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Abstract

Monocular 6D pose estimation is a fundamental task
in computer vision. Existing works often adopt a two-
stage pipeline by establishing correspondences and utiliz-
ing a RANSAC algorithm to calculate 6 degrees-of-freedom
(6DoF) pose. Recent works try to integrate differentiable
RANSAC algorithms to achieve an end-to-end 6D pose es-
timation. However, most of them hardly consider the geo-
metric features in 3D space, and ignore the topology cues
when performing differentiable RANSAC algorithms. To
this end, we proposed a Depth-Guided Edge Convolutional
Network (DGECN) for 6D pose estimation task. We have
made efforts from the following three aspects: 1) We take
advantages of estimated depth information to guide both the
correspondences-extraction process and the cascaded dif-
ferentiable RANSAC algorithm with geometric information.
2) We leverage the uncertainty of the estimated depth map to
improve accuracy and robustness of the output 6D pose. 3)
We propose a differentiable Perspective-n-Point(PnP) algo-
rithm via edge convolution to explore the topology relations
between 2D-3D correspondences. Experiments demon-
strate that our proposed network outperforms current works
on both effectiveness and efficiency.

1. Introduction
Object pose estimation is a task of calculating the 6 de-

grees of freedom (DoF) pose of a rigid object, including its
location and orientation in an image. It is widely used in
the three-dimensional registration of AR [1, 28, 45], robotic
vision [27, 31] and 3D reconstruction [9, 10]. Due to the
presence of noises and other influential factors, such as the
occlusion, noisy background, and illumination variations,
accurately estimating the 6DoF poses of the objects in the
RGB image is still a challenging problem.

*Chunxia Xiao and Fei Luo are co-corresponding authors
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Figure 1. Pipeline of DGECN. With an input RGB image, we
propose a novel DGECN to simultaneously predict segmentation
and depth maps. After established 2D-3D correspondences, we
replace the RANSAC/PnP with a learnable DG-PnP to regress 6D
pose.

Current object pose estimation methods can be divided
into two types: 1) the object poses are estimated using a sin-
gle RGB image [17, 27, 28, 31, 45] or 2) an RGB image ac-
companying a depth image [14,39,41]. For both RGB based
and RGB-D based methods, the keypoints-based works are
dominant in this field. On the other hand, methods based
on direct regression are usually inferior to keypoints-based
methods. The keypoints-based methods usually consist of
two stages: firstly it predicts the 2D location of the key-
points of the 3D model on RGB images via a modern neu-
ral network. And then calculate the 6D pose parameters
with the RANSAC-based Perspective-n-Point (PnP) method
from 2D-3D correspondences. Although many representa-
tive works [15,22,25,33,35,36] have proven the validity of
the two-stage pipeline, there are still many limitations in it.
Firstly, few methods can directly output the 6D pose param-
eters. Most of the existing methods still use a variant of the
RANSAC-based PnP algorithm to estimate the pose param-
eters. Secondly, RANSAC-based PnP can be very time-cost
when the 2D-3D correspondences are dense. Thirdly, the
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network in most two-stage works cannot directly output 6D
pose, so their loss functions cannot optimize our expected
pose estimation. Finally, the two-stage estimation may lead
to significant accumulative error, which gradually increases
among the two connected steps.

Recently, some works try to integrate a differentiable
RANSAC algorithm into the pipeline, so the network can be
trained end-to-end. Brachmann et al. [3] proposed a differ-
entiable PnP method. Hu et al. [16] leveraged PointNet [29]
to approximate PnP for sparse correspondences. But these
works either require a cumbersome training process or do
not consider the geometry clues. Wang et al. [42] made an
end-to-end framework by replacing RANSAC-based PnP
with Patch-PnP, this method works well, but it relies on the
Dense Correspondences Map and Surface Region Attention
Map in their network. It can hardly directly learning 6D
pose from 2D-3D correspondences.

