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Abstract

Recently deep learning methods have shown significant
progress in data clustering tasks. Deep clustering method-
s (including distance-based methods and subspace-based
methods) integrate clustering and feature learning into a
unified framework, where there is a mutual promotion be-
tween clustering and representation. However, deep sub-
space clustering methods are usually in the framework of
self-expressive model and hence have quadratic time and
space complexities, which prevents their applications in
large-scale clustering and real-time clustering. In this pa-
per, we propose a new mechanism for deep clustering. We
aim to learn the subspace bases from deep representation
in an iterative refining manner while the refined subspace
bases help learning the representation of the deep neural
networks in return. The proposed method is out of the self-
expressive framework, scales to the sample size linearly,
and is applicable to arbitrarily large datasets and online
clustering scenarios. More importantly, the clustering ac-
curacy of the proposed method is much higher than its com-
petitors. Extensive comparison studies with state-of-the-art
clustering approaches on benchmark datasets demonstrate
the superiority of the proposed method.

1. Introduction

Clustering is a fundamental issue in machine learning,
which aims to separate samples into classes in the absence
of label information, under the requirement of high intra-
class similarity and low inter-class similarity. Many classi-
cal clustering algorithms such as k-means [29] and spectral
clustering (SC) [30] have showed great success in real ap-
plications. However, they are not effective in handling da-
ta with complicated structures or/and high-dimensionality,
which can be improved by using refined features of the da-

*Jicong Fan is the corresponding author.

ta. Indeed, some previous works [14, 37, 38, 47] utilized
the feature learning techniques such as non-negative ma-
trix factorization [2], auto-encoder (AE) [!] and its vari-
ants [24,31,36] to learn low-dimensional embeddings for
clustering, which increased the clustering accuracy. Nev-
ertheless, since these methods are two-stage clustering and
the feature learning is not specific to clustering, it is not
guaranteed that the learned representations are appropriate
for clustering.

Recently, a few researchers [3, 9, 26, 43, 46] have pro-
posed end-to-end clustering methods, such as deep em-
bedded clustering (DEC) [40], joint unsupervised learning
(JULE) [41], deep adaptive clustering (DAC) [6], and deep
comprehensive correlation mining (DCCM) [39]. In these
methods, the clustering objectives are integrated with the
network optimization process, which provides an approach
to learning clustering-oriented embedded representations.
However, most deep clustering methods use the Euclidean
distance-based measure in identifying clusters, whereas Eu-
clidean distance is not always valid or reasonable for differ-
ent types of data structures.

Subspace clustering assumes that data lie in different
subspaces [11]. A category of classical subspace cluster-
ing methods such as sparse subspace clustering (SSC) [11]
and low-rank representation (LRR) [27] are mainly based
on spectral clustering [30] and outperformed k-means and
classical spectral clustering in many tasks such as face im-
age clustering. Recently, a few researchers [8, 21,25, 44]
showed that joint subspace clustering and deep learning
have promising performance on benchmark datasets. How-
ever, these approaches can hardly be extended to large-scale
datasets because they need to learn a self-expressive matrix
leading to quadratic time and space complexities. Conse-
quently, some latest works [12,48,49] dedicate to improv-
ing the efficiency of subspace clustering.

In this paper, we aim to provide an approach to efficient
and accurate deep subspace clustering. We propose to learn
a set of subspace bases from the latent features extracted
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Figure 1. Illustration of the proposed method. The auto-encoder
network is used to learn embedded representation Z for input data,
then Z combines with subspace D to construct the subspace affin-
ity vector which in turn yields the normalized subspace affinity 5.
Subsequently, the refined subspace affinity S is computed from S
to provide self-supervised information. Note that d is the dimen-
sion of subspace, Lrecon and LSulL represent the reconstruction
loss and the discrepancy between S and S, and the network is
trained by jointly optimizing them.

by deep auto-encoder, where the bases and network param-
eters are iteratively refined. The network structure of the
proposed method is illustrated in Fig. 1. Our contributions
are as follows.

