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Abstract

Existing face forgery detectors mainly focus on specific
forgery patterns like noise characteristics, local textures, or
frequency statistics for forgery detection. This causes spe-
cialization of learned representations to known forgery pat-
terns presented in the training set, and makes it difficult to
detect forgeries with unknown patterns. In this paper, from
a new perspective, we propose a forgery detection frame-
work emphasizing the common compact representations of
genuine faces based on reconstruction-classification learn-
ing. Reconstruction learning over real images enhances the
learned representations to be aware of forgery patterns that
are even unknown, while classification learning takes the
charge of mining the essential discrepancy between real and
fake images, facilitating the understanding of forgeries. To
achieve better representations, instead of only using the en-
coder in reconstruction learning, we build bipartite graphs
over the encoder and decoder features in a multi-scale fash-
ion. We further exploit the reconstruction difference as
guidance of forgery traces on the graph output as the final
representation, which is fed into the classifier for forgery
detection. The reconstruction and classification learning is
optimized end-to-end. Extensive experiments on large-scale
benchmark datasets demonstrate the superiority of the pro-
posed method over state of the arts.

1. Introduction

The recent years have witnessed the considerable
progress of face forgery generation methods [2,4,11,18,20,
41, 42, 50, 53]. Owing to the success of deep learning, gen-
erating ultra-realistic fake facial images or videos is really
easy. An attacker can take advantage of these techniques
to make fake news, defame celebrities, or break authentica-
tion, leading to serious political, social, and security conse-
quences [27]. To mitigate malicious abuse of face forgery,
it is urgent to develop effective detection methods.
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Figure 1. We perform reconstruction learning over only genuine
samples to learn the common compact representations of real fa-
cial images (left). With the learned representations, the recon-
struction difference of real and fake faces significantly differs in
distribution (right), which facilitates forgery detection.

Early face forgery detection methods [1,8,23,31,35,60]
typically follow the classic pipeline of learning convolu-
tional neural networks (CNN) for image classification. With
off-the-shelf CNN backbones, these methods directly take a
facial image as input and then classify it as real or fake.
However, these vanilla CNNs tend to seek forgeries on a
limited region of faces, indicating that the detectors are
short of the understanding of forgery [45]. Recent works
resort to specific forgery patterns such as noise characteris-
tics [12, 58], local textures [6, 14, 55], and frequency infor-
mation [22,33] to better detect forgery artifacts that resided
in fake faces. Despite the demonstrated promising results,
they always rely on forgery patterns that are possessed by a
certain manipulation technique presented in the training set.
Thus, in the real-world scenario, due to the emergence of
new manipulation techniques and various types of perturba-
tions, forgeries with unknown patterns easily cause existing
methods to fail.

To address the above issues, we have two major con-
siderations to enhance the learned representations for face
forgery detection. First, for learning representations that
can generalize to unknown forgery patterns, exploring the
common characteristics of genuine faces is more suitable
than overfitting to specific forgery patterns presented in
the training set. As previous studies [5, 36] indicate that
real samples possess a relatively compact distribution, the
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compact representations learned with real images are more
likely to distinguish unknown forgery patterns from genuine
faces. Second, to ensure that the learned representations
capture the essential discrepancy between real and fake im-
ages, it is desirable to enhance the network reasoning about
forgery cues. As such, classification learning provides a
better understanding of forgeries from a global perspective.

With the above considerations in mind, in this paper,
we present a novel reconstruction-classification learning
(RECCE) framework to detect face forgeries. The key idea
of which is illustrated in Figure 1. For reconstruction learn-
ing, we propose a reconstruction network, which consists
of an encoder and a decoder, to model the distributions of
only real faces. Besides the reconstruction loss, we apply
a metric-learning loss on the decoder to make real images
close, while real and fake images far away, in the embed-
ding space. This ensures that fake images with unknown
forgery patterns are more likely to be recognized due to the
learned distributional discrepancy.

