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Abstract

This paper proposes the first real-world rolling shut-
ter (RS) correction dataset, BS-RSC, and a corresponding
model to correct the RS frames in a distorted video. Mo-
bile devices in the consumer market with CMOS-based sen-
sors for video capture often result in rolling shutter effects
when relative movements occur during the video acquisition
process, calling for RS effect removal techniques. How-
ever, current state-of-the-art RS correction methods often
fail to remove RS effects in real scenarios since the mo-
tions are various and hard to model. To address this issue,
we propose a real-world RS correction dataset BS-RSC.
Real distorted videos with corresponding ground truth are
recorded simultaneously via a well-designed beam-splitter-
based acquisition system. BS-RSC contains various mo-
tions of both camera and objects in dynamic scenes. Fur-
ther, an RS correction model with adaptive warping is pro-
posed. Our model can warp the learned RS features into
global shutter counterparts adaptively with predicted mul-
tiple displacement fields. These warped features are aggre-
gated and then reconstructed into high-quality global shut-
ter frames in a coarse-to-fine strategy. Experimental results
demonstrate the effectiveness of the proposed method, and
our dataset can improve the model’s ability to remove the
RS effects in the real world. The project is available at
https://github.com/ljzycmd/BSRSC.

1. Introduction

Most consumer cameras adopt CMOS sensors for imag-
ing due to their low power consumption, compact design,
and fast imaging. At the same time, most CMOS sensors
have rolling shutter (RS) effects during imaging. Unlike a
global shutter (GS) camera capturing all pixels simultane-
ously, an RS camera sequentially captures the image pix-
els row by row. Therefore, the RS distortions would oc-
cur in the recorded images and videos when relative move-
ments arise between the camera and objects. The RS distor-
tions significantly impair the visual quality. Moreover, the

distorted images and videos deteriorate the performance of
some downstream tasks, like 3D reconstruction, pose esti-
mation, and depth prediction [3, 8, 10, 16], leading to erro-
neous, undesirable, and distorted results.

There are usually two ways to mitigate the performance
gap of existing computer vision algorithms working on the
RS distorted and GS images. The first is to keep the orig-
inal RS images unchanged and adapt the algorithms to the
RS distorted images. Thus, many RS-aware algorithms are
proposed in 3D vision field, e.g., RS structure-from-motion
reconstruction [13, 34], RS stereo [27], RS camera calibra-
tion [22] and RS absolute camera pose [1, 3, 4, 18]. An ar-
guable better way is to correct the RS distorted images into
GS images. In this way, we don’t need to modify exist-
ing vision algorithms and can obtain visual-friendly images.
Therefore, correcting the rolling shutter (RSC) images is in-
creasingly becoming significant in photography and has at-
tracted considerable research attention recently [2,9,20,24].

Existing RS effect removal methods can be categorized
into single-image- and multi-frame-based. When restoring
the GS image from only one RS image, many external con-
straints or priors (e.g., geometric priors) are adopted [17,
24, 25, 35] since it is a highly ill-posed problem. Compared
to single-image-based correction, multi-frame-based meth-
ods are more general and can utilize motion information
for correction. Due to the great success of convolutional
neural networks (CNNs) on various computer vision tasks
and the proposed synthesized RSC datasets, researchers de-
signed specific model architectures to remove the RS dis-
tortions in an end-to-end manner based on multiple frames.
Usually, the motions across multiple frames are modeled
first. Then the GS image corresponding to the reference
RS frame is restored by warping operations. For instance,
Liu et al. [20] predict velocity field from the correlation vol-
ume, and Fan et al. [9] utilize PWC-Net framework [28] to
estimate the undistortion flow to correct the RS frame. They
both adopt forward warping to remove the RS effect, and
have achieved some promising results. However, the cor-
rected GS images still suffer from blurs and texture detail
loss for the following reasons: 1) The modeled motions are
inaccurate since there is no ground truth for supervision dur-
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(a) RS frame (b) DSUN [20]

