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ETH Zürich

Dengxin Dai
MPI for Informatics

ETH Zürich
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Figure 1. Overview of Pix2NeRF: We propose a method for unsupervised learning of neural representations of scenes, sharing a common
pose prior. At test time, Pix2NeRF disentangles pose and content from an input image and renders novel views of the content. Top: π-GAN
is trained on a dataset without pose supervision. Bottom: a trained model is conditioned on a single image to obtain pose-dependent views.

Abstract

We propose a pipeline to generate Neural Radiance
Fields (NeRF) of an object or a scene of a specific class,
conditioned on a single input image. This is a challenging
task, as training NeRF requires multiple views of the same
scene, coupled with corresponding poses, which are hard
to obtain. Our method is based on π-GAN, a generative
model for unconditional 3D-aware image synthesis, which
maps random latent codes to radiance fields of a class of
objects. We jointly optimize (1) the π-GAN objective to uti-
lize its high-fidelity 3D-aware generation and (2) a carefully
designed reconstruction objective. The latter includes an
encoder coupled with π-GAN generator to form an auto-
encoder. Unlike previous few-shot NeRF approaches, our
pipeline is unsupervised, capable of being trained with inde-
pendent images without 3D, multi-view, or pose supervision.
Applications of our pipeline include 3d avatar generation,
object-centric novel view synthesis with a single input image,
and 3d-aware super-resolution, to name a few.

1. Introduction
Following the success of Neural Radiance

Fields (NeRF) [23], encoding scenes as weights of
multi-layer perceptrons (MLPs) has emerged as a promising
research direction. Novel View Synthesis is an important
application: given sparse sample views of a scene, the task
is to synthesize novel views from unseen camera poses.
NeRF addresses it by encoding color and volume density at
each point of the 3D scene into a neural network and uses
traditional volume rendering to compose 2D views.

While NeRF is capable of synthesizing novel views with
high fidelity, it is often impractical due to being “overfit-
ted” to a given scene and requiring multiple views of the
scene to train. Several follow-up works attempt to address
these limitations via making NeRF generalize to new scenes.
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Major progress has been made in training a general NeRF
capable of encoding a scene given only one or a handful
of views [5, 7, 16, 40, 41, 46]. However, these works are
designed to work well only with multi-view images during
either training or both training and inference.

One reason why single-shot NeRF, or in general single-
shot novel view synthesis is challenging, is the incomplete
content information within a single image. For example,
given a frontal image of a car, there is very little informa-
tion to infer a novel view from the back directly. Bringing
back the traditional inverse graphics and 3D reconstruction
pipelines, [44] addresses this issue by making an additional
assumption on the symmetry of the scene to interpolate po-
tentially missing geometry information within a single image.
However, this technique is limited to scenes where symmetry
can be introduced and does not tackle the general case.

Therefore, a natural follow-up question is how does a
human brain address such a challenging task? One of the
approaches we use unconsciously is learning a prior implicit
model for object categories and mapping what we observe to
the learned model. This line of thinking is already explored
in prior works [40, 46]. An essential part missing from these
works is ensuring that novel views also meet our expectation
of the object class, and due to the lack of supervision from a
sole image, this is normally done via imagination.

One of the closest forms of imagination developed by
the machine learning community is Generative Adversarial
Networks [13]. GANs have been very successful in im-
age synthesis and transformation. Beyond 2D, studies have
shown GAN’s capability of synthesizing 3D content [24]
from natural images. This suggests another approach to ad-
dress 3D reconstruction without multi-view images via 3D
GAN inversion. Such a strategy bypasses the problem of
missing information within one sole image due to GAN’s
adversarial training. Existing works [31, 47] utilize such a
method based on HoloGAN [24], StyleGAN [47], and oth-
ers, but one of the drawbacks naturally from these 3D-aware
generative models is their relatively weak 3D consistency.

With the rapid increase of NeRF [23] popularity, cor-
responding generative models are also gaining attention.
GRAF [35] and π-GAN [2] follow traditional GAN settings
by mapping latent codes to category-specific radiance fields.
These generative models typically have high 3D consistency
due to the built-in volumetric rendering design. This obser-
vation suggests the possibility of few-shot 3D reconstruction
using adversarial training and radiance fields.