Based on the above constraints, the discrepancy informa-
tion which reveals forgery cues is progressively strength-
ened at the decoder side, finally resulting in sound recon-
struction for real faces and poor reconstruction for fake im-
ages. Thus, to achieve complete representations, instead
of using merely the encoder output as features, we also
consider the decoder features. Inspired by the recent ad-
vances in graph modeling [44, 47, 56] which can model the
feature relationship flexibly and adaptively, we build bipar-
tite graphs over the encoder and decoder features to reason
about forgery cues captured by decoder features. Since dif-
ferent face forgery techniques result in forged traces across
various scales, we adopt the multi-scale mechanism dur-
ing the reasoning process to mine the forgery clues com-
prehensively. Furthermore, in view of that the reconstruc-
tion difference indicates probably forged regions, we use
the reconstruction difference as guidance to attend to the
graph output as the final representations for classification
learning. The reconstruction and classification learning are
jointly optimized in an end-to-end manner.

In brief, the main contributions are as follows:

• From a new perspective, we propose the RECCE
framework for face forgery detection which mines the
common features of genuine faces. This enhances the
learned representations able to separate fake faces even
with unknown forgery patterns from real images.

• We build bipartite graphs over the encoder output and
decoder features in a multi-scale fashion to help the
network reason about forgery clues and exploit the re-
construction difference as guidance to attend to proba-
bly forged traces.

• Extensive experiments on benchmark datasets, includ-
ing FaceForensics++ [35], WildDeepfake [60], and

DFDC [9], validate the superiority of the proposed
method over the state-of-the-art approaches.

2. Related Work

Face Forgery Detection. Many efforts have been made to
improve the performance of face forgery detection [1,13,23,
29,30,40,45,46,60]. Early works like [31,35] use state-of-
the-art image classification backbones, e.g., VGGNet [39]
and XceptionNet [7], to extract features from cropped fa-
cial images and perform binary classification. However, the
CNN backbones inherited from image classification mod-
els emphasize category-level differences rather than the nu-
ances between real and fake images. Recently, in view of
that forged faces become more visually realistic, a number
of works propose to further mine specific forgery patterns
such as noise statistics, local textures, and frequency infor-
mation to distinguish fake faces from real ones. For exam-
ple, Zhou et al. [58] design a two-stream neural network, in
which one branch uses the visual appearance and the other
branch focuses on local noise patterns to detect forged faces.
Zhao et al. [55] devise a multi-attentional face forgery de-
tector that aggregates the texture features and high-level se-
mantic features of multiple local parts to classify real and
fake samples. Qian et al. [33] and Li et al. [22] take the fre-
quency details into account and propose frequency-aware
models to separate bonafide faces and forged faces. Despite
the improved performance, these approaches mainly rely on
the learned forgery patterns presented in the training sam-
ples, and thus they will experience an obvious performance
drop when dealing with unknown forgery patterns.

Reconstruction Learning. Reconstruction learning has
been wildly used for representation learning in unsuper-
vised settings [16,26,32,49,51,52]. It encourages the model
to encode more information about the input so as to restore
the input effectively. The objective of it is to model the dis-
tribution of input data in the embedding space [28, 34, 54].
Some prior works have explored reconstruction learning for
face forgery detection. For instance, Nguyen et al. [30]
use a reconstruction network but with a focus on multi-task
learning. In [10], Du et al. propose a locality-aware autoen-
coder and use a pixel-wise mask to attend to the forgery
region. Note that, these approaches perform reconstruc-
tion learning over all the face images regardless of real and
fake samples. Hence the learned representations are not
ensured to be generalized. Differently, our approach ex-
plicitly learns to model the distribution of genuine faces.
This helps the learned representations are more likely to de-
tect unknown forgery patterns due to distributional discrep-
ancy between genuine faces and manipulated samples. To-
gether with classification learning, the proposed end-to-end
reconstruction-classification learning approach has shown
superiority on large-scale benchmarks over state of the arts.
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Figure 2. Schematic diagram of the proposed framework. The input images (real or fake faces) first enter an encoder-decoder recon-
struction network for representation learning. The encoder output goes through the multi-scale graph reasoning module to achieve better
representations, which are further guided by the reconstruction difference for final classification. The whole system is trained by jointly
minimizing the classification loss Lcls, the reconstruction loss Lr computed based on real faces only, and the metric-learning loss Lm.