(c) JCD [33] (d) SUNet [9]

Figure 1. The real-world rolling shutter correction results of ex-
isting state-of-the-art methods trained with synthesized data. We
see that all methods failed to remove the RS effects and even in-
troduced many artifacts into the corrected frame.

ing the training process. 2) The warping operations are not
learnable, which cannot aggregate the features adaptively.
3) Meanwhile, some regions in the potential GS frame do
not appear in the input RS frames. Thereby, it is difficult
for the model to generate unseen areas. 4) Moreover, these
models are trained on the synthesized RSC datasets where
the motions are rather monotonous. And many artifacts
exist in the synthesized RS frames, greatly restricting the
model’s performance on the natural RS image correction.
Fig. 1 shows some real-world RSC results of state-of-the-
art methods trained with synthesized data.

To move beyond these limitations mentioned above, we
propose a novel adaptive warping module and a real-world
dataset for rolling shutter correction. Our model takes three
consecutive frames as input, restoring the GS frame corre-
sponding to the central RS frame at intermediate imaging
time. We propose an adaptive warping module to better ex-
ploit high-quality GS frame restoration by mitigating inac-
curate RS motion estimation and warping problems. Firstly,
multi-scale features of each RS frame are extracted. Then,
we construct a correlation volume to build the correspon-
dence between central and neighboring RS features. The
volume is used to predict multiple motion fields rather than
only one generated in previous works [9, 20]. After that, an
adaptive attention mechanism is proposed to warp the RS
features by aggregating the contextual features according
to the predicted motion fields. The designed warping pro-
cess is learnable, aggregating the features to the GS-aware
features attentively and adaptively. Note that we perform
adaptive warping at all scales. A decoder network further
decodes these warped multi-scale features and reconstructs

the corresponding GS frame. The proposed model can be
trained in an end-to-end manner.

Considering the performance gap on the synthesized
datasets and real RS distorted scenarios, we propose BS-
RSC, the first dataset for real-world RSC with various
motions in dynamic scenes, collected by a well-designed
beam-splitter acquisition system. An RS camera and a GS
camera are physically aligned to capture RS distorted and
GS frames simultaneously.

Our contributions can be summarized as follows:

• We propose a novel feature warping module for rolling
shutter correction, which adaptively warps RS features
into global counterparts for high-quality GS frame
restoration.

• We contribute BS-RSC, the first real-world RSC
dataset (devoid of motion blur) with various motions
collected by a well-designed beam-splitter acquisition
system, bridging the gap for real-world RSC task.

• The quantitative and qualitative experimental results
on real-world and synthetic datasets show the excel-
lent performance of the proposed method against the
state-of-the-art methods.

2. Related Works

2.1. Deep Rolling Shutter Correction

CNNs are used to remove the RS effects due to the con-
siderable success in many computer vision tasks. For single
image RSC, Rengarajan et al. [24] proposed a CNN archi-
tecture to estimate the row-wise camera motion from a sin-
gle image and undo RS distortions back to the time of the
first-row exposure. They adopted a long rectangular con-
volutional kernel to learn the effects produced by row-wise
exposure specifically. Zhuang et al. [35] further proposed a
structure-and-motion-aware RS correction model that rea-
sons about the concealed motions between the scanlines as
well as the scene structure, where the camera scanline ve-
locity and depth are estimated.

Since single image RSC is a highly ill-posed task, multi-
frame RSC can perform better by modeling the RS motion
more accurately and has recently received much attention.
Liu et al. [20] proposed an end-to-end network for RSC
by predicting dense displacement field from two consecu-
tive RS frames. Then they adopted a differentiable forward
warping module to warp the RS image into the global one.
Further considering the blurs in the RS distorted images,
Zhong et al. [33] proposed the first real-world rolling shut-
ter correction and deblurring (RSCD) and a joint correction
and deblurring (JCD) model to tackle the the RSCD prob-
lem. Most recently, Fan et al. [9] utilized PWC-Net [28] to
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predict symmetric undistortion fields and restore the poten-
tial GS frames by a time-centered GS image decoder net-
work, achieving promising results on the synthetic datasets.
These methods still suffer from the blurs and detail loss in
the restored GS frame due to the inaccurate displacement
field estimation and warping. To alleviate such artifacts, we
propose to predict multiple fields and warp the RS features
adaptively.