To this end, we propose Depth-Guided Edge Convolu-
tional Network (DGECN), jointly handling the correspon-
dences extraction and the 6D pose estimation. Our network
leverages a depth guided network to establish 2D-3D cor-
respondences and learn the 6D pose from the correspon-
dences by a novel Dynamic Graph PnP (DG-PnP). On one
hand, depth information allows us to make full use of the
geometric constraint of rigid objects. On the other hand, we
fully revisit the properties of correspondence set and find it
can better handle complex textures by constructing a graph
structure. Our end-to-end pipeline is shown in Fig. 1.

Experimental results on LM-O [2] and YCB-V [5, 45]
demonstrate our network is comparable even superior to the
state-of-the-art methods in terms of accuracy and efficiency.

Our contributions in this work can be summarized as fol-
lows:

• We propose a Depth-guided network to directly learn
the 6D pose from a monocular image without addi-
tional information required. Furthermore, we pro-
pose a Depth Refinement Network (DRN) to polish the
quality of the estimated depth map.

• We explore the properties of 2D correspondence sets
and discover that 6D pose parameters can be learned
better from the 2D keypoint distributions by construct-
ing a graph. We further propose a simple but effec-
tive Dynamic Graph PnP (DG-PnP) to directly learn
6D pose from 2D-3D correspondences.

2. Related work
Direct Methods. These methods usually directly estimate
the 6D pose in a single shot. Some early works leverage
template matching techniques. However, they do not per-
form satisfactorily under occlusion. With the advance of
deep learning, some works regress the pose parameters via
a network. Xiang.et al. [45] first introduced CNN into this

field, they employed a network based on GoogleNet [38]
to directly learn the 6D camera pose. This problem is still
challenging due to the variety of objects as well as the com-
plexity of a scene caused by clutter and occlusions between
objects. To address this flaw, PoseCNN [45] estimated the
3D translation of an object by localizing its center in the im-
age and predicting its distance from the camera. However,
this problem is still difficult due to the non-closed property
to addition of rotation matrix. Some works [49] utilized the
SO(3)/SE(3) to make the rotation space differentiable.

Correspondence-based Methods. The methods based on
2D-3D correspondence detection have gradually become
the mainstream in object pose estimation. PVNet [28] and
Seg-Driven [17] conducted segmentation coupled with vot-
ing for each correspondence to make the estimation more
robust. EPOS [15] made use of surface fragments account-
ing for ambiguities in pose. Pix2Pose [27] used a network
based on GAN to predict the 3D coordinates of each object
pixel without textured models. Oberweger et al. [26] out-
put pixel-wise heatmaps of keypoints to address the issue
of occlusion. Recent years, a few works aim to avoid the
time-consuming RANSAC-based PnP in keypoint-based
pipeline. DSAC [3] presented two alternative ways to make
RANSAC differentiable by soft argmax and probabilistic
selection and applied it to the problem of camera local-
ization. Single-Stage [16] employed a PointNet-like archi-
tecture to learn the 6D pose from 2D-3D correspondences.
However, this method can only deal with the sparse corre-
spondences. To avoid this, GDR-Net [42] let the network
predict the surface regions as additional ambiguity-aware
supervision and used them within their Patch-PnP frame-
work. SO-Pose [7] focused on the occluded part to encode
the geometric features of the object more completely and
accurately.

Graph Convolution Network (GCN). Due to the higher
representation power of graph structure, GCN has demon-
strated superior performance in several tasks, including im-
age caption [8], text to image and human pose estima-
tion [4]. In 3D computer vision, Wald et al. [40] pro-
posed the first learning method that generated a semantic
scene graph from a 3D point cloud. DGCNN [43] used
a GCN-based network for point cloud feature extraction.
Superglue [34] leveraged GCN to match two sets of local
features by jointly searching correspondences and rejecting
non-matchable points.