3. Proposed Method

To capture the essential discrepancy between real and
fake faces, we design a novel framework named RECCE,
which consists of three main schemes, i.e., reconstruction
learning, multi-scale graph reasoning, and reconstruction
guided attention, as illustrated in Figure 2. The reconstruc-
tion network aims to only model the distributions of real
face images. As such, the learned representations are more
likely to detect unknown forgery patterns. Moreover, to fur-
ther mine the essentially discriminative representation, the
multi-scale graph reasoning scheme aggregates the captured
discrepancy information between real and fake faces in both
the encoder and decoders of the reconstruction network in a
multi-scale manner. Meanwhile, the reconstruction guided
attention module guides the classification network to pay
more attention to forgery traces. The following subsections
present these three schemes in detail.

3.1. Reconstruction Learning

Since face forgery methods are always diverse, we ar-
gue that exploring the common characteristics of genuine
faces is more suitable than overfitting specific forgery pat-
terns presented in the training set. As such, we propose to
perform reconstruction learning to restore real facial images
only. To be specific, given an input image X ∈ Rh×w×3,
we train a reconstruction network F based on the encoder-
decoder structure. As previous studies [57] have demon-
strated that a plain reconstruction branch for restoring the
original inputs would not significantly improve the learned
representations, we add some white noises to the input sam-

ples during training to get X̃, aiming to learn robust repre-
sentations for real faces. Thus, the image reconstruction
process can be formulated as:

X̂ = F(X̃). (1)

During the reconstruction process, we compute the re-
construction loss Lr between input real images and their
reconstructed versions in a mini-batch as:

Lr =
1

|R|
∑
i∈R
‖X̂i −Xi‖1, (2)

where R denotes the set of real samples in a mini-batch and
|R| is the cardinality of R.

In addition to the reconstruction difference, we use a
metric-learning loss to make real images close while real
and fake images faraway in the embedding space. For sim-
plicity, let F ∈ Rh′×w′×c denote the output features of
an encoder or decoder block. We apply the global average
pooling operation to F and obtain the feature vector F̄ ∈ Rc

for each input sample. The metric-learning loss is:

Lm =
1

NRR

∑
i∈R,j∈R

d(F̄i, F̄j)−
1

NRF

∑
i∈R,j∈F

d(F̄i, F̄j),

(3)
where R,F denote the set of real and fake samples. NRR

and NRF are the total number of (real, real) pairs and (real,
fake) pairs, respectively. d(·, ·) is a pair-wise distant func-
tion based on the cosine distance:

d(a,b) =
1− a

‖a‖2 ·
b
‖b‖2

2
. (4)
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Figure 3. Illustration of the proposed multi-scale graph reasoning
scheme to aggregate information in the encoder output (orange)
and decoder features for a given scale (blue) to produce richer rep-
resentations (green). This figure is best viewed in color.

The first part in Lm encourages learning compact repre-
sentations from genuine faces while the second part empha-
sizes the differences between real and fake samples. Note
that, different from the classic metric-learning loss [3, 21,
37, 48] which is directly applied to the feature extractor,
our proposed loss is specially used to enhance the recon-
struction difference to facilitate the reconstruction learn-
ing. Additionally, we do not constrain the compactness for
fake data as their features vary substantially among differ-
ent forgery techniques. We apply the metric-learning loss to
the output of the last encoder block and each decoder block.

3.2. Multi-scale Graph Reasoning

When applying the metric-learning loss to the decoder,
the useful information to separate real and fake images is
embedded in the decoder as well. To effectively exploit the
forgery clues captured by decoder features for final classi-
fication, we propose a multi-scale graph reasoning (MGR)
module which combines the latent features of the decoder
blocks and the encoder output into a bipartite graph for rea-
soning about forgery cues comprehensively.

