation space O, i.e., ō(i,j)(Xi) =∑

o∈O
exp(α(i,j)

o)∑
o′∈O exp(α

(i,j)

o′)
o(Xi). The local supernet contains

three mixture operations, which is represented as follows,

Xn = ō(p,n)(Xp) + ō(p1,n)(Xp1) + ō(p2,n)(Xp2). (3)

Since the local supernet contains C2
3 × |O| candidate local

subnets, we need to discretize it to one specific subnet. This
is called network differentiation. During this procedure, we
can adopt any search algorithms [12, 21, 32, 39, 57, 59], that
can discretize the supernet to the subnet. After the network
differentiation, each mixture operation in the architecture
is replaced with one specific operation. The algorithm ter-
minates until the size of the architecture reaches the pre-
defined threshold.

Next, we analyze the complexity of our network pro-
liferation search paradigm. The running time and occu-
pied memory are proportional to the number of operations.
It requires log(N) iterations for searching for architecture
with N feature vertices. During the i-th iteration, there
are 2i−1 × 2 operations and 2i−1 × 3 mixture operations,
i.e., 2i + 3 × 2i−1|O| operations in total. So the whole
complexity is O(

∑log(N)
i=1 2i + 3 × 2i−1|O|) = O(N |O|).

Compared with vanilla DARTS [39] (O(N2|O|) complex-
ity), our method reduces the complexity from quadratic to
linear. This enables ours to directly search for large neu-

ral architectures without relying on the cell trick, and this
also enlarges the global search space. For example, we try
to search for an architecture with N = 16, |O| = 8. In
general, due to the high complexity, the DARTS stacks 4
cells with 4 feature vertices in each of them, resulting in
3.0 × 109 candidate architectures. Compared with vanilla
DARTS, our search paradigm can explore up to 3.4× 1036

candidate architectures using comparable resources.

4. Experiments

4.1. Experimental Setups

Dataset. We evaluate our method on six datasets, i.e.,
ZINC [25], CLUSTER [16], CIFAR10 [29], TSP [16],
ModelNet10 [55], ModelNet40 [55] across four different
graph learning tasks (node classification, edge classifica-
tion, graph classification and graph regression). ZINC is
one popular real-world molecular dataset of 250K graphs,
whose task is graph property regression, out of which we se-
lect 12K for efficiency following works [11,14,16]. CLUS-
TER is the node classification tasks generated via Stochas-
tic Block Models [1], which are used to model communica-
tions in social networks by modulating the intra-community
and extra-community connections. CIFAR10 is the origi-
nal classical image classification dataset and converted into
graphs using superpixel [2] algorithm to test graph classi-
fication task. TSP dataset is based on the classical Trav-
elling Salesman Problem, which tests edge classification
on 2D Euclidean graphs to identify edges belonging to the
optimal TSP solution. ModelNet is a dataset for 3D ob-
ject recognition with two variants, ModelNet10 and Mod-
elNet40, which comprise objects from 10 and 40 classes,
respectively. We sample 1024 points for each object as in-
put and use k-NN algorithm to construct the edges (k = 9
by default unless it is specified).
Searching settings. The original architecture is initial-
ized with 2 feature vertices. We perform network prolif-
eration for 4 iterations to obtain a sequence of GNN ar-
chitectures with the size of {2, 4, 8, 16}. Specifically, we
choose SGAS [31] as the search strategy that can differen-
tiate the local supernet to a specific subnet. During the net-
work differentiation, after warming up for 10 epochs, SGAS
begins to simultaneously determine one node-learning oper-
ation and one relation-mining operation for every 5 epochs.
Thus, the search epoch is set to {25, 25, 45, 85} for 4 se-
quential iterations. To carry out the architecture search,
we hold out half of the training data as the validation set.
For one-shot differentible search strategies (SGAS [31] and
DARTS [39]), there are operation weights w and archi-
tectural parameters α to be optimized. We use momen-
tum SGD to optimize the weights w, with initial learning
rate ηw = 0.025 (anneald down to zero following a co-
sine schedule without restart), momentum 0.9, and weight

10867

Table 1. Comparison with state-of-the-art architectures on the CLUSTER, ZINC, CIFAR10 and TSP datasets. m⃝ denotes the
architecture is mannually designed. The indicator E denotes whether the architecture can learn edge feature. The ARGNP without edge
feature means that the relation space is removed from relation-aware graph search space. Note that mean and standard deviation are
computed across 4 independently searched GNN architectures.