3. Approach

In this section, we will describe our depth-guided 6D
pose regression network. We first introduce the relevant
background. Then, we illustrate our network architecture
which can learn the depth to refine the 6D pose.
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Figure 2. Overview of our architecture. Our framework consists of three building blocks: 1) a feature extraction network for depth
and RGB features fusion, 2) a 2D-3D correspondences extraction network based on a deep voting-based network, and 3) a learnable PnP
network named DG-PnP for 6D pose object estimation. KFA means K-NN Feature Aggregation, Gr , Gd and Gl are RGB feature, depth
feature and local feature, respectively.

3.1. Problem Formulation

Given an image, our task is to detect the objects and es-
timate the 6D pose of them. Here, we denote the image
as I . Our goal is to estimate the rotation R ∈ SO(3) and
translation t = (tx, ty, tz) ∈ R3 that can transform the ob-
ject from its object world coordinate system to the camera
world coordinate system.

Fig 2 is the overview of our proposed method. We
first learn depth information via an unsupervised depth es-
timation network. Afterwards, like GDR-Net [42] and
PVNet [28], we locate each object in the image with the
method of FCN [24]. According to the results of the seg-
mentation, we crop the region of interest on depth map and
RGB image, and fed them to a K-NN based feature aggrega-
tion (KFA) module to get the local features. Meanwhile, we
use ResNet50 [13] to extract the 2D features of the image.
Then, a dense fusion module is used to fuse the appearance
features, geometry information and local features. Next, we
take the fused feature as input of a 2D-3D correspondences
prediction network to establish the 2D-3D correspondences.
Finally, we directly regress the associated 6D object pose
from the 2D-3D correspondences via our proposed differ-
entiable DG-PnP.

Our framework builds upon keypoint-based meth-
ods.Given an image I and 3D models M = {Mi|i =
1, ..., N}, our objective is to recover the unknown rigid
transformation {R, t}. For the convenience of display, we
assume that there is one target object in the image, we de-
note it as O. As shown in Fig 4, our goal is to predict the po-
tential 2D location in I of the corresponding 3D keypoints
of the model M .

3.2. Depth Estimation

Inspired by recent works [14, 41, 47, 48] based on RGB-
D data and point cloud, we introduce depth information to
make 2D-3D correspondences more robust and accurate.

Uncertainty mapInput image Depth Network (B)

Depth Network (A)

Depth A

Depth B

Figure 3. Depth Uncertainty Measurement.

However, these methods always need LIDAR or other sen-
sors to get true depth information. Moreover, in a before-
hand acquired RGB image, we usually can not obtain true
depth information. Therefore, we use a network to pre-
dict the depth as an additional feature to supervise the 2D-
3D correspondences estimation. With the development of
monocular depth estimation, many depth estimation meth-
ods [11, 32, 44] have emerged. However, these methods are
often used to estimate the depth information of large scenes,
which is not good to directly estimate the depth map of 6D
pose estimation scene. Therefore, in our work, we use un-
certainty measurement to refine the estimated depth map.

3.3. Depth-Guided Edge Convolutional Network

The overview of our method is shown in Fig. 2. The key-
point localization is a voting-based architecture, which does
not fully consider depth information. Therefore, we have
made efforts in three directions to improve this strategy:

1. We leverage the uncertainty of estimated depth map on
6D object estimation scenes, we refine the depth map
and reduce the influence of noise in the depth estima-
tion process.

2. Before directly feeding RGB into CNN for estab-
lishing 2D-3D correspondences, we firstly predict the
depth map and propose a K-NN Feature Aggregation
(KFA) block to fuse cross-domain features.
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3. We propose a learnable DG-PnP to replace the hand-
crafted RANSAC/PnP in the two-stage 6d pose esti-
mation pipeline.