Here, we take the feature maps of a decoder block for
a given scale for description. As shown in Figure 3, we
model the encoder output and the decoder features, i.e.,
Fenc,Fdec, as two vertex set Venc = {vi

enc}
h1×w1
i=1 , Vdec =

{vi
dec}

h2×w2
i=1 , where each vertex represents a corresponding

embedding vector of the original feature maps. N (vi
enc) =

{vi,j
dec}Nj=1 denotes the set of vertices in Vdec which is linked

to vi
enc. N is the number of vertices in the set. Concretely,

graph reasoning aggregates the information from N (vi
enc)

to enrich the feature representations of vi
enc for better rea-

soning about forgery cues. We keep the spatial correspon-
dence when aggregating the information from the decoder
to the encoder to model the local relationship since forgery
traces usually reside in continuous local areas. As shown
in Figure 3, the neighborhood of the orange solid vertex is

the blue solid vertices in the dotted box. Given vi
enc,v

i,j
dec,

we first project them to a shared embedding space with two
neural nets, g1(·) and g2(·), to get ṽi

enc, ṽ
i,j
dec, respectively.

Next, we compute a weight coefficient aj to indicate the
importance of vi,j

dec to vi
enc. Particularly, we first concate-

nate the vertices from the two sub-graphs, and then passing
through a single-layer network φ to get aj as:

aj =
exp

(
φ(ṽi

enc‖ṽ
i,j
dec)

)
∑

vi,l
dec∈N (vi

enc)
exp

(
φ(ṽi

enc‖ṽ
i,l
dec)

) , (5)

where ‖ denotes the concatenation operation. We then com-
pute a [0, 1]-valued vector based on vi

enc using a non-linear
transformation ψ(·) to generate a feature richness measure-
ment for ṽi

enc in the channel level. During information
aggregation, we particularly enhance the channels of ṽi,j

dec

when the weight of the corresponding channels of ṽi
enc is

small. The aggregated feature vector vi
agg is computed by:

vi
agg =

N∑
j=1

ajṽ
i,j
dec ⊗

[
1− ψ(vi

enc)
]
, (6)

where ⊗ is the element-wise multiplication.
Since different manipulation techniques result in forged

traces across scales, we propose to mine the forgery infor-
mation in a multi-scale manner to obtain comprehensive
representations. To be specific, the output features of the en-
coder aggregate each block output of the decoder in a multi-
scale manner. The aggregated features {vi

agg} in different
scales are concatenated with vi

enc and then pass through a
sigmoid function followed by two fully-connected layers to
produce the enhanced feature vector vi

enh with the same
channel dimension as vi

enc. Finally, vi
enh are assembled

spatially to obtain the enhanced feature maps Fenh for the
following reconstruction guided attention.

3.3. Reconstruction Guided Attention

Equipped with the constraints of the reconstruction net-
work, the reconstructed forged faces largely differ from the
input forged faces in visual appearance. This motivates us
to use the reconstruction difference to indicate the proba-
bly manipulated traces. To this end, we propose the recon-
struction guided attention (RGA) module, which pays more
attention to the probable forgery regions to facilitate later
classification.

As shown in Figure 2, given the reconstructed image X̂
and the original image X, we first compute their difference
in pixel level to get the difference mask m as

m =
∣∣∣X̂−X

∣∣∣ , (7)

where | · | refers to the absolute value function. Given Fenh

the enhanced feature maps mentioned in Section 3.2, we
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Methods FF++ (c23) FF++ (c40) Celeb-DF WildDeepfake

Acc (%) AUC (%) Acc (%) AUC (%) Acc (%) AUC (%) Acc(%) AUC (%)

MesoNet [1] 83.10 – 70.47 – – – 64.47 –
Multi-task [30] 85.65 85.43 81.30 75.59 – – – –
Xception [35] 95.73 96.30 86.86 89.30 97.90 99.73 77.25 86.76
Face X-ray [23] – 87.40 – 61.60 – – – –
Two-branch [29] 96.43 98.70 86.34 86.59 – – – –
SPSL [25] 91.50 95.32 81.57 82.82 – – – –
RFM [45] 95.69 98.79 87.06 89.83 97.96 99.94 77.38 83.92
Freq-SCL [22] 96.69 99.28 89.00 92.39 – – – –
Add-Net [60] 96.78 97.74 87.50 91.01 96.93 99.55 76.25 86.17
F3-Net [33] 97.52 98.10 90.43 93.30 95.95 98.93 80.66 87.53
MultiAtt [55] 97.60 99.29 88.69 90.40 97.92 99.94 82.86 90.71
RECCE (Ours) 97.06 99.32 91.03 95.02 98.59 99.94 83.25 92.02