Node Level Graph Level Edge Level

Architecture CLUSTER ZINC CIFAR10 TSP

E Metric Params Search Metric Params Search Metric Params Search Metric Params Search
2� (AA %) ↑ (M) (day) (MAE) ↓ (M) (day) (OA %) ↑ (M) (day) (F1) ↑ (M) (day)

GCN [28] × 68.50±0.98 0.50 m⃝ 0.367±0.011 0.50 m⃝ 56.34±0.38 0.10 m⃝ 0.630±0.001 0.10 m⃝
GIN [58] × 64.72±1.55 0.52 m⃝ 0.526±0.051 0.51 m⃝ 55.26±1.53 0.10 m⃝ 0.656±0.003 0.10 m⃝
GraphSage [20] × 63.84±0.11 0.50 m⃝ 0.398±0.002 0.51 m⃝ 65.77±0.31 0.10 m⃝ 0.665±0.003 0.10 m⃝
GAT [52] × 70.59±0.45 0.53 m⃝ 0.384±0.007 0.53 m⃝ 64.22±0.46 0.11 m⃝ 0.671±0.002 0.10 m⃝
GatedGCN [8] ✓ 76.08±0.34 0.50 m⃝ 0.214±0.013 0.51 m⃝ 67.31±0.31 0.10 m⃝ 0.838±0.002 0.53 m⃝
PNA [14] × N/A N/A N/A 0.320±0.032 0.39 m⃝ 70.46±0.44 0.11 m⃝ N/A N/A N/A
PNA [14] ✓ N/A N/A N/A 0.188±0.004 0.39 m⃝ 70.47±0.72 0.11 m⃝ N/A N/A N/A
DGN [5] × N/A N/A N/A 0.219±0.010 0.39 m⃝ 72.70±0.54 0.11 m⃝ N/A N/A N/A
DGN [5] ✓ N/A N/A N/A 0.168±0.003 0.39 m⃝ 72.84±0.42 0.11 m⃝ N/A N/A N/A
GNAS-MP [11] × 74.77±0.15 1.61 0.80 0.242±0.005 1.20 0.40 70.10±0.44 0.43 3.20 0.742±0.002 1.20 2.10

ARGNP (2) × 61.61±0.27 0.07 0.04 0.430±0.003 0.09 0.01 66.55±0.13 0.10 0.11 0.655±0.003 0.09 0.05
ARGNP (4) × 64.06±0.45 0.14 0.07 0.303±0.013 0.14 0.01 66.65±0.39 0.18 0.14 0.668±0.003 0.17 0.06
ARGNP (8) × 68.73±0.12 0.25 0.20 0.239±0.009 0.27 0.02 67.37±0.32 0.33 0.48 0.674±0.002 0.29 0.21
ARGNP (16) × 71.92±0.29 0.53 0.71 0.221±0.004 0.51 0.06 67.10±0.51 0.58 1.77 0.684±0.002 0.56 0.76

ARGNP (2) ✓ 64.99±0.31 0.08 0.06 0.318±0.009 0.08 0.01 69.14±0.30 0.10 0.17 0.773±0.001 0.08 0.08
ARGNP (4) ✓ 74.75±0.25 0.15 0.09 0.197±0.006 0.15 0.01 71.83±0.32 0.17 0.23 0.821±0.001 0.14 0.10
ARGNP (8) ✓ 76.32±0.03 0.29 0.31 0.155±0.003 0.28 0.04 73.72±0.32 0.33 0.84 0.841±0.001 0.30 0.39
ARGNP (16) ✓ 77.35±0.05 0.52 1.10 0.136±0.002 0.52 0.15 73.90±0.15 0.64 2.95 0.855±0.001 0.62 1.23

decay 3 × 10−4. We use Adam [27] as the optimizer for
α, with initial learning rate ηα = 3 × 10−4, momentum
β = (0.5, 0.999) and weight decay 10−3.
Training settings. We follow all the training settings (data
splits, optimizer, metrics, etc.) in work [11, 16]. Specifi-
cally, we adopt Adam [27] with the same learning rate decay
for all runs. The learning rate is initialized with 10−3, which
is reduced by half if the validation loss stops decreasing af-
ter 20 epochs. The weight decay is set to 0. The dropout is
set to 0.5 to alleviate the overfitting. Our architectures are
all trained for 400 epochs with a batch size of 32. We report
the mean and standard deviation of the metric on the test
dataset of 4 discovered architectures. These experiments
are run on a single NVIDIA GeForce RTX 3090 GPU.