In this paper, we formulate the task of translating an input
image of a given category to NeRF as an end-to-end pipeline
termed Pix2NeRF (Fig. 1). The method can perform novel
view synthesis given a single image, without the need of pre-
training, annotation, or fine-tuning. Pix2NeRF can be trained
with natural images – without explicit 3D supervision, in
an end-to-end fashion. Inspired by prior works [31, 40, 46],

we introduce an encoder mapping a given image to a latent
space. We jointly optimize several objectives. First, we train
π-GAN and the added encoder to map generated images
back to the latent space. Second, we adapt the encoder
coupled with π-GAN’s generator to form a conditional GAN,
trained with both adversarial and reconstruction loss. We
show that merely doing π-GAN inversion is challenging and
insufficient to complete our goal, and adaptation is important
for calibrating learned representations of the encoder and
generator. Our framework is able to instantiate NeRF in
a single shot manner while naturally preserving the ability
to synthesize novel views with high fidelity, comparable to
state-of-the-art generative NeRF models.

Contributions.

– We propose Pix2NeRF, the first unsupervised single-shot
NeRF model, that can learn scene radiance fields from
images without 3D, multi-view, or pose supervision.

– Our pipeline is the first work on conditional GAN-based
NeRF, or in general, NeRF-based GAN inversion. We
expect our pipeline to become a strong baseline for future
works towards these research directions.

– We demonstrate the superiority of our method compared
with naive GAN inversion methods and conduct an exten-
sive ablation studies to justify our design choices.

2. Related works
Our work can be classified as a category-specific 3D-

aware neural novel view synthesis method, which is strongly
based on NeRF [23] and π-GAN [2].

Neural scene representations. The field of encoding a scene
into neural networks has proven to be a promising research
direction. This includes, but is not limited to: parameteriz-
ing the geometry of a scene via signed distance functions
or occupancy [6, 22, 28, 36], encoding both geometry and
appearance [18,26,33,38], etc. Recently, the impressive per-
formance of Neural Radiance Fields (NeRF) [23] has drawn
extensive attention to this field. It encodes a scene as a multi-
variable vector-valued function f(x, y, z, θ, ϕ) = (r, g, b, σ)
approximated by MLP, where (x, y, z) denotes spatial co-
ordinates, (θ, ϕ) denotes viewing direction, and (r, g, b, σ)
corresponds to color and volume density. This function
is then called repeatedly by any of the volume rendering
techniques to produce novel views. The outstanding per-
formance of NeRF inspired follow-up works to extend it
towards alternative settings, such as training from uncon-
strained images [20], training without poses [21, 43], etc.

NeRF-based GANs. Following the developments of GANs
and NeRFs, several works tried combining them to form gen-
erative models producing NeRFs. One of the first attempts
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in this direction is GRAF [35]; it performs category-specific
radiance fields generation by conditioning NeRF on shape
and appearance code. Following the NeRF pipeline, the
generator can synthesize an image given a random code and
a view direction. The generated image is passed into the
discriminator together with real images, thus implement-
ing a GAN. GRAF is an unsupervised model, since it does
not require ground truth camera poses; therefore, it can be
trained using ”in the wild” images. This is done by intro-
ducing a pose prior relative to a canonical view frame of
reference, e.g., Gaussian distribution to describe head pitch
and yaw relative to a front face view. π-GAN [2] is sim-
ilar to GRAF, but conditions on a single latent code and
utilizes FiLM [10, 30] SIREN [37] layers instead of simple
MLPs. More recently, several works improved synthesis
quality with high resolutions [14], better 3D shapes [45], and
precise control [25, 48].

Few-shot NeRF. The main property of NeRFs is the ability
to bake in a 3D scene into MLP weights. However, this
is also a limitation since it must be retrained for each new
scene, which takes a lot of time and money. To lift this con-
straint, PixelNeRF [46] and GRF [40] condition MLPs on
pixel-aligned features extracted by a CNN encoder. During
the novel view rendering phase, 3D points along the rays are
projected onto the extracted feature grid to get aligned fea-
tures, then fed into an MLP with the points. More recently,
CodeNeRF [16] suggested training NeRF with learnable la-
tent codes and utilizing test-time optimization to find the best
latent codes (and camera poses) given an image. However,
these methods still require multi-view supervision during
training, which constrains their usage in real-world settings,
where multi-view datasets are challenging to collect.