* We present a novel deep subspace clustering method
that is out of the conventional self-expressive frame-
work.

* Our method has linear time and space complexity and
hence is applicable to large-scale subspace clustering.

e We generalize the method to online clustering such
that we can handle arbitrarily large datasets and
streaming datasets effectively.

e We analyze the feasibility of using deep neural net-
work to convert distance-based clustering and sub-
space clustering.

Numerical results on many benchmark datasets (e.g.
Fashion-MNIST, STL-10, and REUTERS-10K) showed
that our method is more effective than its competitors.

2. Related Work and A Brief Discussion
2.1. Deep Clustering

Earlier deep clustering methods aim at applying deep
feature learning methods (e.g. auto-encoder [36], and vari-
ational auto-encoder (VAE) [24]) to extract features from
complicated high-dimensional data for clustering. Howev-
er, these solutions hardly learn the representations appro-
priate to clustering task. Current deep clustering methods
focus on constructing end-to-end models. Xie et al. pro-
posed DEC [40] that designs a clustering objective inspired

by t-SNE [35]. It provided a clustering model that achieves
simultaneous optimization of cluster centers and embedded
features. Chang et al. [5] proposed deep self-evolution clus-
tering (DSEC), which is a self-evolving-based algorithm to
train the network alternatively with chosen pairs of patterns.
In [39], Wu et al. presented a method called DCCM that us-
es pseudo-labels for self-supervision and uses mutual infor-
mation to capture more discriminative representations for
clustering. The partition confidence maximisation (PICA)
proposed by Huang et al. [20] minimizes a partition uncer-
tainty index and learns the most confident clustering alloca-
tion. Note that these deep clustering approaches assign clus-
ters using Euclidean distance, which may not useful when
the clusters do not concentrate on the mean values.

2.2. Subspace Clustering

Classical subspace clustering such as SSC [I1], LR-
R [27], Kernel-SSC [32] aim to learn a self-expressive affin-
ity matrix for spectral clustering. Ji et al. [21] proposed
deep subspace clustering network (DSC-Net) that incorpo-
rated a self-expression module with auto-encoder network.
DSC-Net showed significant improvement on several image
datasets, compared to SSC and LRR. Zhou et al. [52] pro-
vided a method called deep adversarial subspace clustering
(DASC) that utilized generative adversarial network [16] to
provide an adversarial learning, which improved the perfor-
mance of deep subspace clustering. Zhou et al. [51] pro-
posed distribution preserving subspace clustering (DPSC)
to retain the latent distribution in the subspace to improve
the feature learning ability of the subspace clustering mod-
el. On the other hand, a few researchers tried to reduce the
complexity of subspace clustering [7, 12, 13,33,49]. For ex-
ample, Zhang et al. [49] proposed the k-subspace clustering
network (k-SCN) to integrate the update of subspace into
the learning of embedded space for addressing the draw-
back of learning the affinity matrix. Fan [12] proposed a
method called k-factorization subspace clustering (k-FSC),
which has linear time and space complexity and is able to
handle missing data and streaming data.

2.3. A Brief Discussion

We analyze the time and space complexities of a few
(due the space limitation) methods of classical subspace
clustering, large-scale subspace clustering, and deep sub-
space clustering in Table 1. We see that these classical
subspace clustering methods and deep subspace cluster-
ing methods have quadratic time and space complexities in
terms of the number of samples. In contrast, our method
has linear time and space complexity, which is comparable
to the large-scale subspace clustering method of [12].