4.2. Results and Analysis

In Table 1 and Table 2, we compare our ARGNP with
the state-of-the-art hand-crafted and search-based GNN ar-
chitectures on the CLUSTER, ZINC, CIFAR10, TSP, Mod-
elNet10, and ModelNet40 datasets. The evaluation metric
is the average accuracy (AA) for CLUSTER, mean abso-
lute error (MAE) for ZINC, F1-score (F1) for TSP. For CI-
FAR10, ModelNet10, and ModelNet40, we use the over-
all accuracy (OA) as the evaluation metric. To make a
fair comparison, we also report the architecture parame-
ters, the search cost, and the mean and standard deviation
of all the metrics. We can see that, on all the six datasets
for four classical graph learning tasks, the GNN architec-

tures discovered by our ARGNP surpass the state-of-the-
art architectures by a large margin in terms of both mean
and standard deviation. Compared with the state-of-the-
art search-based method GNAS-MP [11], our searched ar-
chitecture can easily achieve better performance with only
1
10 ∼

1
4 parameters. This benefits from that the relation-

aware graph search space can mine hierarchical relation
information (such as local structural similarity) to guide
anisotropic message passing. Moreover, the network pro-
liferation search paradigm can efficiently and effectively
explore the proposed search space. We visualize the best-
performed GNN architecture with the size of 4 in Figure 5,
which is searched on the ModelNet40 dataset. Other exam-
ples are provided in the supplementary material.

4.3. Ablation of Search Space

We study the influence of the relation search space in
our proposed relation-aware graph search. First, we con-
struct a search space variant by removing the relation search
space. Then we perform GNN architecture search on this
variant using the network proliferation search paradigm and
obtain a sequence of GNN architectures with the size of
{2, 4, 8, 16}. These GNN architectures are evaluated on six
datasets. For a fair comparison, we increase the dimension
of the node features to keep the architectural parameters
comparable. As shown in Table 1 and Table 2, the best
performance of the search space variant without relation
learning descends by a large margin. Under all the differ-

10868

V_{in0}

V1

V_Max(+E_{in0})

V2
V_Sum(+E_{in0})

V_{in1}
V_Max(+E_{in1})

V3V_Max(+E_{in1})

Vout
V_Max(+E1)

V_Gem3(+E2)

V4V_Max(+E2)

V_Max(+E3)

E_{in0}
E1E_Sub(+V_{in0})

E2
E_Had(+V_{in0})

E_{in1}

E_Sub(+V_{in1})

E3E_Sub(+V_{in1})

E4
E_Sub(+V_{in1})

Eout

E_Had(+V1)

E_Sum(+V2)

E_Had(+V3)

Figure 5. The best GNN architecture with the network size of 4 searched on the ModelNet40 dataset.

Table 2. Comparision with state-of-the-art architectures on the
ModelNet10 and ModelNet40 datasets at 3D point cloud recog-
nition task. L denotes the size of GNN architecture.

ModelNet10 ModelNet40

Architecture L E Metric Metric Params Search
(#) 2� (OA %) ↑ (OA %) ↑ (M) (Day)

3DmFV [6] / / 95.2 91.6 45.77 m⃝
PointNet++ [46] / / N/A 90.7 1.48 m⃝
PCNN [3] / / N/A 92.3 8.20 m⃝
PointCNN [34] / / N/A 92.2 0.60 m⃝
DGCNN [54] / / N/A 92.2 1.84 m⃝
KPConv [51] / / N/A 92.9 14.3 m⃝
SGAS [31] 9 ✓ N/A 92.93±0.19 8.87 0.19