Therefore, single-shot NeRF without additional super-
vision (e.g., 3D objects, multi-view image collections) re-
mains an under-explored research direction. In this paper,
we bridge this gap by incorporating an auto-encoder archi-
tecture into an existing π-GAN NeRF framework to obtain
a conditional single-shot NeRF model, retaining the best
properties of all components. We note that the concurrent
work [31] shares similar ideas. The key differences are a
different backbone network (HoloGAN [24]) and its lack
of 3D consistency, which the authors point out. Contrary,
we utilize the newly-proposed NeRF-based GAN method
called π-GAN [2], which naturally provides stronger 3D
consistency by design. We demonstrate that merely applying
the approach of [31] is insufficient to obtain an accurate map-
ping from image to latent space with π-GAN as a backbone.

3. Method
Pix2NeRF consists of three neural networks, a Generator

G, a Discriminator D, together forming a Generative Adver-

sarial Network, and an Encoder E forming an auto-encoder
together with G. The generator is conditioned on the output
view pose d and a latent code z, broadly describing content
variations, such as color or shape. It employs 3D-volume ren-
dering techniques and outputs a single parameterized scene
view as RGB image I . The discriminator D is a CNN, which
simultaneously predicts distribution origin of the input RGB
image via logit l (real – “in the wild”, or fake – generated by
G), and the corresponding scene pose d. The encoder E is a
CNN tasked to map an input image onto the latent manifold,
learned by G, and at the same time predict the input’s pose:

G : z, d → I

D : I → l, d

E : I → z, d.

(1)

Functionally, Pix2NeRF extends π-GAN [2] with the en-
coder E trained jointly with the GAN to allow mapping
images back to the latent manifold. Because the encoder E
disentangles the content z and the pose d of the input I , con-
tent can be further used to condition the π-GAN generator
G and obtain novel views by varying the rendered pose d.

Having defined network modules, we turn to specifying
the inputs and outputs of the modules. The latent code
z comes from a simple prior distribution pz (multivariate
uniform in our case) – it makes sampling random codes
zrand easy and lets us design E such that it can encode
any input image I into some zpred within the support of
pz . Following prior art [2, 35], the unsupervised setting we
operate in assumes we have access to the prior distribution
of poses pd of real images Ireal ∼ preal used for training.
Depending on the dataset and choice of pose coordinates, it
can be multivariate Gaussian with diagonal covariance (for
images of faces) or uniform on a (hemi-)sphere (for images
of cars). Parameters of this distribution must be known to
allow easy sampling random poses drand for the generator,
and that pd is representative of poses of real images Ireal.

Simply training the encoder E to map an image I into
GAN latent space (as in Stage 1 of [31]) simultaneously with
training GAN is challenging. This is because the encoder
needs to correctly map images of the same scene from dif-
ferent views to a single latent code. This is especially hard
when these views contain variations of fine details due to
occlusions. As seen from Eq. 1 and the design Fig. 2, our
method disentangles latent representation of image mapped
by the encoder and generator input into content z and pose
d, which undergo separate treatment.

Given an input image, Pix2NeRF disentangles pose and
content and produces a radiance field of the content, which
is (1) consistent with the input under the disentangled pose
and (2) consistent and realistic under different poses from
pd. To achieve these properties, we devise several training
objectives for (1) generator, (2) discriminator, (3) GAN in-
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Figure 2. Overview of building blocks and objectives, used in Pix2NeRF. GAN objectives follow π-GAN [2] and ensure that NeRF outputs
match the distribution of real images preal under the latent prior pz and pose prior pd. Reconstruction and GAN inversion objectives ensure
calibrated latent representations, such that E and G can operate as an auto-encoder, similar to [31]. The conditional adversarial objective
enables learning better representations without explicit pose supervision. Legend: green - trained module, blue - frozen, gradient - warm-up.

version, (4) reconstruction, and (5) conditional adversarial
training.

These objectives are used to compute gradients for param-
eters of G, D, and E within a single optimization process.
However, certain parts remain “frozen” during optimizer
updates (such as G during D updates and vice-versa); we
denote them with an asterisk in equations (e.g., G∗) and blue
color in Fig. 2. We empirically find that training encoder
from the start has a detrimental effect on the whole pipeline
and employ a warm-up strategy (denoted with green-blue
transitions), explained further.