Table 1. Intra-testing comparisons. The proposed method performs favorably over current state-of-the-art approaches.

compute the attention map based on the difference mask
and apply it to Fenh spatially to get F′enh. Then, we add
F′enh and Fenh to obtain the attended output features:

F′enh = σ (f1(m))⊗ f2(Fenh), (8)

Fatt = F′enh + Fenh, (9)

where f1, f2 represent the convolutional operations, σ is the
sigmoid function, and ⊗ denotes the element-wise multi-
plication. For simplicity, we omit the spatial size of these
tensors and use the bilinear interpolation to keep the spatial
size properly for mentioned operations.

3.4. Loss Function

The total loss function L of the proposed framework in-
cludes the reconstruction loss and the metric-learning loss
for reconstruction learning, together with the cross-entropy
loss Lcls for binary classification:

L = Lcls + λ1Lr + λ2Lm, (10)

where λ1 and λ2 are weight parameters for balancing dif-
ferent losses.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our proposed method and exist-
ing approaches on FaceForensics++ (FF++) [35], Celeb-
DF [24], WildDeepfake (WDF) [60] and DFDC [9]. FF++
is the most widely used dataset containing four types of
manipulation techniques, i.e., Deepfakes (DF), Face2Face
(F2F), FaceSwap (FS), and NeuralTextures (NT). Celeb-
DF includes 590 real videos and 5,639 high-quality fake
videos which are crafted by the improved DeepFake algo-
rithm [24]. WildDeepfake is a real-world dataset that con-
tains 3,805 real sequences and 3,509 fake sequences. All

the videos in it are obtained from the internet with more
identities presented in various scenes. DFDC is a large-
scale dataset which contains 128,154 facial videos of 960
subjects. Due to the variety of manipulations and perturba-
tions, it is very challenging for the existing methods.
Evaluation Metrics. To evaluate our method, we report
the most commonly used metrics in related arts [1, 6, 22,
33, 35, 55, 59], including Accuracy (Acc), Area Under the
Receiver Operating Characteristic Curve (AUC), and Equal
Error Rate (EER). We also report LogLoss on DFDC, con-
sistent with the setting of its corresponding contest [9].
Implementation Details. The proposed framework is im-
plemented based on the Xception [7]. We train it with a
batch size of 32, the Adam [19] optimizer with an initial
learning rate of 2e-4 and a weight decay of 1e-5. A step
learning rate scheduler is used to adjust the learning rate.
λ1 and λ2 in Equation (10) are empirically set to 0.1. We
only use random horizontal flipping for data augmentation.

4.2. Experimental Results

Intra-testing. In this section, we compare our proposed
method with current state-of-the-art approaches. As shown
in Table 1, for FF++ dataset, our method consistently
achieves great improvements under different quality set-
tings. Especially on the challenging c40 (low-quality) set-
ting, compared with F3-Net [33], the AUC score of our
method exceeds it by 1.72%. To explain, over-compression
destroys the frequency clues that F3-Net relies upon, while
our approach yields a more robust representation through
reconstruction learning that serves as effective guidance
for forgery classification. Note that, though MultiAtt [55]
equipped with EfficientNet-b4 reaches the highest Acc on
FF++ c23 (high-quality), our method based on Xception
still achieves comparable results and exceeds it by a large
margin on the low-quality setting. Different from Multi-
task [30] which employs reconstruction constraints for both
real and fake faces, the proposed RECCE framework only
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Methods Acc (%) ↑ AUC (%) ↑ LogLoss ↓
Xception [35] 79.35 89.50 0.4916
RFM [45] 80.83 89.75 0.5810
Add-Net [60] 78.71 89.85 0.5072
F3-Net [33] 76.17 88.39 0.5196
MultiAtt [55] 76.81 90.32 0.5291
RECCE (Ours) 81.20 91.33 0.4341

Table 2. Intra-testing comparisons on the DFDC [9] dataset.

models the distribution of real samples and promotes com-
prehensive difference information. Thus, our method sig-
nificantly outperforms the counterpart. The performance
gains can also be observed on Celeb-DF and the realis-
tic dataset WildDeepfake, while in the latter our method
reaches a state-of-the-art result by improving the Acc by
0.39% and the AUC by 1.31%. The above results demon-
strate the effectiveness of the proposed RECCE framework.