ARGNP 2 × 93.20±0.24 91.11±0.24 1.80 0.03
ARGNP 4 × 93.86±0.25 91.30±0.22 2.27 0.04
ARGNP 8 × 94.23±0.22 91.85±0.18 3.20 0.15

ARGNP 2 ✓ 95.07±0.31 92.47±0.23 2.50 0.04
ARGNP 4 ✓ 95.35±0.23 92.80±0.19 3.05 0.06
ARGNP 8 ✓ 95.87±0.22 93.33±0.15 4.15 0.20

ent network size settings, relation learning can significantly
improve the capability of graph reasoning. Interestingly,
this improvement is also observed on the CLUSTER, CI-
FAR10, and ModelNet datasets which don’t have original
edge features. Taking the CLUSTER dataset as an exam-
ple, it aims at identifying the community clusters, where the
graphs represent the community networks. The edges play
a role in connecting two nodes and have no original mean-
ingful features. In this case, relation learning can mine hier-
archical relational information by extracting local structural
similarities between nodes. This can help distinguish be-
tween intra-community and extra-community connections
for learning better discriminative node features.

4.4. Ablation of Search Paradigm

To investigate the effectiveness of our Network Prolif-
eration Search Paradigm (NPSP), we conduct the ablation
experiments on ZINC dataset around network size, search
strategy, whether to use cell trick and whether to use NPSP.
We run 14 different experiments and report the results in Ta-
ble 3. We observe the following phenomena. First, the cell
trick improves the search efficiency but weakens the expres-
sive capability of graph search space. This results from its

Table 3. Performance of the relation-aware graph search space
under different settings. Cell is an indicator of whether to use
the cell trick. NPSP is an indicator of whether to use the network
proliferation search. OOM denotes out of memory.

ZINC

Method L Search Cell NPSP Metric Params Search
(#) Strategy 2� 2� (MAE) ↓ (M) (Day)

1 R-space 8 Random × × 0.303±0.058 0.27 0.
2 R-space 8 DARTS ✓ × 0.160±0.005 0.28 0.17
3 R-space 8 DARTS × × 0.157±0.008 0.28 0.30
4 R-space 8 DARTS × ✓ 0.150±0.006 0.29 0.08
5 R-space 8 SGAS ✓ × 0.165±0.008 0.30 0.13
6 R-space 8 SGAS × × 0.161±0.008 0.30 0.25
7 R-space 8 SGAS × ✓ 0.155±0.003 0.28 0.06

8 R-space 16 Random × × 0.185±0.024 0.51 0.
9 R-space 16 DARTS ✓ × 0.144±0.004 0.57 0.38
10 R-space 16 DARTS × × N/A N/A OOM
11 R-space 16 DARTS × ✓ 0.139±0.005 0.56 0.24
12 R-space 16 SGAS ✓ × 0.140±0.003 0.60 0.32
13 R-space 16 SGAS × × N/A N/A OOM
14 R-space 16 SGAS × ✓ 0.136±0.002 0.52 0.21

original assumption where the GNN architecture is a stack
of the same building cells that narrows our relation-aware
graph search space. Therefore, the search strategy with
the cell trick performs worse than that without it, which
is demonstrated by the contrast between exp 2 and exp 3,
exp 5 and exp 6. Second, our NPSP can both significantly
improves the search efficiency and search effect with differ-
ent search strategies. The performance improvement bene-
fits from that the NPSP can alleviate the subnet interference
and mitigate the shrink of search space by breaking away
from the cell assumption. The efficiency improvement lies
in that NPSP shifts the training object from global supernet
to sequential local supernets. They are supported by exp 4,
7, 11, and 14, where NPSP achieves the best performance
with less time cost under all the experimental settings.