3.1. GAN generator objective

The generator is trained to “fool” the discriminator by
serving it progressively realistic images. Pix2NeRF follows
the same procedure of training the generator as π-GAN: it
samples latent codes zrand ∼ pz and random poses drand ∼
pd in pairs, which are then passed through the generator to
obtain fake generated images:

Igen = G(zrand, drand), (2)

which are further fed into the frozen discriminator:

lgen, dgen = D∗(Igen). (3)

Following [2], another component helpful to the stability
and performance of GAN training is MSE supervision of
predicted poses dgen of images generated with drand. It
penalizes the generator if the image pose recovered by the
discriminator does not correspond to the sampled pose, thus
setting the goal of learning a “canonical” 3D space. This
is especially helpful if the pose distribution of real data is
noisy, such as seen in CelebA [19].

LGAN(G) = E
zrand∼pz
drand∼pd

[
softplus (−lgen) +

λpos ∥drand − dgen∥22
]
,

(4)

where λpos is a tuned weighting factor.

3.2. GAN discriminator objective

The discriminator is trained to distinguish between the
generated fake samples and real data sampled from the
dataset. Pix2NeRF follows the exact procedure of train-
ing the discriminator in π-GAN: it samples latent codes
zrand ∼ pz and random poses drand ∼ pd in pairs, which
are then passed through the frozen generator to obtain fake
generated images:

Igen = G∗(zrand, drand). (5)

The discriminator is then trained using these generated im-
ages Igen and real images Ireal ∼ preal:

lreal, dreal = D(Ireal),

lgen, dgen = D(Igen).
(6)

The discriminator objective modified to take into account
MSE supervision over the known pose can then be formu-
lated as follows:

LGAN(D) = E
Ireal∼preal

[
softplus (−lreal)

]
+

E
zrand∼pz
drand∼pd

[
softplus (lgen) +

λpos ∥drand − dgen∥22
]
,

(7)

where λpos is a tuned weighting factor.

3.3. GAN inversion objective

The encoder E is jointly optimized with the discrimi-
nator D and reuses Igen computed for GAN discriminator
objective Eq. (5):

zpred, dpred = E(Igen). (8)

This objective aims to ensure consistency between the sam-
pled content and pose and those extracted from the generated
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image by the encoder. This is done using the MSE loss:

LGAN−1(E) = E
zrand∼pz
drand∼pd

[
∥zpred − zrand∥22 +

∥dpred − drand∥22
]
.

(9)

Up until now, the objectives only ensured a generative map-
ping from the latent space to radiance fields and some basic
form of consistency to learn auto-encoder. However, our
experiments show that optimizing just these three objec-
tives does not produce a reasonable mapping. Therefore,
Pix2NeRF adds two more objectives to address reconstruc-
tion quality and 3D consistency in the unsupervised setting.

3.4. Reconstruction objective

While the GAN inversion objective promotes consistency
in latent space, nothing so far directly promotes consistency
in the image space. To this end, we condition the generator
G on a real image by extracting its latent code and pose
prediction using the encoder, and then render its view using
the predicted pose:

zpred, dpred = E (Ireal)

Irecon = G (zpred, dpred) .
(10)

Ideally, we expect to get back the original image. However,
using MSE loss alone in the image space is known to pro-
mote structural inconsistencies and blur. In line with [31], we
employ Structural Similarity Index Measure loss (SSIM [42])
with weighting factor λssim and a perceptual loss (VGG [44])
with weighting factor λvgg. We can therefore aggregate the
reconstruction loss as follows:

Lrecon(G,E) = E
Ireal∼preal

[
∥Irecon − Ireal∥22 +

λssimLssim (Irecon, Ireal) +

λvggLvgg (Irecon, Ireal)
]
.

(11)

3.5. Conditional adversarial objective

The reconstruction objective promotes good reconstruc-
tion quality for just one view extracted by the encoder E.
This may push the combination of networks towards either
predicting trivial poses or unrealistic reconstructions for
other poses from pd. To alleviate that, we further apply an
adversarial objective while conditioning the generator on an
image Ireal when it is rendered from random poses. Reusing
results from Eq. (10),

lcond, dcond = D∗(G (zpred, drand))

Lcond(G,E) = E
Ireal∼preal
drand∼pd

[
softplus (−lcond)

]
. (12)

3.6. Encoder warm-up

As pointed out in [31], reconstruction loss may easily
dominate and cause the model overfitting towards input
views while losing its ability to represent 3D. We, there-
fore, introduce a simple “warm-up” strategy to counter this
issue. For the first half iterations of the training protocol, we
freeze the encoder while optimizing reconstruction and con-
ditional adversarial loss and optimize only the generator for
these two objectives. This serves as a warm-up for the gen-
erator to roughly learn the correspondence between encoder
outputs and encoded images. The encoder is then unfrozen,
enabling further distillation of its learned representations.