Furthermore, we evaluate our method on the challeng-
ing DFDC dataset. Since few existing arts report the per-
formance on it, we re-implement several state-of-the-art
methods for a fair comparison, including RFM [45], Add-
Net [60], F3-Net [33] and MultiAtt [55]. As shown in Ta-
ble 2, our method outperforms other approaches by 0.37%
and 1.01% in terms of Acc and AUC, while LogLoss de-
creases by 0.0575. These results validate the effectiveness
of our proposed method under complicated scenarios.
Cross-testing. To evaluate the generalization ability of our
method on unknown forgeries, we conduct cross-dataset
experiments by training and testing on different datasets.
Specifically, we train the models on FF++ c40, and then
test them on WildeDeepfake, Celeb-DF, and DFDC, respec-
tively. The results are shown in Table 3. From the table,
we observe that RECCE generally outperforms all listed
methods on unseen test data, often by a large margin. For
instance, when testing on WildDeepfake dataset, the AUC
score of most previous methods drop to around 60%. Differ-
ently, RECCE reaches an AUC of 64.31%, which exceeds
MultiAtt [55] by 4.57%. The performance mainly benefits
from the proposed RECCE framework which only models
the distribution of real faces, while MGR and RGA guide
the model to learn essential discrepancy between real and
fake faces. Instead of overfitting with specific forged pat-
terns as in existing methods, our method treats all unknown
forgery types as outliers to achieve better generalizability.

We further conduct a fine-grained cross-testing by train-
ing on a specific manipulation technique and testing on the
others listed in FF++ c40. We compare our method with ap-
proaches that focus on specific forgery patterns, e.g., Freq-
SCL [22] and MultiAtt [55], in Table 4. Our method gen-
erally outperforms others on unseen forgery types. These
results verify that it is feasible to explore common features
of real faces to distinguish forgeries with unknown patterns.

Methods WDF Celeb-DF DFDC

AUC ↑ EER ↓ AUC ↑ EER ↓ AUC ↑ EER ↓
Xception [35] 62.72 40.65 61.80 41.73 63.61 40.58
RFM [45] 57.75 45.45 65.63 38.54 66.01 39.05
Add-Net [60] 62.35 41.42 65.29 38.90 64.78 40.23
F3-Net [33] 57.10 45.12 61.51 42.03 64.60 39.84
MultiAtt [55] 59.74 43.73 67.02 37.90 68.01 37.17
RECCE (Ours) 64.31 40.53 68.71 35.73 69.06 36.08

Table 3. Cross-testing in terms of AUC (%) and EER (%) by train-
ing on FF++ [35].

Methods Train DF F2F FS NT Cross Avg.

Freq-SCL [22]
DF

98.91 58.90 66.87 63.61 63.13
MultiAtt [55] 99.51 66.41 67.33 66.01 66.58
RECCE (Ours) 99.65 70.66 74.29 67.34 70.76

Freq-SCL [22]
F2F

67.55 93.06 55.35 66.66 63.19
MultiAtt [55] 73.04 97.96 65.10 71.88 70.01
RECCE (Ours) 75.99 98.06 64.53 72.32 70.95

Freq-SCL [22]
FS

75.90 54.64 98.37 49.72 60.09
MultiAtt [55] 82.33 61.65 98.82 54.79 66.26
RECCE (Ours) 82.39 64.44 98.82 56.70 67.84

Freq-SCL [22]
NT

79.09 74.21 53.99 88.54 69.10
MultiAtt [55] 74.56 80.61 60.90 93.34 72.02
RECCE (Ours) 78.83 80.89 63.70 93.63 74.47

Table 4. Cross-testing in terms of AUC (%) on different manipu-
lation techniques. Gray background means within-dataset results.