Method | Time complexity (per iter.) | Space complexity
SSC11] O(mn?) O(mn + pn?)
LRR [27] O(mn? +m?) O(mn +n?2)
KSSC [32] O(n?) O(mn +n?)
SSSC [33] O(ms3+k%ny) O(mn + pn?2)
S3COMP-C [7] O(dpn3(1 — 6)) O(mn + pn?)
k-FSC [12] O(kmrn + 9mn) O(mn + kmr + krn)
DSC-Net [21] O(In2 + in) O(mn + n? + 0)
DASC [52] O(In2 + min) O(mn +n? +0)
DPSC [51] O(In? + in) O(mn +n? + 0)
NCSC [50] O(In2 + in) O(mn + n? + 0)
PSSC[28] | O(mn? + In2 + min) O(mn +n? +6)
EDESC(ours) O(kdpn + mpn) O(mn + kn + kpd + 6)

Table 1. The time and space complexity of our method compared
with some deep clustering and subspace clustering approaches in
clustering n samples of dimension-m. To save space, we put the
explanation for the parameters in the supplementary material.

3. Methodology
3.1. Proposed Model

In this paper, we aim at deep learning based subspace
clustering and try to solve the following problem.

Problem 1 Given a data matrix X € R™*"™ where m
denotes the number of features and n denotes the num-
ber of samples. Suppose X = XP, where X =
(XM, X XE)] and P € R™ ™ is an unknown per-
mutation matrix. For j = 1,... k, suppose the columns of
X0U) € R™*" are generated by

x=1f;(v)+e, (1

where f; : R™ — R™ is an unknown nonlinear function,
r; < m, v € R" is a random variable, and e € R™ de-
notes random Gaussian noise. Find the permutation matrix
P (or X equivalently) from X.

The problem is exactly a clustering problem, for which
we need to group the columns of X into k clusters cor-

responding to k different functions fy,...,f;. Figure 2
shows a simple example of Problem | when m = 3 and
ry = -+ = r5 = 1. Note that when fy, ..., f; are all lin-

ear, the problem reduces to the classical subspace cluster-
ing. Hence, Problem 1 can be regarded as a nonlinear sub-

space clustering or manifold clustering [10, 15,34] problem.
A special case of Problem 1 is
Problem 2 In Problem I, for j = ., k, suppose

£f;(v) = g(BYWv), where BU) € RP*" and g : RP —
R™. In addition, 1B Bl

. In addition, IBO#BD[r K
Find the permutation matrix P (or X equivalently) from X.

(i # j) are small enough.

Problem 2 is easier than Problem 1 because it is enough
to identify the correct clusters when we obtain a good es-
timation' of {B(") ... B(®)} . Therefore, in this paper,

I'The estimation is still useful if B(9) is a linear transformation of B(/).

first, we propose to estimate B(/) via approximating x with
a multilayer neural network, i.e.,

x; = hw(BYY), x; € Cy, )

where hyy denotes a multilayer neural network with param-
eter set YV and C; denotes the j-th cluster. It is difficult

to obtain {BM- ..., B(®} directly. Instead, we estimate
BU)v,, i.e., z; := BU)¥;. Thus we propose to solve

minimize Z x: — k()%
Wz1,....20} 3
subject to  z; GSi, 1=1,...,n,

where S; denotes the true cluster x; should belong to. N-
evertheless, it is impossible to sovle (3) directly because
S; are unknown. Now we introduce a new variable D =
DM D ... D®]. It contains k blocks and D) €
RP¥d DY) = 1,u=1,....d,j =1,...,k Note that
d > rjforall j = 1,...,k. We hope that DU) has the
same column space as BU), j = 1,... k. Then accord-
ing to the assumption we made in Problem 2, for all j # [,

DY "D®||; should be small enough, i.c.,

N T .
DY DO p <7, j#£L )

where 7 is a small constant.
Denote o; = arg max; |z DU |. We expect

Hz;rD(O”)H > rgléax Hz;rD(j)H, i=1,....,n. (5
JF

In other words, z; is only highly correlated with one block
of D. Now we use an encoder h),, with parameter set W’
to represent z;, i.e.,

z; = hjy (xi), i=1,...,n. (6)
For convenience, we let
)A(i = hw(zi), Z:].,,TL (7)

and denote X = [X1,...,%,]. Now putting (3), (4), (5),
(6), and (7) together, we solve

)

WwWwW.D 2n
subjectto |[DV || =1, u=1,....d, j=1,...,k,
N T
DY DO||p <7, 5 #L,
|z D] > max |z, DD, i=1,...,n.
J7F

®)
Note that in (8), z; are just intermediate variables according
to (6) and we do not need to explicitly optimize them. In
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Figure 2. A toy example of Problem 1.