After the warm-up stage, the encoder and generator di-
rectly form a pre-trained auto-encoder capable of produc-
ing 3D representations close to ground truth, bypassing the
cumbersome early-stage reconstruction objective, which is
extremely hard to balance with GAN objectives. We show
the necessity of this strategy and comparison with merely
assigning a smaller weight for reconstruction loss in the
ablation studies.

3.7. Training and Inference

The objectives mentioned above can be trained jointly;
however, we optimize them in alternative iterations due to
GPU memory constraints. The discriminator and GAN in-
version objectives are optimized upon every iteration; the
GAN generator objective is optimized on even iterations;
reconstruction and conditional adversarial objectives are op-
timized jointly during odd iterations with weighting factor
λrecon:

Lodd = Lcond + λreconLrecon. (13)

During the inference stage, Pix2NeRF only requires a
single input image, which can be fed into the encoder E and
then generator G, coupled with arbitrarily selected poses for
novel view synthesis. At the same time, instead of obtaining
the latent code z from the encoder, it is possible to sample it
from the prior distribution pz , to make the model synthesize
novel samples like a π-GAN.

4. Experiments
4.1. Evaluation

Datasets. We train and evaluate our pipeline on several 3D
datasets listed below. CelebA [19] is a dataset of over 200k
images of celebrity faces. We use its “aligned” version and
apply center cropping to keep the face area roughly. We hold
out 8k images as the test set. CARLA [8] contains 10k im-
ages of 16 car models rendered with Carla driving simulator
with random textures. ShapeNet-SRN is a dataset hosted
by the authors of SRN [38], from which we use the “chairs”
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Figure 3. Reconstructions and novel views on CARLA [8], CelebA [19], and ShapeNet-SRN [4, 38] chairs. See Appendix for more results.

split for the comparison with prior multi-view methods. The
dataset contains 50 rendered views from ShapeNet [4] with
Archimedean spiral camera poses for each of the 6591 in-
stances. As the ShapeNet-SRN dataset does not include the
lower hemisphere in its validation and test sets, we filter the
training set to contain only the upper hemisphere as well.

Evaluation metrics. Pix2NeRF is evaluated in two modes:
unconditional, which assumes sampling directly from pz
and pd, and conditional, which corresponds to using z =
E(Ireal), Ireal ∼ preal, while still sampling from pd. For
“in the wild” datasets, as we do not possess multi-view
ground truth images, we resort to reporting generative met-
rics: Inception Score (IS) [34], Frechet Inception Distance
(FID) [15], and Kernel Inception Distance (KID) [1] with
scaling factor ×100 following the steps of prior works [2,35]

using the implementation [27]. To compare with multi-view-
based novel view synthesis methods on Shapenet-SRN, we
follow the evaluation protocols in pixelNeRF and CodeN-
eRF and report PSNR (Peak Signal to Noise Ratio) and
SSIM (Structural Similarity Index Measure) [42].

Technical details. We choose the latent code prior distribu-
tion pz as a multivariate uniform on [−1, 1]. We build our
model on top of the π-GAN implementation in PyTorch [29],
re-using its released generator and discriminator architec-
tures. We also use the discriminator architecture as the
backbone of our encoder, where we add a tanh at the end
of the latent code head. All models are optimized with
Adam [17] optimizer for 300k iterations, which is approx-
imately the same computational cost to obtain a π-GAN
model. CelebA [19] models are trained with batch size 48
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64 × 64 128 × 128
Method FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑
HoloGAN [24] - 2.87 - 39.7 2.91 1.89
GRAF [35] - - - 41.1 2.29 2.34
π-GAN [2] 5.15 0.09 2.28 14.7 0.39 2.62

Pix2NeRF unconditional 6.25 0.16 2.29 14.82 0.91 2.47
Pix2NeRF conditional 24.64 1.93 2.24 30.98 2.29 2.20

Table 1. Quantitative results on CelebA [19].