2.2. Attention Mechanism

Attention mechanism was introduced [5] for machine
translation, and has been widely used in both natural lan-
guage processing and computer vision. In [29], a novel
Transformer architecture was constructed using attention as
a primary mechanism, and it replaced the recurrent struc-
ture with the self-attention operation. Thanks to the power-
ful long-range and relation modeling capacities of attention,
it was gradually introduced to vision tasks and has achieved
considerable success [14, 23, 30].

Recently, attention mechanism or Transformer has been
adapted to image or video restoration tasks and achieved
great success, e.g., super resolution [7, 19, 31]. In [31],
the authors proposed a texture transformer network for
reference-based image super-resolution, which adopts an at-
tention mechanism to transfer the texture details from the
reference image adaptively. Chen et al. [7] proposed an Im-
age Process Transformer (IPT) for various image restoration
tasks, e.g., super-resolution, denoise, by task-specific heads
and tails. Liang et al. [19] utilized Swin Transformer [21]
for multiple image restoration tasks and achieved better
performance with much fewer parameters. Attention has
shown high potential for vision tasks. This paper also ex-
ploits the attention mechanism for adaptive warping to re-
store high-quality GS frames.

2.3. RSC Dataset Synthesis

Note that CNN-based approaches usually require a large
amount of training data to learn the correction from RS to
GS image. However, current RSC data or publicly available
datasets are synthesized, where the RS images are gener-
ated from the captured GS images. For example, in [24],
an affine transformation corresponding to RS motions is
used to synthesize RS images. Zhuang et al. [35] syn-
thesized RS images by warping a single GS image from
KITTI dataset [11] with dense depth map and camera mo-
tions. In [2], various simulated motions are used to gener-
ate RS images. Recently, researchers in [20] proposed two
datasets, Carla-RS and Fastec-RS datasets, which generate
more realistic RS distorted images via high-speed cameras
and simulate the natural RS image formation process be-
yond camera motions or 3D geometry. The Carla-RS is
synthesized from a free-moving rolling shutter camera in
a virtual 3D Carla simulator. On the contrary, the Fastec-

RS dataset is created using the GS images in the real world
with a 2400 FPS global shutter camera. However, the
synthesized RS images are unnatural and full of line ar-
tifacts (shown in Fig. 5). Moreover, most of the scenes
in Fastec-RS are collected by a horizontally moving cam-
era, while various motions cause the RS images in the real
world. These limitations significantly deteriorate the perfor-
mance of RSC models. This paper proposes the first real-
world RSC dataset for model training to restore high-quality
GS images from real-world RS distorted images.

3. Proposed Method
3.1. Problem Formulation

As described in [20], the GS frame can be restored by
warping the RS features backward with predicted displace-
ment filed:

Ig(x) = Ir(x+Ug→r(x)), (1)

where Ig is the potential GS frame; Ir is the input RS frame;
Ug→r is the displacement field from GS to RS frame, and x
is a certain pixel. It is difficult to estimate the displacement
field Ug→r since only the RS frames are available. Fortu-
nately, the velocity vector can be estimated from the optical
flow V between two consecutive RS frames. Thus the dis-
placement can be calculated when the velocity is constant:

U(x) = λV(x)T(x), (2)

where λ is a scaling factor, and T(x) is the time offset corre-
sponding to the middle scanline of RS frame. Therefore, ex-
isting methods try to estimate the displacement filed firstly
from two consecutive RS frames, then warp the RS features
with a differentiable forward warping block (DFW) [20]. A
DFW module attempts to approximate the intensity of a par-
ticular pixel x in the potential GS image by aggregating its
neighboring pixel intensities in the RS features with weights
proportional to the neighbor’s distance, i.e., the greater the
distance of a neighbor, the smaller its weight. Therefore,
accurate motion estimation and warping are two key factors
to restore the potential GS frames. However, the accurate
U is hard to estimate since U cannot be effectively super-
vised during training when only the GS frame is adopted
for supervision. The inaccurate estimation U further re-
sults in undesired warping results since the DFW module
aggregates the neighboring pixels to x with distance-aware
weights. As a result, the corrected GS frame often suffers
from blurs and other artifacts.

3.2. Model Overview

Our model aims to alleviate inaccurate displacement
field estimation and error-prone warping problems with
multiple fields prediction and adaptive warping module.
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Figure 2. Main architecture of the proposed RSC model. Our model tries to predicts multiple displacement fields rather than only one
to alleviate existing inaccurate motion estimation. We also propose an adaptive warping module to warp the RS features into the GS one
adaptively under the guidance of the bundle of fields.

Building on current CNN-based RSC methods, our model
inputs three consecutive RS frames to explore motion infor-
mation and complementary contextual information, and re-
store the GS frame at the intermediate exposure time (mid-
dle scanline) of the input central RS frame. Our model con-
sists of three parts shown in Fig. 2: a multi-scale feature
extractor, an adaptive warping module, and a coarse-to-fine
GS frame decoder. We first extract frame-level multi-scale
features. Then, for the features at each scale, the neighbor-
ing RS features are used to predict the forward and back-
ward motion information and warped by the proposed adap-
tive warping module. These warped features are fused by a
convolution block. Last, the decoder decodes the warped
features and outputs the corrected GS frame in a coarse-to-
fine manner.

3.3. Adaptive Warping Module

Multiple Displacement Fields Generation. A key dif-
ference from previous methods is that our model predicts
multiple displacement fields rather than one for warping.
Moreover, the constant velocity assumption is too restric-
tive in Eq. (2), thus we modulated the multiple displacement
fields by further predicting weights. Specifically, for the t-th
RS feature F l

t ∈ RC×H×W at l-th scale, we first construct
a 3D correlation volume CVl

t [28] to build the correspon-
dence with central RS frames. Then the volume is used to
predict multiple displacement fields and their weights by a

residual block [12]:

{Ul,0
t , . . . ,Ul,M−1

t ,W} = ResBlock([CVl
t, F

l
t ]), (3)

where l index the scale, and M is the number of motion
fields. Each field contains two channels corresponding to
the horizontal and vertical movements. W ∈ RM×H×W is
the weight of each estimated field. So the final predicted
displacement fields are modulated by multiplying the esti-
mated weights.

Adaptive Warping. As for the warping process, we pro-
posed an Adaptive Warping Module (AWM) utilizing self-
attention to aggregate the features sampled under the pre-
dicted multiple displacement fields. AWM consists of an
adaptive multi-head attention (Ada-MSA) and a convolu-
tional block. The Ada-MSA mechanism is shown in Fig. 3.
Firstly, for each pixel x (consists of row index i and column
index j) in t-th RS features F l

t at scale l, the query vector
Q is generated by a linear transformation with matrix Wq:

Q = WqF
t
l (x). (4)

Subsequently, the feature set N(x) are sampled under the
guidance of estimated multiple displacement fields Ul

t:

N l
t(x) = {F l

t (x+Ul,i
t (x))|i = 0, 1, . . . ,M − 1}. (5)

Then the key K and value V vectors are then generated by
a linear transformation from the sampled features:

K = WkN
l
t(x), V = WvN

l
t(x), (6)
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Figure 3. Illustration of adaptive multi-head self-attention mech-
anism (Ada-MSA). Ada-MSA aims to warp the input RS features
into the GS features adaptively under the guidance of estimated
multiple motion fields.

where Wk ∈ Rd×C and Wv ∈ Rd×C are transformation
matrices. Thus the adaptive attention feature at h-th head is
calculated by

AdaMSAh(x, F
l
t ,U

l
t) = SoftMax(

QT
hKh√
dh

)V T
h , (7)

where h indexes the attention head, and Qh, Kh and Vh are
with dim dh = d

H . The outputs of all H heads are concate-
nated into d dims vector and projected to the output feature.
Through this adaptive warping module with multiple multi-
ple motion fields, the RS features are aggregated to the GS
counterpart adaptively.