(8), the first constraint is to control the size of the columns
of D, otherwise |z D(®)|| may become zero. The sec-
ond constraint is to comply the assumption of dissimilarity
between different subspaces made in Problem 1. The last
constraint plays a role of subspace allocation. Note that our
method (8) is still applicable to Problem 1, provided that
the neural network is able to learn a g(BU)v) to effectively
approximate the f;(v) in Problem 1.

3.2. Practical Solution

Now we show how to solve (8) approximately. For con-
venience, we let

LRecon =

1 2
%ani—xiur ©)
i=1

We impose the first constraint in (8) by minimizing the fol-
lowing objective

Deonst = % D DoI1-1, (10)

where © represents the Hadamard product, and I is an iden-
tity matrix of size kd by kd.
For the second constraint in (8), we define

2 . l
F,Jsé,

1 2
— [D"D oo}

1 .
DCons2 125 HD(J)TD(l) H
(11)

Here O is a matrix in which all d-size diagonal block ele-
ments are 0 and all others are 1. Now we can put (10) and
(11) together to get the regularization term on D

DCons = g(DConsl + DConsQ)7 (12)

where £ is a tuning parameter fixed at 10~ in this work.

For the last constraint in (8), we propose a novel sub-
space affinity S in this paper to measure the relationship
between the embedded representation Z and the subspace
bases proxy D

|2/ DWD|[3 + nd
>, (|27 D@ |7 +nd)’

13)

ij =

Algorithm 1 Work flows of the proposed method

Input: Data matrix X, embedding dimension p, subspace
dimension d, number of clusters k, hyper-parameters 7 and
B, total training epochs 7.
Output: Cluster labels C.

1: Initialize the network by the pre-trained weights.

2: Initialize the subspace D with k-means clustering.

3: fort =1to 7 do

4:  Learn embedded representation Z.

5. Compute the subspace affinity S by (13).

6:  Compute the refined subspace affinity S by (14).

7 Compute the loss terms L gecon and Lgyp by (9) and
(15).

Compute the regularization term D¢y s by (12).
Update the network parameters and the subspace D
by minimizing the objective function (16).

10: end for

11: Use (17) to obtain the final updated cluster labels.

12: return Cluster labels C.

o x

where 7 is a parameter controlling the smoothness. Thus s;;
represents the probability that the embedded representation
z; belongs to the j-th subspace represented by D). We
further introduce a refined subspace affinity .S defined by

< S/ s
(s i)

S aims to emphasize those assignments with high confi-
dence in S. In other words, S can be employed as a self-
supervised information, that yields the following subspace
clustering objective

(14)

Lsuwy = KL(S||S) =

Z Z 5ij log (15)

Now we define an unconstrained relaxation of (8) as
L= LRecon + DCons + BLSqu (16)

The training flows of the proposed method is presented in
Algorithm 1. The proposed method achieves a joint opti-
mization of subspace clustering and embedded representa-
tion learning. The initialization of D is given by the column
space of the clusters generated by k-means on the Z of the
pre-trained model. When the training of the network is fin-
ished, the final clustering results can be obtained by

C; = argmax s;;. 17
J

3.3. Universal Approximation and Converting
Problems

One may argue that neural networks have universal ap-
proximation ability such that the subspace clustering prob-



lem can be transformed to a distance-based clustering prob-
lem such that k-means and DEC [40] apply, or a distance
based clustering problem can be converted to a subspace
clustering problem. Here we generate two synthetic dataset-
s to show how the converting performs. The first dataset is
for distance-based clustering and is generated by