64 × 64 128 × 128
Method FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑
HoloGAN [24] 134 9.70 - 67.5 3.95 3.52
GRAF [35] 30 0.91 - 41.7 2.43 3.70
π-GAN [2] 13.59 0.34 3.85 29.2 1.36 4.27

Pix2NeRF unconditional 10.54 0.37 3.95 27.23 1.43 4.38
Pix2NeRF conditional 12.06 0.44 3.81 38.51 2.37 3.89

Table 2. Quantitative results on CARLA [8].

Method PSNR ↑ SSIM ↑
GRF* [40] 21.25 0.86
TCO* [39] 21.27 0.88
dGQN* [12] 21.59 0.87
ENR* [11] 22.83 -
SRN** [38] 22.89 0.89
PixelNeRF* [46] 23.72 0.91
CodeNeRF** [16] 22.39 0.87

Pix2NeRF conditional 18.14 0.84

Method FID ↓ KID ↓ IS ↑
HoloGAN [24] - 1.54 -
π-GAN [2] 15.47 0.55 4.62

Pix2NeRF unconditional 14.31 0.51 4.62
Pix2NeRF conditional 17.55 0.59 4.36

Table 3. Quantitative results on ShapeNet-SRN [4, 38] chairs. Top:
reconstruction metrics (128 × 128). Bottom: generative metrics
(64 × 64). Legend: * – requires multi-view training data; ** –
requires multi-view training data and test time optimization.

on resolution 64×64, where we sample 24 points per ray.
We use learning rates of 2e-4, 6e-5, and 2e-4 for discrimi-
nator, generator, and encoder, respectively. For all other
models, we utilized π-GAN [2]’s progressive training strat-
egy, starting with training on resolution 32×32 with learning
rates 4e-5, 4e-4, and 4e-4 for generator, discriminator, and
encoder, respectively, with 96 sampled points per ray. We
increase to resolution 64×64 with learning rates 2e-5, 2e-4,
and 2e-4 for generator, discriminator, and encoder, respec-
tively, and sample 72 points per ray after 50k iterations.
We empirically set λrecon = 5, λssim = 1 and λvgg = 1
for all datasets. For CelebA [19], we follow [2] and set
λpos = 15. For CARLA [8] and ShapeNet-SRN [4, 38], we
set λpos = 0 as we do not observe significant difference. We
use |z| = 512 for CelebA [19] and |z| = 256 for CARLA [8]

and Shapenet-SRN [4, 38].

Quantitative results. We show the evaluation on
CelebA [19] and CARLA [8] in Tables 1 and 2 respectively.
We also show evaluation with the same generative metrics on
ShapeNet-SRN in Table 3 (bottom). We observe that even
though our model’s conditional synthesis is not as good as
our backbone π-GAN (especially on CelebA), it is on par
with other prior 3D view generation methods [24, 35].

Since we do not explicitly enforce prior distribution pz on
the encoded samples E(Ireal) from preal, the image of preal
resulting from the encoder mapping may occupy a small
portion in pz . Thus, conditioning on preal naturally leads to
a smaller variation in samples from pz , and hence, smaller
diversity of NeRF outputs. For this reason, directly sam-
pling randomly from pz (unconditionally) achieves better
performance as measured by the generative metrics. Addi-
tionally, our generator outperforms π-GAN on most met-
rics on CARLA [8] and ShapeNet-SRN [4, 38]. Results on
CelebA [19] are less consistent due to dataset noise (back-
ground, geometry, pose noise, artifacts, etc.), encouraging
GANs to converge towards the mean as a trade-off to varia-
tions. These observations can be related to manifold learn-
ing [9], where we enforce the existence of a latent code for
each real image in the train set.

We compare our method with other single-image 3D infer-
ence methods in Table 3 on ShapeNet-SRN [4, 38] in 128 ×
128 resolution. Since our model assumes a strictly-spherical
camera parameterization model, which does not correspond
well to the ground truth poses of ShapeNet-SRN [4, 38], we
use our encoder to extract poses from the images.

Despite being generative, unsupervised, and not requiring
test time optimization in contrast to all other methods, our
model’s performance does not drop much below the compe-
tition. Considering that other models were trained on 128,
while our models were trained on 64 × 64 but rendered at
128 × 128 resolution, we observe a super-resolution effect.