Reconstruction visualization. For an intuitive understand-
ing of reconstruction learning, we visualize the outputs of
the reconstruction network and the difference between orig-
inal input, as shown in Figure 4. We can see that the real
faces can be well reconstructed with little blur, while the
forged regions of fake ones cannot be restored. The dif-
ference masks further display the discrepancy between real
and forged faces, indicating possible traces of forged region,
even if our method is only trained under image-level super-
vision. Taking the NeuralTextures (NT) method as an ex-
ample, which operates only on the mouth region, the dif-
ference masks of the corresponding samples show larger
values exactly around the mouth area. Moreover, for the
realistic WildDeepfake dataset, though the source and ma-
nipulation method remain unknown, our method can still in-
dicate possibly forged regions. The visualization validates
that the proposed framework can effectively capture the es-
sential discrepancy between real and fake faces.

4.3. Ablation Study

Effectiveness of proposed components. In this part,
we conduct the ablation study on different components
proposed in our framework to evaluate their effective-
ness. Specifically, we develop the following variants: (a)
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Figure 4. Reconstruction visualization of the proposed method on the FaceForensics++ [35] dataset and WildDeepfake [60] dataset. The
first row displays the input images. The second row and the third row show reconstruction results and pixel-level differences, respectively.

ID Rec. MGR RGA Acc (%) AUC (%)

(a) 77.25 86.76
(b)

√
81.19 89.61

(c)
√ √

81.48 91.10
(d)

√ √
82.15 89.71

RECCE
√ √ √

83.25 92.02

Table 5. Effectiveness of the proposed components in our method
on the WildDeepfake [60] dataset.

ID Lr Lm Acc (%) AUC (%)

(a) real & fake
√

80.62 88.92
(b) real – 81.36 90.49

RECCE real
√

83.25 92.02

Table 6. Effectiveness of the proposed constraints in our method
on the WildDeepfake [60] dataset.

the baseline model which follows the classic image clas-
sification pipeline, i.e., Xception [35], (b) the baseline
model equipped with the proposed reconstruction learning
scheme, (c) the proposed method without MGR, and (d) the
proposed method without RGA. The quantitative results are
listed in Table 5. Comparing variants (a) and (b), we can see
that the proposed reconstruction learning brings 3.94% Acc
and 2.85% AUC gains over the baseline method. Solely em-
ploying the variant (b) with the MGR module that enhances
the learning of classification side with the comprehensive
representations captured by the decoder, the resulting vari-
ant (c) obtains a performance gain by a large margin, i.e.
1.49% on AUC. From variants (b) and (d), we observe an
improvement on both Acc and AUC metrics when adding
the RGA module which highlights the probably forged re-
gions on the output of the encoder. The best performance
is achieved when combining all the proposed components
with Acc and AUC of 83.25% and 92.02% respectively.
Effectiveness of proposed constraints. To investigate the
effectiveness of the proposed constraints used in the recon-

Intra-Testing

Baseline RECCE Baseline RECCE
(a) (b) (c) (d)

Cross-Testing

FF++ Fake

CDF Real

FF++ Real

CDF Fake

Figure 5. The t-sne [43] embedding visualization of the features
encoded in the baseline method and RECCE. Best viewed in color.

struction network, we design two variants of our method:
(a) reconstruction loss Lr in Equation (2) is computed
for both real and fake faces, and (b) our method without
the metric-learning loss Lm in Equation (3). The results
are presented in Table 6. Comparing variant (a) and our
method, we observe that training the reconstruction network
on both real and fake images hampers the model from learn-
ing a unified representation for real ones. Regarding variant
(b) and our method, we find that Lm brings a 1.53% AUC
gain. This is mainly because Lm makes real images closer
and pushes away real and fake ones in the embedding space.
These results demonstrate that the proposed constraints are
conducive to the discrepancy mining process.

4.4. Experimental Analysis

Analysis of feature distribution. In this section, we vi-
sualize the learned feature distribution of the baseline [35]
and our approach trained on FF++ c40 using t-sne [43]. The
features of our method are extracted from the layer right be-
fore the last fully-connected layer, and the results are shown
in Figure 5. In particular, we randomly sample 5000 images
from FF++ for the intra-testing setting (i.e., (a) and (b)),
and additionally select 5000 samples from Celeb-DF for the
cross-testing setting (i.e., (c) and (d)). From the figure, we
observe that the baseline is short of the understanding of
forgeries as the clusters of real and fake images are indis-
tinguishable. In contrast, our method embeds the real faces
into a relatively compact feature space, whether on known
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Input