X9 ~ Ny, 1), i=1,...,1000,
RS Rmv Mg~ U(*l, 1)7
and followed by xgj ) — sin(xl(j )), where m = 100 and
7 =1,...,10. The second dataset is for subspace clustering

and is generated by

(18)

x =sin(BYv,), vi ~N(0,I), i=1,...,1000,

BY ¢ R™*P B ~ N(0,1),

19)
where m = 100, p = 2, and j = 1,...,10. We also add
Gaussian noise to the datasets, i.e., X «+— X + N, where
the standard error of the noise is 0.2 times of the standard
error of the clean X.

The performance of DEC [40], IDEC [18], and our
method is shown in Fig. 3. The first plot indicates that it is
relatively easy to convert a distance-based clustering prob-
lem to a subspace clustering problem as the accuracy of our
method is quite high. The second plot indicates that it is
very difficult to convert a subspace clustering problem to
a distance-based clustering problem since DEC and IDEC
failed. One possible reason is that it is easier to convert a
Euclidean distance (e.g. ||u; — uz||) to a subspace affinity
(e.g. v{ V). For example, let vi = ¢(uy) and vo = ¢(us),
where ¢ is the feature map of a radial basis function, e.g. a
Gaussian kernel. Then we have

V1TV2 = exp(—7[juy — ll2||2),

where v > 0 is a hyperparameter. Thus the neural network
only need to learn an approximation for ¢, which is not d-
ifficult. If we exchange the roles of u and v, the network
needs to learn a function h such that ||h(vy) — h(vs)|| is
a monotonic (roughly) transformation of || v{ v ||, which is
quite difficult.

The above result and analysis verified it is necessary to
provide an efficient and accurate deep subspace clustering
method to handle Problem 2 or Problem 1 more generally.

4. Experiment
4.1. Datasets and Evaluation Metrics

To evaluate the clustering performance of our method,
we consider six widely-used benchmark datasets, includ-
ing two gray-scale image datasets (MNIST 2 and Fashion-
MNIST °), three challenging real-world image datasets

Zhttp://yann.lecun.com/exdb/mnist/
3https://github.com/zalandoresearch/fashion-mnist

1 ODEC B@IDEC @Ours 1 ODEC BIDEC @Ours

: - il I

ACC NMI ACC NMI
Euclidean synthetic data

Subspace synthetic data
Figure 3. Comparison of clustering performance on synthetic data
based on Euclidean and subspace principles.

Dataset name  # Total samples # Classes # Size
MNIST 70,000 10 28x28
Fashion-MNIST 70,000 10 28%x28
CIFAR-10 60,000 10 32x32x%3
CIFAR-100 60,000 20 32x32x%3
STL-10 13,000 10 96x96x3
REUTERS-10K 10,000 4 2,000

Table 2. Detailed information of the six benchmark datasets.

(CIFAR-10 *, CIFAR-100, and STL-10 °), and one tex-
t dataset REUTERS-10K °. The detailed information is
shown in Tab. 2.

We use two popular clustering metrics, Clustering Accu-
racy (ACC) and Normalized Mutual Information (NMI), to
quantify the clustering performance. The two metrics take
values in the range of [0, 1], and higher score implies better
clustering performance.

4.2. Experimental Settings

We construct our model with an encoder of architecture
m-500-500-1,000-p fully-connected network and a decoder
symmetric to it. We first pre-train 50 epochs by an auto-
encoder with the same structure, then fit the pre-trained
weight to initialize our model. The Adam [23] optimizer
is used in our method. The learning rate is set as 0.001, the
training epochs are set to 200, the batch-size is fixed as 512,
and the clusters k are given by the categories of the corre-
sponding dataset. In particular, for three real-world image
datasets (STL-10, CIFAR-10, and CIFAR-100), we apply
the ResNet50 [19] to extract their 2,048-dimensional fea-
tures. As for the settings of hyper-parameter, 7 is fixed to
the same value as d, and we further discuss about the impact
of different values of d and /3 on clustering in Sec. 4.6.