Depth refinement network (DRN). Current monocular
depth estimation methods are often applied to large out-
door scenes. Therefore, they are usually trained on large
scenes dataset, such as KITTI. However, when we directly
use these methods to estimate 6DoF scenes depth, in some
areas, the fluctuations may be particularly large. The DRN
aims to polish the quality of the depth map. As shown in
Fig 3, it is composed of two different depth estimation net-
works, each network output a depth map DA and DB , re-
spectively. We then calculate the difference between two
depth maps, and define the area where the difference is over
the threshold as an uncertain area. There are two ways to
further handle these uncertain areas, one is directly remove
them from the depth feature. The second way is to use their
mean to replace the original depth. We choose the first way
in this paper.
Feature extraction. This stage has two streams, one for
depth estimation and the other for object segmentation.
Depth estimation takes a color image as input and performs
depth map prediction. Then, for each segmented object, we
use the segmented object mask and the depth map to convert
it to a 3D point cloud. To deal with multiple objects seg-
mentation, previous works [17, 28, 41, 45] use existing de-
tection or semantic segmentation algorithms. Similarly, we
adopt FCN [24] to segment the input image. As for 3D fea-
ture extraction, some works [14, 41] convert the segmented
depth pixels into a 3D point cloud, and the utilize 3D feature
extractor [12,29,30] to extract geometric features. Although
these methods are proved to be effective, they need to train
additional 3D feature network. For more sufficient RGB-D
fusion, we introduce KFA module. Consider a pixel in RGB
image, denoted as pi, and Di = {dj |j = 1...k} is a depth
set of the k-nearest neighbors of pi, then we adopt a nonlin-
ear function Fpi = f(Di, θi) with a learnable parameter θi
to aggregate the local feature of pi. As shown in Fig. 2, the
resulting feature G = (Gr, Gd, Gl).
2D keypoint localization. The 3D keypoints are selected
from the 3D object model as in [14, 28]. Some meth-
ods [17, 31] choose the eight corners of the 3D bounding
box. However, these points are virtual and 2D correspon-
dences may locate outside the image. For the object closed
to the boundary, this may lead to large errors, since the 2D
correspondences are not in the image. Therefore, the key-
points should be selected on the object surface. We fol-
low [28] and adopt the farthest point sampling (FPS) algo-
rithm to select keypoints on object surface. At the end of
this stage, we use a network based on [17] for 2D corre-
spondences detection.
Learning 6D pose from 2D-3D correspondences. As
shown in Fig. 4, given a set with n 3D keypoints K =

W

O

K1

K2

K3

K4

𝑘𝑘2𝑗𝑗

𝑘𝑘4𝑗𝑗
𝑘𝑘3𝑗𝑗

𝑘𝑘1𝑗𝑗

(a) (b)

Figure 4. 2D-3D correspondences. (a) Ground truth 2D corre-
spondences (red ones) with their hypotheses (blue ones). (b) 2D
correspondences projections on the camera plane. The camera and
object coordinate sys- tems are denoted by O and W , respectively.

{Ki|i = 1, ..., n} and each Ki corresponds to a set of 2D
locations k = {kij |j = 1, ...,m} in image. Our goal is
to design a network to learn the rigid transformation (R, t)
from the established 2D-3D correspondences. DSAC [3]
made RANSAC differentiable by soft argmax and proba-
bilistic selection. Single-Stage [16] utilized a PointNet-
like architecture to address this, however it can only han-
dle sparse correspondences. GDR-Net [42] proposed a sim-
ple but effective patch-PnP module, where it depends on
the dense correspondences maps that predicted by their net-
work. To handle this, we propose a GCN based network
to directly regress the 6D pose from the 2D-3D correspon-
dences, which is described as follows

(R, t) = M(K, k|Θ), (1)

where M denotes the proposed DG-PnP with parameters
Θ.