3.4. Loss Functions

We train the proposed model in an end-to-end manner,
and only the ground truth GS frame is required for super-
vision. Following previous work [33], we adopt the Char-
bonnier loss Lc and perceptual loss Lp to ensure the visual
quality of the corrected GS frame. The total variation loss
Ltv is adopted to ensure the smoothness in the estimated
displacement field. Thus total loss can be formulated as:

L = Lc + λpLp + λtvLtv. (8)

4. BS-RSC Dataset
A real-world dataset without synthetic artifacts is essen-

tial to improve the capacity of real applications of CNN-
based RSC methods. Recently, some specific optical acqui-
sition systems have been designed to capture the real-world
image or video pairs for restoration tasks, improving the
generalization capacity of CNN models. Cai et al. [6] con-
structed a real-world super-resolution dataset where paired
high- and low-resolution data of the same scene are cap-
tured by adjusting the focal length of a digital camera. For
deblurring, Rim et al. [26] and Zhong et al. [32] collected
real-world single image and video deblurring dataset re-
spectively, adopting a beam-splitter acquisition system. In-
spired by these pioneering works, we also propose a beam-

splitter acquisition system to collect the first real-world
dataset for the RSC task, termed as BS-RSC.

4.1. Beam-Splitter Acquisition System

The architecture of the designed beam-splitter acquisi-
tion system is shown in Fig. 4(a), where a beam-splitter
splits the incoming light into two beams and passes them
into the following RS and GS cameras. We choose the
FLIR FL3-U3-13S2C RS camera with a 1/3-inch CMOS
sensor (3.63 um pitch size) and the FLIR GS3-U3-28S4C
GS camera with a 1/1.8-inch CCD sensor (3.69 µm pitch
size). These two cameras are geometrically aligned via the
50/50 beam splitter. With the aid of a laser beam, we first
adjust the alignment mechanically towards an accuracy of a
few pixels. After that, we conduct a homography correction
with a standard checker pattern to further reduce misalign-
ment to subpixel level. The exposure time of both the RS
and the GS camera is 1ms, avoiding blurs in the captured
video. Both cameras run at 25 fps. We use a wave genera-
tor to generate synchronized pulses at 25Hz, and the phase
of the pulse for the GS camera is properly delayed, such
that the GS exposure timestamp matches the middle scan-
line of the RS camera (shown in Fig. 4(b)). As for photo-
metric alignment, we put a neutral density filter before the
RS camera to equalize the sensitivity of the two cameras.
We further use a color checker pattern to correct the RGB
response of the GS camera, such that both cameras share
the same color response. The whole system is just about
one kilogram, thus can be held easily and moved freely.

4.2. Data Composition

The collected BS-RSC contains RS videos with vari-
ous camera and object motions, mainly in outdoor street
scenes with cars and people, etc. Specifically, the designed
beam-splitter acquisition system collects a total of 80 RS-
GS HD (1024 × 768) video pairs, and each video contains
50 frames. We further divide it into Train set, Val set, and
Test set with 50, 15, 15 videos, respectively.

Figure 4. The designed beam-splitter acquisition system for real-
world RSC dataset construction. (a) structure of the designed
beam-splitter acquisition system. (b) exposure scheme of the GS
and RS camera. The acquisition system can capture the GS frame
at the intermediate exposure time of RS frame.
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Figure 5. Left: The real world RS-GS example in the collected
BS-RSC dataset. Right: The synthesized RS-GS example in the
Fastec-RS dataset [20]. We see that our real RS frame is more
natural, and there are much artifacts in the synthesized RS frames.