4.5. Visualizing Hierarchical Features

To better demonstrate the effectiveness of the relation
learning, we provide relation and node features visualiza-
tion on ModelNet40 dataset. During the inference, we feed
forward one 3D pointcloud object into the network with

10869

Figure 6. Visualization of the learned hierarchical features for 3D point cloud recognition (taking table as an example). Relation fea-
tures with different edge color distribution have different message passing preferences. Node features with different node color distribution
represent different clustering effects.

the input {Vin0
,Vin1

,Ein0
,Ein1

}, where Vin0
= Vin1

∈
R1024×3 are the 3D coordinates and Ein0 = Ein1 = 1 ∈
R(1024×9)×1 are the pseudo relation features. The hierar-
chical node/relation features generated from each layer is
denoted as {V1, · · · ,V4} and {E1, · · · ,E4}, respectively.
For better visualization on the point cloud graph, we reduce
the feature dimension to 1 through principal component
analysis (PCA). The edges with a similar color are consid-
ered to have the same message passing preferences, while
the nodes with a similar color are considered to belong to a
similar cluster. A visualization example from ARGNP and
a version without relation learning architecture are shown
in Figure 6A and 6B, respectively.

As shown in Figure 6A, ARGNP can capture the struc-
tural information and well discriminate different parts of
the object (e.g., the legs, desktop, and border of the table
in V

(A)
4). In contrast, as shown in Figure 6B, the original

GNN without relation learning architecture can only gradu-
ally propagate the node information through the input graph
based on 3D coordinates. As a result, the similar nodes that
are distant in the 3D space can not be well clustered (e.g.,
4 legs of the table in V

(B)
4). The above comparison shows

that the relation features can guide better message passing
mechanisms to learn more effective node features. To show
the role of the relation learning more specifically, accom-
panied with the searched GNN in Figure 5, we analyze the
features in Figure 6A. For example, the E

(A)
1 is learned by

substraction operation. The substraction operation is simi-

lar to an “border detection” operation that can discriminate
the directions between two nodes. In this way, the ARGNP
can directly distinguish groups of parallel components of
an object (e.g., legs, parallel borders, etc. in V

(A)
2). How-

ever, without using the relation features, it requires numer-
ous rounds of message passing which may cause the over
smoothing problem. With the help of relation learning, the
components with similar structures can be well clustered.

5. Conclusion
This paper proposes the automatic relation-aware graph

network proliferation (ARGNP) method to design the opti-
mal GNN architectures by devising a novel relation-aware
graph search space and a network proliferation search
paradigm. The search space significantly improves the up-
per bound of the discovered GNN’s reasoning capability
while the proliferation search paradigm promotes search ef-
ficiency and effectiveness. Experiments show that ARGNP
achieves superior performance for four tasks on six datasets.

Acknowledgement. This work was supported by
the National Key R&D Program of China under Grant
2018AAA0102000, and in part by the National Natu-
ral Science Foundation of China: U21B2038, U19B2038,
61931008, 61836002, CAAI-Huawei MindSpore Open
Fund, Youth Innovation Promotion Association of CAS
under Grant 2020108, CCF-Baidu Open Fund, Univer-
sity Synergy Innovation Program of Anhui Province under
Grant GXXT-2019-025.

10870

References
[1] Emmanuel Abbe. Community detection and stochastic block

models: recent developments. The Journal of Machine
Learning Research, 18(1):6446–6531, 2017. 5

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien
Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic superpix-
els compared to state-of-the-art superpixel methods. IEEE
transactions on pattern analysis and machine intelligence,
34(11):2274–2282, 2012. 5

[3] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point
convolutional neural networks by extension operators. ACM
Transactions on Graphics (TOG), 37:1 – 12, 2018. 7

[4] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. arXiv preprint arXiv:1611.02167, 2016.
2

[5] Dominique Beaini, Saro Passaro, Vincent L’etourneau,
William L. Hamilton, Gabriele Corso, and Pietro Lio’. Di-
rectional graph networks. In ICML, 2021. 6

[6] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fis-
cher. 3dmfv: Three-dimensional point cloud classification
in real-time using convolutional neural networks. IEEE
Robotics and Automation Letters, 3:3145–3152, 2018. 7

[7] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and
Michael M. Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. ArXiv,
abs/2006.09252, 2020. 1

[8] Xavier Bresson and Thomas Laurent. Residual gated graph
convnets. ArXiv, abs/1711.07553, 2017. 2, 6

[9] Marc Brockschmidt. Gnn-film: Graph neural networks with
feature-wise linear modulation. In ICML, 2020. 2, 3

[10] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 2

[11] Shaofei Cai, Liang Li, Jincan Deng, Beichen Zhang,
Zhengjun Zha, Li Su, and Qingming Huang. Rethinking
graph neural architecture search from message-passing. In
CVPR, 2021. 1, 2, 3, 5, 6