Hu et al. [16] used an architecture similar to Point-
Net [29]. However, it only takes the 2D location as in-
dividual point and does not take into account the distribu-
tion property of 2D correspondences in the image. As men-
tioned above, we predict depth value of every pixel in the in-
put image, therefore we can make full use of the geometric
and location features of 2D correspondences. By revisiting
the properties of 2D-3D correspondences, we find that the
structure of the 2D correspondences is similar to a graph.
As shown in Fig. 4, instead of taking individual points as
input, we take the 2D correspondence cluster as a graph and
feed it into our DG-PnP.
Local Graph Construction. As shown in Fig. 5, P =
{pi|i = 1...m} is a 2D correspondences cluster, we con-
struct the local graph via k-nearest neighbor (k-NN) and
denote it as G = (P, E). P and E = pi ↔ pj are vertices
and edges, respectively. Then, we compute edge features by
aggregating all neighborhoods of pi in P .
Edge-convolution. Different from graph convolution net-
work (GCN), our edge-convolution is a variant of CNN.
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Figure 5. Local graph and edge convolution.

Considering a 2D correspondence cluster of m pixels with
X dimension features, and denoting it as f = {fi|i =
1, ...,m}, we compute the local graph feature by our graph
operation:

f
′

i =

m∑
j=1

λjgθi(fi, fj), (2)

where λj is a hyperparameter which is determined by the
distance between ki and kj . gθ is a nonlinear function with
a learnable parameters θ. We adopt an asymmetric edge
function proposed in [43]:

gθi(fi, fj) = RELU(αi · (fi − fj) + βi · fi), (3)

where θi = (αi, βi) and Θ = {θi|i = 1, ...,m} in Eq. 1.
In this paper, we take the 3D coordinates and RGB infor-
mation of ki as features fi, and the 3D coordinates can be
transformed from depth using camera intrinsic. Therefore,
X = 6 in our network.

3.4. Loss Function and Pose Estimation

To train the proposed network, we introduce four loss
functions Ld, Ls, Lk, and Lp. The total loss function is
defined as

L = λ1Ld + λ2Ls + λ3Lk + λ4Lp, (4)

where λ1, λ2, λ3 and λ4 are the weight coefficients.
Ld is the depth loss, and depth estimation module is built

upon MonoDepth2 [11]:

Ld = µLdp + λLds, (5)

where Ldp is photometric loss, and Lds is edge-aware
smoothness. Due to space limitations, further details can
refer to [11].

Ls is the segmentation loss, which is used to constrain
the segmentation task and extract the target object from the
image. Here we choose the Focal Loss according to [23].

Lk is the keypoint matching loss, which is used to con-
strain the 2D-3D correspondences. As shown in Fig. 4, we
seek to predict 2D keypoints location in the image and we
define the loss function as:

Lk =
1

M

n∑
i=1

m∑
j=1

||kpij − kp∗i ||, (6)

where kp∗i is the ground truth 2D keypoint location, n is
the number of 3D keypoints, m is the number of 2D corre-
spondences of kpi, M = m × n is the number of total 2D
correspondences predicted by our network in the image.

Lp is the final pose estimation loss, which is used to
constrain the final 6DoF pose parameters. Inspired by
PoseCNN [45] and DeepIM [21], we design Lp as

Lp =
1

n

n∑
i=1

∥ (R∗pi + t∗)− (Rpi + t) ∥. (7)

where R∗ and t∗ are the estimated rotation matrix and
translation vector, R and t are the ground-truth ones.

Our network is a multi-task network including calcula-
tions of output depth map, segmentation mask, 3D-2D cor-
respondences, and 6DoF pose parameters like the current
SOTA methods. More generally, when there are multiple
target objects in the image, we can estimate the poses of
these target objects simultaneously, and the results are given
in the experimental section.

4. Experiments
In this section, we conduct experiments to prove the ef-

fectiveness of DGECN. We evaluate our DGECN on sev-
eral common benchmark datasets. For direct comparison to
classic PnP and some learning PnP, we set up several ex-
periments following [16, 42] on a synthetic sphere dataset
to verify the proposed DG-PnP. Further, we conduct an ab-
lation study to discuss the effectiveness of each component
in the proposed method.