5. Experiments

5.1. Experimental Setting

Datasets. We conduct experiments on the proposed real-
world BS-RSC dataset. Besides, we also provide experi-
mental results on the popular synthesized dataset Fastec-
RS [20], which contains 76 video sequences, and each video
contains 34 frames. Note that we use the dataset coming
from the public released dataset, which is slightly different
from the description in the original paper. Both test and
validation subsets are used to calculate the metrics.

Implementation Details. During training, three consecu-
tive RS frames in RGB style are fed into our model. The
input frames are first randomly cropped into 480× 256 and
randomly flipped horizontally for data augmentation. λp

and λtv are set to 0.01 and 0.001, respectively. The ini-
tial learning rate is set to 2 × 10−4, and the ADAM [15]
is adopted to optimize the model parameters. The model is
trained for 400 epochs with a cosine annealing learning rate
adjusting scheduler. For testing, three consecutive frames
are fed into the model directly without any augmentation.
We set the number of displacement fields M = 9 in the
following experiments.

Evaluation Metrics and Methods of Comparison. Both
PSNR and SSIM are employed to evaluate the corrected
results quantitatively. Visualizations of the corrected RS
frames are shown for qualitative comparison. We compare
the proposed method to state-of-the-art RSC method, in-
cluding a traditional methods proposed in [34], CNN-based
methods DSUN [20], JCD [33] and SUNet [9]. These meth-
ods have shown promising effectiveness on the synthesized
dataset. As the authors of SUNet have not yet published the

code and test results, we cannot report any results other than
those in the original paper.

5.2. Comparison to the State-of-the-art.

Results on BS-RSC. The quantitative comparison of the
proposed real-world dataset BS-RSC is shown in Tab. 1.
Thanks to the multiple motion fields prediction and the
adaptive warping strategy, our model achieves the best
PSNR and SSIM evaluation metrics with a large perfor-
mance improvement than SOTA methods. The qualitative
comparison is shown in Fig. 6. We see that the proposed
method obtains more visually friendly results than other
methods (e.g., the billboard and the trees). These superior
performances significantly demonstrate the effectiveness of
our model on real-world rolling shutter correction.

Methods PSNR↑(dB) SSIM↑
Zhuang et al. [35] 19.80 0.698
DeepUnrollNet [20] 23.60 0.808
JCD [33] 24.86 0.820

Ours 28.23 0.882

Table 1. Quantitative comparison against the state-of-the-art RSC
methods on the proposed BS-RSC dataset.

Results on Fastec-RS. Besides the compassion on BS-
RSC, we further evaluate the proposed method on the syn-
thesized RSC dataset Fastec-RS to verify its effectiveness.
The quantitative and qualitative results are shown in Tab. 2
and Fig. 7, respectively. We see that our model achieves
comparable evaluation results against other methods.

These quantitative and qualitative results shown above
demonstrate the superior performance of our model.

Methods PSNR↑(dB) SSIM↑
Zhuang et al. [35] 21.44 0.710
DeepUnrollNet [20] 27.00 0.825
JCD [33] 24.84 0.778
SUNet [9]* 28.34 0.840

Ours 28.56 0.855

Table 2. Quantitative comparison against the state-of-the-art RSC
methods on the synthesized Fastec-RC dataset. * means that
SUNet restores the GS frame at the first row of the RS frame.

5.3. Ablation Study

Number of Input Frames. Our model takes three frames
to model the motion information more accurately for warp-
ing. To verify this, we modify our model to adapt single
frame and two frames input. Tab. 3 presents the quantita-
tive results with different number of inputs. A single frame
input achieves the lowest metrics due to the ill-posed nature
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(a) RS frame (b) Zhuang et al. [34] (c) DSUN [20]

(d) JCD [33] (e) Ours (f) GS frame

Figure 6. Visual comparison on the proposed BS-RSC dataset for real-world RSC. Our method obtains higher visual quality, and more
details are restored with fewer artifacts. Though the existing methods obtained highly competitive results on the synthesized dataset, they
failed to restore the real-world RS distortions due to the difficulty of modeling the challenging motion in the BS-RSC.