Qualitative results. We show some qualitative results of
our model’s performance on CARLA [8] and CelebA [19] in
Fig. 3. We can see that our model can synthesize novel views
with good quality while existing few-shot NeRF methods [16,
40, 46] are not able to train on these “in the wild” datasets
due to the lack of multi-view supervision. Our model can
also produce decent 3D representations even under extreme
poses and artifacts (see row 5).

4.2. Ablation studies

We perform a thorough ablation study to verify our design
choices by removing the key components one by one and
training models under identical settings as the full model.
Qualitative results for the following ablations are in Fig. 4;
refer to Appendix for the corresponding quantitative results.
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Figure 4. Qualitative results of ablation studies, obtained with an
image from the test split of CelebA [19]. λrecon is set to 1 for
lower reconstruction weights instead of the warm-up ablation. See
Appendix for results obtained by using other λrecon values.

Naive GAN inversion. We compare Pix2NeRF with naive
GAN inversion: having a pre-trained GAN, we freeze its
weights and train an encoder to map images to their corre-
sponding latent codes. The results show that the encoder
can learn an approximate mapping from images to latent
code. However, due to the lack of joint distillation, the
reconstruction is off from the input image.

Auto-encoder. Another potential approach is to utilize π-
GAN’s architecture as an auto-encoder, in which the latent
space is dropped from the pipeline and training the recon-
struction and conditional adversarial objectives only. Under
this setting, while the reconstruction achieves decent qual-
ity, we can observe visible 3D inconsistency, suggesting
difficulty of optimization with the remaining objectives.

No GAN inversion. We proceed with ablations by remov-
ing the GAN inversion step from the pipeline. The visual
results turn out to be blurry and uncanny compared with
full settings. One possible explanation is that this step is
a connection between π-GAN training and reconstruction,
which significantly affects the overall performance.

No conditional adversarial objective. We further deacti-
vate the conditional adversarial loss and retrain the model.
As a result, the renderings become incomplete and have clear
visual artifacts. In addition, 3D consistency degrades signifi-
cantly, which justifies this objective in the given setting.

Warm-up. To verify the effect of the warm-up strategy, we
train three separate models and compare their performances:
without warm-up, without unfreezing encoder (always warm-
up), and assigning a lower weight for reconstruction instead

of the warm-up. Without the warm-up strategy, the model
tends to overfit the input view and cannot produce meaning-
ful content from novel poses. If we only use the warm-up
strategy and never unfreeze the encoder, the distillation is
relatively weak, which results in few fine details. With lower
reconstruction weight instead of the warm-up, the balance
between reconstruction and adversarial objective is missing,
resulting in mode collapse for novel view synthesis.

5. Conclusions

In this paper, we introduced Pix2NeRF, a novel unsuper-
vised single-shot framework capable of translating an input
image of a scene into a neural radiance field (NeRF), thereby
performing single-shot novel view synthesis. The key idea
of Pix2NeRF is to utilize generative NeRF models to inter-
polate missing geometry information. This is accomplished
by jointly training an encoder that maps images to a latent
space, which disentangles content and pose, and the genera-
tive NeRF model while keeping these two parts dependent
on each other. Pix2NeRF can go beyond the auto-encoder
setting and perform novel scene generation by sampling
random content and pose and passing through the generator.
Our framework demonstrates high reconstruction quality and
3D consistency, on par and better than previous works.

Limitations and future work. The current setting in con-
sideration is limited to one category per dataset and cannot
directly generalize beyond the chosen category. Alternative
research directions include local conditional fields similar to
PixelNeRF [46] and GRF [40], which can generalize to un-
seen categories, multi-instance, and even real-world scenes.
Being a general framework, Pix2NeRF is not limited to using
π-GAN as its backbone. Newer generative NeRF models,
e.g. EG3D [3] could potentially achieve better visual quality.
Additionally, architecture search, especially with respect to
the encoder remains a challenging problem. Utilizing more
mature encoder architectures from 2D GAN feed-forward
inversion literature, e.g. pixel2style2pixel [32], could poten-
tially improve the performance of Pix2NeRF significantly.

Ethical consideration. As with most modern conditional
generative models, Pix2NeRF can be misused by generating
content to spread misinformation or perform targeted attacks.
The growing popularity of deepfake celebrity accounts in
social media suggests that new use cases, markets, and novel
ways of monetizing this kind of data will follow.
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