4.1. Datasets

4.1.1 Synthetic Sphere Dataset.

As in Single-Stage [16], we create the exact synthetic
3D-to-2D correspondences using a virtual calibrated cam-
era, with image size of 640× 480, focal length of 800, and
principal point at the image center. However, Single-Stage
does not require color information, so their background is
pure. As discussed in Sec. 3, our network will fully extract
local features, including location and color. So we add a
gradient background to their synthetic dataset, and the other
parameter settings are the same with Single-Stage, as shown
in Fig. 7.

4.1.2 YCB-V Dataset.

This dataset is proposed by [5, 45] and consists of 21
YCB objects with different shapes and textures. 92 RGB-
D videos of the subset of objects were captured and anno-
tated with 6D pose and instance semantic mask. The vary-
ing lighting conditions, significant image noise, and occlu-
sions make this dataset challenging. As in PoseCNN [45],
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2D-3D extractor PnP type Ape Can Cat Driller Duck Eggboxs Glues Holepun Mean

DGECN(Ours)

DG-PnP(Ours) 54.3 75.9 22.4 77.5 51.2 57.8 66.9 63.2 58.7
PointNet-like PnP [16] 44.4 71.3 18.5 71.6 48.6 51.3 59.1 60.3 53.1

Patch-PnP [42] 51.2 74.6 21.6 73.4 48.5 56.9 65.1 61.4 56.6
RANSAC-based PnP [20] 41.3 66.5 14.3 65.4 44.1 48.9 55.4 56.2 49.0

BPnP [6] 46.2 73.3 19.5 72.4 46.2 52.1 61.4 56.2 53.4

PVNet [28]

DG-PnP(Ours) 23.4 68.9 23.2 72.2 27.8 55.1 53.2 47.2 46.4
PointNet-like 19.2 65.1 18.9 69.0 25.3 52.0 51.4 45.6 43.3

Patch-PnP 14.4 55.3 14.9 68.2 22.1 45.9 49.4 41.3 38.9
RANSAC-based PnP 15.8 63.3 16.7 65.7 25.2 50.3 49.6 36.1 40.8

BPnP 21.4 45.3 12.7 64.3 21.4 42.1 44.5 38.7 36.3

SegDriven [17]

DG-PnP(Ours) 17.5 51.4 15.9 57.9 20.6 31.8 43.2 39.6 34.7
PointNet-like 14.8 45.5 12.1 54.6 18.3 30.2 45.8 37.4 32.3

Patch-PnP 9.8 36.9 14.6 57.3 11.6 28.3 42.3 32.4 28.4
RANSAC-based PnP 12.1 39.9 8.2 45.2 17.2 22.1 35.8 36.0 27.0

BPnP 15.6 47.8 14.5 51.3 14.8 30.5 26.4 32.1 29.1

GDR-Net [42]

DG-PnP(Ours) 37.5 78.5 26.8 70.6 42.9 56.8 50.4 56.4 52.5
PointNet-like PnP 17.9 65.3 18.6 62.8 31.5 48.6 36.7 49.2 41.3

Patch-PnP 39.3 79.2 23.5 71.3 44.4 58.2 49.3 58.7 53.0
RANSAC-based PnP 20.9 67.5 23.9 66.1 34.9 53.4 42.3 54.3 45.4

BPnP 35.5 74.2 21.5 67.4 36.9 51.4 45.8 51.1 48.0

Table 1. Ablation Study. Results for different versions of our model with comparison to some baseline models. We evaluate the impact
of the DGECN, and DG-PnP. (s) denotes symmetric objects, metrics indicated by light red is the best result. We report the Average Recall
(%) of ADD(-S) on LM-O dataset.

Figure 6. Qualitative results on YCB-V dataset. Here we show visualizations of results on YCB-V dataset. Points on different meshes
in the same scene are in different colors which projected back to the image after being transformed by the predicted pose.
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Figure 7. Synthetic data. We create synthetic data as in [16], but
we add background on theirs.