(a) RS frame (b) Zhuang et al. [34] (c) DSUN [20]

(d) JCD [33] (e) Ours (f) GS frame

Figure 7. Visual results on the synthesized Fastec-RS dataset. The proposed method shows a strong competitive edge against other methods.
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of estimating the displacement filed from a single frame. In-
stead, multi-frames can provide inter-frame movements and
complementary information to perform better, especially
when inputting the three consecutive RS frames.

Input Frames PSNR↑(dB) SSIM↑
1 23.84 0.765
2 27.20 0.838
3 28.56 0.855

Table 3. Ablation study of the number of the input RS frames.

Adaptive Warping Module. To verify the effectiveness
of the proposed warping module, we further construct three
models. Net1 only adopts a convolution for multiple RS fea-
tures fusion without any warping. Net2 replaces the AWM
with the common backward warping. Net3 replaces the
AWM with the DFW adopted by existing methods. The
results shown in Tab. 4 demonstrate the effectiveness of the
proposed adaptive warping module. Meanwhile, our model
achieves best PSNR and SSIM when number of the pre-
dicted motion fields M equals 9.

Model PSNR↑(dB) SSIM↑
Net1 26.14 0.801
Net2 26.76 0.826
Net3 27.20 0.837

Ours (M = 2) 27.41 0.836
Ours (M = 9) 28.56 0.855
Ours (M = 16) 27.98 0.850

Table 4. Ablation study of different warping methods.

Cross Camera Validation. To further validate the effec-
tiveness of the proposed real-world RSC dataset BS-RSC,
we test our model and DSUN model on the RS frames cap-
tured by third-party RS camera EO-1312C. The visual re-
sults are shown in Fig. 8. The sub-figure (b) losses many
details compared to the original RS frame, which shows that
the model trained on the synthesized dataset Fastec-RS can-
not remove the RS effects and even introduces more blurs
and artifacts into the image. Sub-figure (c) and (d) demon-
strate that the proposed BS-RSC can help deal with real-
world RS distortions. However, the DSUN model cannot
estimate the displacement field effectively and correct the
RS frame well. Thanks to the design of adaptive warping,
our model obtains visually friendly results.

Inter-frame Time. To validate the generalisation capabil-
ity of the proposed model, we test the trained model on the
RS videos with different inter-frame time (by interpolating
the RS frames), and the corrected results at different time
stamps are shown in Fig. 9. We see that our model is robust

(a) RS frame (b) Trained on Fastec-RS

(c) DSUN (d) Ours

Figure 8. The corrected results of the proposed method on the
frames captured by a third-party camera. (a) is the input RS frame.
(b) is restored by our model trained on synthesized Fastec-RS. (c)
and (d) are corrected by DSUN and our model trained on the pro-
posed BS-RSC.

to different inter-frame time of the input RS frames dur-
ing testing. However, some minor artifacts will occur (e.g.,
the corrected GS frame with 1/4 inter-frame time) when
the testing inter-frame time largely deviates from the inter-
frame time of the training dataset. Therefore, we cannot
perfectly avoid overfitting the inter-frame time of training
dataset.

Figure 9. The corrected results of RS frames with different inter-
frame time.

6. Limitation and Conclusion
In this paper, we explore the real-world rolling shutter

correction task. An effective adaptive warping model based
on the attention mechanism is proposed, and a real-world
RSC dataset is collected by a well-designed beam-splitter
acquisition system. Experimental results demonstrate the
effectiveness of both, showing highly comparative results
against previous warping-based methods. However, real-
time inference on low-power mobile devices is still chal-
lenging at now, and how to accelerate the model is our fu-
ture work.
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