Small

Scale

Mid

Scale

Large

Scale

FF++ Real

Figure 6. The visualization of the feature maps in the decoder of
the reconstruction net at different output scales.

or unknown data, which suggests that our model captures
the common representations of genuine faces. Besides, the
clusters for real samples and fake samples are separated by
an obvious margin, which reveals the discrepancy between
genuine and forged faces. The visual results, from another
viewpoint, validate the effectiveness of our approach that
focuses on genuine faces to capture the differences in faces.
Analysis of multi-scale features in the decoder. In this
section, we visualize the feature maps from different layers
of the decoder. The results are shown in Figure 6. From
the figure, we observe that the decoder features at different
scales are activated with different intensities. On one hand,
the forgery clues at large-scale feature maps are more com-
prehensive and richer, but they also contain some irrelevant
background noise. On the other hand, the forgery clues at
small-scale feature maps are fine-grained but incomplete.
Therefore, combining the multi-scale information is bene-
ficial for the model to attend to the substantial difference
while avoiding the interference of irrelevant noise.
Analysis of classification decision. To better understand
the decision-making mechanism of our method, we provide
the Grad-CAM [38] visualization on FF++ in Figure 7. We
observe that the baseline method mainly focuses on the cen-
tral region of images for classification regardless of the fa-
cial authenticity, lacking a comprehensive understanding of
different forgeries. Differently, our method generates dis-
tinguishable heatmaps for real and fake faces, where the
prominent regions vary in forgery techniques, even though
it only uses binary labels for training. For instance, both of
the heatmaps for DeepFakes (DF) and FaceSwap (FS) focus
on the main facial area while that for NeuralTextures (NT)
localizes mouth regions. The results explain the effective-
ness of RECCE from the decision-making perspective.
Analysis of robustness. Considering the ubiquity of image
processing on social media, we investigate the performance
under several perturbations suggested by [15, 17], i.e., im-
age compression, Gaussian blur, contrast jitter, saturate jit-
ter, and pixelation. We show the results in Table 7. We

FF++ Real FF++ DF FF++ F2F FF++ FS FF++ NT

Input

Xcep.

Ours

WDF Real WDF Fake

Figure 7. The Grad-CAM [38] visualization.

Methods Compress Blur Contrast Saturate Pixelate Avg.

Xception [35] 86.01 78.29 81.90 84.96 66.24 79.48
RFM [45] 83.74 75.34 79.77 82.59 71.25 78.54
Add-Net [60] 83.34 79.66 84.46 85.13 64.33 79.38
F3-Net [33] 86.71 78.99 86.53 87.67 73.23 82.63
MultiAtt [55] 89.64 80.98 89.30 90.37 79.44 85.95
RECCE (Ours) 89.65 87.29 91.19 91.74 83.88 88.75

Table 7. Robustness evaluation in terms of AUC (%) on Wild-
Deepfake [60] dataset. “Avg.” indicates the mean score.

can see that RECCE is more robust to the listed perturba-
tions than exiting approaches. It is worth noticing that pre-
vious methods undergo an obvious performance drop when
encountering Gaussian blur (which destroys the frequency
statistics) and pixelation (which drops the texture informa-
tion). The degradation indicates that emphasizing specific
forgery patterns presented in training data is vulnerable to
common perturbations. However, our method outperforms
them by a large margin, i.e., 6.31% for Gaussian blur and
4.44% for pixelation. In average, our model obtains 2.80%
AUC gain over the state-of-the-art MultiAtt [55], which
demonstrates the robustness of our proposed method.

5. Conclusion

In this paper, we propose a new perspective for face
forgery detection that focuses on common compact repre-
sentations of real faces to learn the discrepancy between real
and forged faces. The innovative multi-scale graph reason-
ing module combines encoder output and decoder features
into bipartite graphs in a multi-scale fashion for reasoning
about forgery clues. Meanwhile, the reconstruction guided
attention module is introduced to guide the model to focus
on possibly forgery traces. Extensive experiments and de-
tailed visualizations validate the robustness and generaliz-
ability of our method on widely-used benchmark datasets.
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