Figure 8. Comparison with PnP variants . We compare
our method with EPnP [20], PointNet-like PnP [16] and Patch-
PnP [42]. Our method performs better than PointNet-like PnP all
time, and as the noise increases our method is much more accurate
and robust than EPnP. The pose error is calculated by ADD.

we split the dataset into 80 videos for training and a set of
2,949 keyframes chosen from the rest 12 videos for testing.

4.1.3 LM-O Dataset.

This dataset [2] is a standard benchmark for object 6D
pose estimation and contains 13 low-textured objects in 13
videos, annotated 6D pose and instance mask. The main
challenges of LM-O are the chaotic scenes, texture-less ob-
jects, and lighting variations. In this work, we follow prior
works to handle this dataset, and we also add synthesised
images into our training set as in [45].

4.2. Evaluation metrics

For comparison, we evaluate our method with two com-
mon metrics: the average distance (ADD) [45] and the 2D
reprojection error (REP) [17].

ADD uses the average distance between the 3D model
points transformed using the predicted pose and those ob-
tained with the ground-truth one. When the distance is less
than 10% of the model’s diameter, it claims that the esti-
mated pose is correct. We follow [16, 42] and evaluate the
symmetric object by ADD(-S) metric, which measures the
deviation to the closet model point. Denote the predicted
pose as [R∗, t∗] and the ground truth pose as [R, t]:

ADD =
1

m

∑
x∈O

∥(Rx+ t)− (R∗x+ t∗)∥ (8)

ADD−S =
1

m

∑
x1∈O

min
x2∈O

∥(Rx1+ t)− (R∗x2+ t∗)∥ (9)

where x is a vertex of totally m vertices on object mesh
O. When evaluating on YCB-V, we also compute the AUC
(area under curve) of ADD(-S) by varying the distance
threshold with a maximum of 10 cm [45].

REP computes the mean distance between the projec-
tions of 3D model points given the estimated and the ground
truth pose. When the REP is below 5 pixels, we claim that
the estimated pose is correct.

For each metric, we use the symmetric version for sym-
metric objects, which we denote by a superscript (s).

4.3. Comparison with State-of-the-arts

We compare with the state-of-the-art works on YCB-V
and LM-O datasets. It is worth mentioning that we also
make a comparison with the RGB-D based methods to ver-
ify the effectiveness of our depth estimation network.

4.3.1 Performance on LM-O dataset.

Tab. 2 shows the results of DGECN compared with the
state-of-the-art monocular methods on Occlusion LM-O
dataset. Our DGECN is comparable to [7, 21, 42] and out-
performs [16, 28]. Tab. 5 presents the results of compared
with RGB-D based methods. Moreover, in some scenes,
the proposed method even outperforms the RGB-D based
methods.

4.3.2 Performance on YCB-V

Tab. 3 shows the evaluation results for YCB-V dataset.
It shows that our model is comparable to the state-of-the-
arts [19, 42] and even outperforms the refinement-based
method [21]. Fig. 6 demonstrates qualitative results on
YCB-V.

4.4. Ablation study

In this section, we would like to discuss the following
questions: (1) How does the DG-PnP compare to the hand-
crafted PnP and other learnable PnP? (2) Does the learned
depth improve the final pose estimation? (3) Is the DGECN
effective with PnP variants?

Comparison to PnP variants. We take 20K synthetic
images for training and 2K images for testing. While train-
ing, we randomly add 2D noise with variance σ in the range
of [0, 15] and create outliers with 10% and 30%. Compari-
son in synthetic is critical, because it can directly compare
our DG-PnP with PnP variants and ignore the influence of
the keypoints detection methods. Fig. 8 shows the results at
different noise levels, compared with EPnP [20], PointNet-
like PnP [16] and Patch-PnP [42]. While handcrafted PnP
is more accurate when the noise is minimal, learnable PnP
methods are more robust to noise, and they are more ac-
curate when the noise increasing. Moreover, DG-PnP is
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Method PoseCNN PVNet Single-Stage HybridPose GDR-Net SO-Pose DeepIMR DPODR Ours
Ape 9.6 15.8 19.2 20.9 41.3 46.3 59.2 - 50.3
Can 45.2 63.3 65.1 75.3 71.1 81.1 63.5 - 75.9
Cat 0.9 16.7 18.9 24.9 23.5 18.2 26.2 - 26.4