4.3. Comparison with Stat-of-the-Art Approaches

In this section, we conduct comprehensive experi-
ments in comparison with the SOTA approaches from
three aspects, including classical approaches (k-means [29],
SC [45], AC [17], and NMF [2]), deep clustering method-
s (AE [1], DAE [36], VAE [24], DEC [40], IDEC [18],

“http://www.cs.toronto.edu/ kriz/cifar.html
Shttps://cs.stanford.edu/ acoates/stl10/
Shttps://keras.io/api/datasets/reuters/



M \ Fashion-MNIST \ CIFAR-10 \ CIFAR-100 \ STL-10 \ REUTERS-10K
ethod/Dataset
\ ACC NMI \ ACC NMI \ ACC NMI \ ACC NMI \ ACC NMI

k-means [29] 0.474 0.512 0.229 0.087 | 0.130 0.084 | 0.192 0.125 | 0.524 0.312
SC [45] 0.508 0.575 0.247 0.103 | 0.136 0.090 | 0.159 0.098 | 0.402 0.375
AC[17] 0.500 0.564 0.228 0.105 | 0.138 0.098 | 0.332 0.239 - -
NMF [2] 0.434 0.425 0.190 0.081 | 0.118 0.079 | 0.180 0.096 - -
AE[1] 0.567 0.553 0.314 0.239 | 0.165 0.100 | 0.303 0.250 | 0.597 0.323
DAE [36] 0.493 0.548 0.297 0.251 | 0.151 O.111 | 0.302 0.224 | 0.582 0.354
VAE [24] 0.607 0.575 0.291 0245 | 0.152 0.108 | 0.282 0.200 | 0.625 0.329
DEC [40] 0.590 0.601 0.301 0.257 | 0.185 0.136 | 0.359 0.276 | 0.618 0.314
IDEC [18] 0.592 0.604 0.316 0273 | 0.191 0.140 | 0.378 0.324 | 0.684 0.351
VaDE [22] 0.578 0.630 0.156 0.036 - - - - 0.723 0.416
JULE [41] 0.563 0.608 0.272 0.192 | 0.137 0.103 | 0.277 0.182 | 0.626 0.405
DAC [6] 0.615 0.632 0.522 0396 | 0.238 0.185 | 0.470 0.366 - -
DCC [4] - - 0.524 0424 - - 0.489 0.371 - -
DCCM [39] - — 0.623 0.496 | 0.327 0.285 | 0.482 0.376 - —
VaGAN-GMM [42] | 0.638 0.633 0.287 0.158 - - - - 0.801 0.536
DSEC [5] - - 0.477 0437 | 0.255 0.212 | 0.481 0.403 | 0.783 0.708
PICA [20] - - 0.696 0.591 | 0.337 0.310 | 0.713 0.611 - -
EDESC (ours) \ 0.631 0.670 \ 0.627 0.464 \ 0.385 0.370 \ 0.745 0.687 \ 0.825 0.611

Table 3. Clustering performance compared with the baseline and state-of-the-art approaches on five experimental datasets. Note that the

best three results are marked in bold.

VaDE [22], JULE [41], DAC [6], DCC [4], DCCM [39],
VaGAN-GMM [42], DSEC [5], and PICA [20]), and sub-
space clustering methods (SSC [1 1], LRR [27], KSSC [32],
DSC-Net [21], k-SCN [49], DASC [52], DPSC [51], PSS-
C [28]). Note that we directly report their experimental re-
sults from related papers.