[12] Xin Chen, Lingxi Xie, Jingjing Wu, and Qi Tian. Progressive
differentiable architecture search: Bridging the depth gap be-
tween search and evaluation. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 1294–1303,
2019. 5

[13] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-
aolin Wei, and Junchi Yan. Darts-: robustly stepping out
of performance collapse without indicators. arXiv preprint
arXiv:2009.01027, 2020. 2

[14] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro
Lio’, and Petar Velickovic. Principal neighbourhood aggre-
gation for graph nets. NIPS, 2020. 2, 5, 6

[15] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Lau-
rent, Yoshua Bengio, and Xavier Bresson. Benchmarking
graph neural networks. ArXiv, abs/2003.00982, 2020. 1

[16] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. Benchmarking graph
neural networks. arXiv preprint arXiv:2003.00982, 2020. 5,
6

[17] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue
Hu. Graph neural architecture search. In IJCAI, 2020. 1, 2

[18] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl. Neural message passing for
quantum chemistry. ArXiv, abs/1704.01212, 2017. 1

[19] Jiayuan Gu, Han Hu, Liwei Wang, Yichen Wei, and Jifeng
Dai. Learning region features for object detection. In Pro-
ceedings of the european conference on computer vision
(ECCV), pages 381–395, 2018. 1

[20] William L. Hamilton, Zhitao Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In NIPS,
2017. 2, 6

[21] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Mile-
nas: Efficient neural architecture search via mixed-level re-
formulation. 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11990–11999,
2020. 5

[22] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen
Wei. Relation networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3588–3597, 2018. 1

[23] Han Hu, Deyi Ji, Weihao Gan, Shuai Bai, Wei Wu, and Junjie
Yan. Class-wise dynamic graph convolution for semantic
segmentation. In ECCV, 2020. 1

[24] Md Shamim Hussain, Mohammed J. Zaki, and D. Subra-
manian. Edge-augmented graph transformers: Global self-
attention is enough for graphs. ArXiv, abs/2108.03348, 2021.
1

[25] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S
Bolstad, and Ryan G Coleman. Zinc: a free tool to discover
chemistry for biology. Journal of chemical information and
modeling, 52(7):1757–1768, 2012. 5

[26] Jongmin Kim, Taesup Kim, Sungwoon Kim, and
Chang Dong Yoo. Edge-labeling graph neural network
for few-shot learning. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11–20, 2019. 1

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2015. 6

[28] Thomas Kipf and Max Welling. Semi-supervised clas-
sification with graph convolutional networks. ArXiv,
abs/1609.02907, 2017. 2, 6

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[30] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 4558–4567, 2018. 1

[31] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias
Muller, Ali Thabet, and Bernard Ghanem. Sgas: Sequential
greedy architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1620–1630, 2020. 1, 2, 5, 7

[32] G. Li, Guocheng Qian, Itzel C. Delgadillo, Matthias Müller,
Ali K. Thabet, and Bernard Ghanem. Sgas: Sequential
greedy architecture search. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1617–1627, 2020. 1, 2, 3, 5

10871

[33] Xia Li, Yibo Yang, Qijie Zhao, Tiancheng Shen, Zhouchen
Lin, and Hong Liu. Spatial pyramid based graph reason-
ing for semantic segmentation. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8947–8956, 2020. 1

[34] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In NeurIPS, 2018. 7

[35] Yangyang Li, Yipeng Ji, Shaoning Li, Shulong He, Yinhao
Cao, Xiong Li, Jun Shi, Yangchao Yang, and Yifeng Liu.
Relevance-aware anomalous users detection in social net-
work via graph neural network. 2021 International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2021.
1

[36] Yanxi Li, Zean Wen, Yunhe Wang, and Chang Xu. One-shot
graph neural architecture search with dynamic search space.
In AAAI, 2021. 1, 2, 3

[37] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,
Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+:
Improved differentiable architecture search with early stop-
ping. arXiv preprint arXiv:1909.06035, 2019. 2

[38] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha
Fernando, and Koray Kavukcuoglu. Hierarchical repre-
sentations for efficient architecture search. arXiv preprint
arXiv:1711.00436, 2017. 2