Driller 41.4 65.7 69.0 70.2 54.6 71.3 55.6 - 77.5
Duck 19.6 25.2 25.3 27.9 41.7 43.9 52.4 - 54.2

Eggboxs 22.0 50.2 52.0 52.4 40.2 46.6 63.0 - 57.8
Glues 38.5 49.6 51.4 53.8 59.5 63.3 71.7 - 66.9

Holepun 22.1 36.1 45.6 54.2 52.6 62.9 52.5 - 60.2
Mean 24.9 40.8 43.3 47.5 47.4 54.3 55.5 47.3 58.7

Table 2. Quantitative comparison on known categories of LM-O dataset with state-of-the-art RGB methods with the metric as ADD(-S),
(R) stands for Refinement. All methods trained with real + syn data.

Method Ref. ADD(-S) REP-5px AUC of ADD-S
PoseCNN [45] % 21.3 3.7 75.9
GDR-Net [42] % 60.1 - 91.6
SO-Pose [7] % 56.8 - 90.9
PVNet [28] % - 47.4 73.4

SegDriven [17] % 39.0 30.8 -
Single-Stage [16] % 53.9 48.7 -

DeepIM [21] ! - - 88.1
CosyPose [19] ! - - 89.8

Ours % 60.6 50.3 90.9

Table 3. Evaluation with state-of-the-art RGB methods on YCB-
V. Ref. stands for Refinement.

Corr. Extractor DG-PnP ADD AUC of ADD-S
! ! 58.7 90.9
! % 53.2 83.5
% ! 50.6 81.3
% % 41.3 75.3

Table 4. Ablation on Depth Map. !denotes test with depth map
and%denotes test without depth map.

Method ADD(-S) REP-5px AUC of ADD-S
Implicit ICP [37] 64.7 - -
SSD-6D ICP [18] 79.0 - 91.6
PointFusion [46] - 73.7 73.4
DenseFusion [41] 86.2 30.8 -

PVN3D [14] 53.9 99.4 -
Ours 60.6 50.3 90.9

Table 5. Evaluation with state-of-the-art RGB-D methods on
YCB-V.

significantly more robust and accurate than PointNet-like
PnP, and comparable with Patch-PnP. Because DG-PnP and
Patch-PnP both take into account the geometric and topol-

ogy features.
Ablation on depth map. As mentioned above, depth

information plays a significant role in 6D pose regression.
Furthermore, we train our DGECN by discarding the depth
estimation. The depth information is used in both corre-
spondence extraction and DG-PnP, so we setup a ablation
study on it. As shown in Tab. 4. DGECN is significantly
more robust with depth prediction.

Effectiveness of each component. As shown in tab. 1,
we demonstrate the effectiveness of each component of the
proposed method by combining our components with dif-
ferent state-of-the-art methods. For DGECN, we replace
the DG-PnP in our architecture with PnP variants [6,16,42].
DGECN demonstrates a competitive performance with dif-
ferent PnP methods. Moreover, it is even better than Single-
Pose combined with the PointNet-like PnP. As for DG-PnP,
we replace the PnP variants in some two-stage methods with
DG-PnP.

5. Conclusion

In this work, we propose a novel depth-guided network
for monocular 6D object pose estimation. The core idea is
to utilize geometric and topology information, and jointly
handles 2D keypoint detection and 6D pose estimation.
Then, we delve into 2D-3D correspondences and observe
that graph structure can better model the feature of key-
point distributions. Furthermore, we propose a dynamic
graph PnP for learning 6D pose to replace the handcrafted
PnP. Thus, our approach is a real-time, accurate and robust
monocular 6D object pose estimation method.
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