The clustering performance comparison with classical
clustering and deep clustering approaches are shown in
Tab. 3, where it is observed that our method achieves su-
perior clustering performance on three different types of
datasets. Especially on STL-10, the proposed method out-
performs PICA by 3.2% and 7.6% in terms of ACC and
NMI. Whereas, on the other four datasets, the proposed
method also consistently maintains the top three clustering
performance. Furthermore, since most of the deep cluster-
ing methods are based on the Euclidean distance measure,
the observations also imply that the Euclidean distance-
based measure is not always valid for all data structures,
considering from different measures such as the angular re-
lationship between data may help to reveal a better clus-
tering structure. Table 4 illustrates the performance com-
parison with several subspace clustering approaches. Meth-
ods with SAE means that perform on the features learned
from stacked auto-encoder. The proposed method prevail-
s in both ACC and NMI on fashion-MNIST, while out-
performing other comparative methods significantly on M-
NIST. It is worth noting that since subspace clustering meth-
ods are mostly based on spectral clustering, which requires
the computation of an n x n affinity matrix and leads to
a high time complexity. The comparison of time and s-

Method/Dataset \ MNIST | Fashion-MNIST
| ACC NMI | ACC  NMI
SSC-SAE [11] 0.754 0.662 | 0.523 0.512
LRR-SAE [27] 0.740 0.669 | 0.580 0.591
KSSC-SAE [32] | 0.815 0.845 | 0.571 0.604
DSC-Net [21] 0.532  0.479 | 0.558  0.548
k-SCN [49] 0.833 0.773 | 0.600 0.623
DASC [52] - - 0.617  0.647
DPSC [51] - - 0.624 0.645
PSSC [28] 0.843 0.843 - -
EDESC (ours) | 0913 0.862 | 0.631  0.670

Table 4. Clustering performance compared with several subspace
clustering approaches on MNIST and Fashion-MNIST. Note that
the best results are marked in bold.

pace complexity with several clustering methods referred
to Tab. 1 also demonstrates the advantage of the proposed
method in terms of computational cost. Moreover, the com-
parison in running time with several clustering methods are
also shown in Tab. 5, which further demonstrate the effi-
ciency of our method. It should be mentioned that the pro-
posed method can be implemented with mini-batch, i.e., it
has the potential to be extended to online clustering issue,
which will be discussed in Sec. 4.8.

4.4. Qualitative Study

Visualization of Embedded Representation. Figure 4
presents the t-SNE [35] visualization of the learned embed-
ded representation on the challenging dataset STL-10. In
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Figure 4. Visualization of the embedded representations with t-SNE on STL-10. Note that the first row shows the visualization of several
methods used as comparison, and the second row shows the visualization of the proposed method during training.

Dataset | MNIST Fashion-MNIST REUTERS-10K
SSC oT oT 13038.84
DSC-Net 5364.85 422553 N/A

DEC | 383.49 346.57 65.92
EDESC (MB) 414.68 372.20 61.09
EDESC (w/o MB)| 68.37 59.43 10.53

Table 5. Running time (second) comparison. MB, OT, and N/A
denote mini-batch, out of memory, and results not available.

the first row, the competitors failed to find a good cluster-
ing structure. In particular, without the guidance of recon-
struction loss, the representation learned from DEC cannot
reflect the data structure well, leading to somewhat inferior
visualization. The second row shows the visualization of the
representation learned by the proposed method in different
epochs, as it is important to understand how the representa-
tion evolves during training. We see that the embedded rep-
resentation becomes more and more discriminative as the
training epochs increase, and the proposed method finally
reveals more significant clustering structures compared to
other methods.

Confusion Matrices. The confusion matrices of the pro-
posed method on STL-10 and REUTERS-10K are shown in
Fig. 5, note that the predicted cluster labels as already pro-
cessed to possess the best mapping to the groundtruth. It
can be found a diagonal structure for both confusion matri-
ces, i.e., majority of the samples are correctly assigned to
the corresponding classes. Moreover, taking the confusion
matrix of STL-10 as an example, there are some interesting
observations. The higher salience in the confusion matrix

)

is always the more relevant category in the logic, e.g., ‘cat’,
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Figure 5. Confusion matrices obtained from the predicted clusters
of our method and groundtruth on STL-10 and REUTERS-10K.