[39] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. ArXiv, abs/1806.09055,
2019. 2, 3, 5

[40] Yujia Liu, Kang Zeng, Haiyang Wang, Xin Song, and Bin
Zhou. Content matters: A gnn-based model combined with
text semantics for social network cascade prediction. In
PAKDD, 2021. 1

[41] Diego Marcheggiani and Ivan Titov. Encoding sentences
with graph convolutional networks for semantic role label-
ing. arXiv preprint arXiv:1703.04826, 2017. 2

[42] Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
5115–5124, 2017. 2

[43] Zheyi Pan, Songyu Ke, Xiaodu Yang, Yuxuan Liang, Yong
Yu, Junbo Zhang, and Yu Zheng. Autostg: Neural architec-
ture search for predictions of spatio-temporal graph. Pro-
ceedings of the Web Conference 2021, 2021. 1, 2

[44] Pietro Perona and Jitendra Malik. Scale-space and edge de-
tection using anisotropic diffusion. IEEE Transactions on
pattern analysis and machine intelligence, 12(7):629–639,
1990. 2

[45] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning,
pages 4095–4104. PMLR, 2018. 2

[46] C. Qi, L. Yi, Hao Su, and Leonidas J. Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric
space. In NIPS, 2017. 7

[47] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel
Urtasun. 3d graph neural networks for rgbd semantic seg-
mentation. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 5199–5208, 2017. 1

[48] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019. 2

[49] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Ku-
rakin. Large-scale evolution of image classifiers. In Interna-
tional Conference on Machine Learning, pages 2902–2911.
PMLR, 2017. 2

[50] Victor Garcia Satorras and Joan Bruna. Few-shot learning
with graph neural networks. ArXiv, abs/1711.04043, 2018. 1

[51] Hugues Thomas, C. Qi, Jean-Emmanuel Deschaud, Beatriz
Marcotegui, François Goulette, and Leonidas J. Guibas. Kp-
conv: Flexible and deformable convolution for point clouds.
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 6410–6419, 2019. 7

[52] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio’, and Yoshua Bengio. Graph
attention networks. ArXiv, abs/1710.10903, 2018. 2, 6

[53] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and
Jie Shan. Graph attention convolution for point cloud se-
mantic segmentation. 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10288–
10297, 2019. 1

[54] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 1, 7

[55] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes.
2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1912–1920, 2015. 5

[56] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
Snas: stochastic neural architecture search. arXiv preprint
arXiv:1812.09926, 2018. 2

[57] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
Snas: Stochastic neural architecture search. ArXiv,
abs/1812.09926, 2019. 5

[58] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks? ArXiv,
abs/1810.00826, 2019. 2, 3, 6

[59] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient differentiable architecture
search. ArXiv, abs/1907.05737, 2019. 2, 5

[60] Ling Yang, Liangliang Li, Zilu Zhang, Xinyu Zhou, Erjin
Zhou, and Y. W. Liu. Dpgn: Distribution propagation graph
network for few-shot learning. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
13387–13396, 2020. 1

[61] Yiding Yang, Zunlei Feng, Mingli Song, and Xinchao Wang.
Factorizable graph convolutional networks. Advances in
Neural Information Processing Systems, 33, 2020. 2

10872

[62] Yuge Zhang, Zejun Lin, Junyan Jiang, Quanlu Zhang, Yujing
Wang, Hui Xue, Chen Zhang, and Yaming Yang. Deeper
insights into weight sharing in neural architecture search.
ArXiv, abs/2001.01431, 2020. 2

[63] Yuge Zhang, Chenqian Yan, Quanlu Zhang, Li Lyna Zhang,
Yaming Yang, Xiaotian Gao, and Yuqing Yang. Acenas:
Learning to rank ace neural architectures with weak super-
vision of weight sharing. ArXiv, abs/2108.03001, 2021. 2

[64] Huan Zhao, Lanning Wei, and Quanming Yao. Simplify-
ing architecture search for graph neural network. ArXiv,
abs/2008.11652, 2020. 1, 2

[65] Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu.
Auto-gnn: Neural architecture search of graph neural net-
works. ArXiv, abs/1909.03184, 2019. 1, 2

[66] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 2

10873