‘dogs’ and ‘monkey’ belong to ‘animal’, while ‘airplane’,
‘ship’, ‘truck’ and ‘car’ belong to ‘transportation’. This is
consistent with the human mind as these things can some-
times be confused in real-world scenarios.

4.5. Ablation Study

In this section, we conduct an ablation study to ex-
plore the impact of each loss term in the proposed method
on the clustering performance. Specifically, we construct
three degradation models through removing the correspond-
ing loss terms and conduct experiment on the STL-10 and
REUTERS-10K datasets. Table 6 summarizes the exper-
imental results of the ablation study, from which we can
draw some conclusions. First, Lz, is important to main-
tain the inherent data structure information during training,
which has a great impact on the clustering performance.
Second, the clustering objective is crucial in training, be-
cause a significant performance decreases can be observed
after removing Lg,; from the training of both datasets.
Third, the constraint on the subspace proxy D can help the
model capture more discriminative embedded representa-



\ STL-10 REUTERS-10K

Methods

\ ACC NMI \ ACC NMI
W/0L Recon 0.512 0.565 | 0.727  0.466
w/oLgyup 0.626 0.658 | 0.662  0.338
wW/0Dcons 0.550 0.618 | 0.799  0.590

Compete EDESC | 0.745 0.687 | 0.825  0.611

Table 6. Ablation study results of the proposed method and its
degradation models.

(a) ACC

Figure 6. Parameter sensitivity of d and (3 of the proposed method
on REUTERS-10K.

(b) NMI

tions, thus improving the clustering performance.
4.6. Parameter Sensitivity

In this section, we analyse the impact of two main hyper-
parameters d and 3 on the clustering performance. Specifi-
cally, we set the range of values of d to [1,2,---,6,7] and
of 5 to [0.01,0.05,--- ,5,10], then conduct experiment on
REUTERS-10K. The clustering performance under differ-
ent parameter values is displayed in Fig. 6, from which we
have the following observations. First, the clustering per-
formance is seriously affected when the value of 3 is too
low, especially on NMI, which illustrates that the proposed
clustering objective is beneficial for clustering. Second, an
excessive /3 also has a negative impact on the clustering per-
formance. One plausible explanation is that the excessive
value influences the learning of the inherent structure of o-
riginal data, resulting in a perturbation of the embedding
space. Third, it seems that NMI is more sensitive to the
changes of d compared to ACC. Nevertheless, they main-
tain relatively good clustering performance at most param-
eter values. Overall, the recommended value of /3 ranges
from [0.1, 1], and d depends on the number of classes in the
dataset, but empirically no more than 10.

4.7. Convergence Analysis

To validate the convergence of the proposed method, we
run 200 epochs on STL-10 and REUTERS-10K datasets,
and then present the convergence curves in Fig. 7. It can
be observed that the both curves nearly flatten out after 25
epochs, and basically reach convergence after 100 epochs,
which demonstrates the convergence and the fast conver-
gence speed of the proposed method.
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0.002
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Figure 7. Convergence curves on STL-10 and REUTERS-10K.
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Figure 8. Online clustering performance on STL-10 and HAR.

4.8. Online clustering

Online clustering aims to cluster streaming data and
hence requires highly efficient algorithms, which is a chal-
lenge to existing subspace clustering methods but can be
handled by our method. Here we apply our method, in an
online manner (detailed in the supplement), to STL-10 and
Human Activities Recognition (HAR) 7 datasets compared
with DEC and IDEC. The clustering performance is shown
in Fig. 8, which verified the feasibility and effectiveness of
our method in online clustering.

5. Conclusion

In this paper, we have proposed a novel deep learning
based subspace clustering method ®. The method has lin-
ear time and space complexity and hence is applicable to
large datasets. The experimental results on many bench-
mark datasets verified that the proposed method has higher
clustering accuracy than its competitors. The main limita-
tion of our work stems from the fully-connected network,
which may be enhanced with more complicated network
structures.
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