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Abstract

MonoScene proposes a 3D Semantic Scene Completion
(SSC) framework, where the dense geometry and semantics
of a scene are inferred from a single monocular RGB image.
Different from the SSC literature, relying on 2.5 or 3D input,
we solve the complex problem of 2D to 3D scene reconstruc-
tion while jointly inferring its semantics. Our framework re-
lies on successive 2D and 3D UNets, bridged by a novel 2D-
3D features projection inspired by optics, and introduces a
3D context relation prior to enforce spatio-semantic con-
sistency. Along with architectural contributions, we intro-
duce novel global scene and local frustums losses. Experi-
ments show we outperform the literature on all metrics and
datasets while hallucinating plausible scenery even beyond
the camera field of view. Our code and trained models are
available at https://github.com/cv-rits/MonoScene.

1. Introduction
Estimating 3D from an image is a problem that goes back

to the roots of computer vision [54]. While we, humans,
naturally understand a scene from a single image, reasoning
all at once about geometry and semantics, this was shown
remarkably complex by decades of research [57, 75, 80].
Subsequently, many algorithms use dedicated depth sen-
sors such as Lidar [36, 50, 62] or depth cameras [2, 15, 19],
easing the 3D estimation problem. These sensors are often
more expensive, less compact and more intrusive than cam-
eras which are widely spread and shipped in smartphones,
drones, cars, etc. Thus, being able to estimate a 3D scene
from an image would pave the way for new applications.

3D Semantic Scene Completion (SSC) addresses scene
understanding as it seeks to jointly infer its geometry and
semantics. While the task gained popularity recently [56],
the existing methods still rely on depth data (i.e. occupancy
grids, point cloud, depth maps, etc.) and are custom de-
signed for either indoor or outdoor scenes.

Here, we present MonoScene which – unlike the litera-
ture – relies on a single RGB image to infer the dense 3D
voxelized semantic scene working indifferently for indoor
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Figure 1. RGB Semantic Scene Completion with MonoScene.
Our framework infers dense semantic scenes, hallucinating
scenery outside the field of view of the image (dark voxels, right).

and outdoor scenes. To solve this challenging problem, we
project 2D features along their line of sight, inspired by
optics, bridging 2D and 3D networks while letting the 3D
network self-discover relevant 2D features. The SSC liter-
ature mainly relies on cross-entropy loss which considers
each voxel independently, lacking context awareness. We
instead propose novel SSC losses that optimize the seman-
tic distribution of group of voxels, both globally and in local
frustums. Finally, to further boost context understanding,
we design a 3D context layer to provide the network with a
global receptive field and insights about the voxels seman-
tic relations. We extensively tested MonoScene on indoor
and outdoor, see Fig. 1, where it outperformed all compara-
ble baselines and even some 3D input baselines. Our main
contributions are summarized as follows.

• MonoScene: the first SSC method tackling both out-
door and indoor scenes from a single RGB image.

• A mechanism for 2D Features Line of Sight Projection
bridging 2D and 3D networks (FLoSP, Sec. 3.1).

• A 3D Context Relation Prior (3D CRP, Sec. 3.2) layer
that boosts context awareness in the network.

• New SSC losses to optimize scene-class affinity
(Sec. 3.3.1) and local frustum proportions (Sec. 3.3.2).

2. Related works
3D from a single image. Despite early researches [31,57,
80], in the deep learning era the first works focused on sin-
gle 3D object reconstruction with explicit [1, 11, 16, 23, 26,
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Figure 2. MonoScene framework. We infer 3D SSC from a single RGB image, leveraging 2D and 3D UNets, bridged by our Features Line
of Sight Projection (FLoSP Sec. 3.1), and a 3D Context Relation Prior (3D CRP, Sec. 3.2) to enhance spatio-semantic awareness. On top
of standard cross-entropy (Lce), our Scene-Class Affinity loss (Lscal, Sec. 3.3.1) improves the global semantics (Lsem

scal) and geometry (Lgeo
scal),

and our Frustums Proportion loss (Lfp, Sec. 3.3.2) enforces class distribution in local frustums, providing supervision beyond occlusions.

43, 63, 65–67, 70] or implicit representations [47, 49, 51, 52,
68]. A comprehensive survey on the matter is [30]. For mul-
tiple objects, a common practice is to couple reconstruction
with object detection [27,28,34,35,78]. Closer to our work,
holistic 3D understanding seeks to predict the scene and ob-
jects layout [32, 37, 48, 60, 75, 83], reaching a sparse scene
representation. Only [18] recently addressed indoor dense
visible panoptic reconstruction by backprojecting individual
2D task features to 3D. We instead densely estimate seman-
tics and geometry for both indoor and outdoor scenarios.

3D semantic scene completion (SSC). SSCNet [59] first
defined the ‘SSC’ task where geometry and semantics are
jointly inferred. The task gained attention lately, and is
thoroughly reviewed in a survey [56]. Existing works all
use geometrical inputs like depth [12, 25, 39–42, 45], occu-
pancy grids [13, 25, 55, 69] or point cloud [53, 81]. Trun-
cated Signed Distance Function (TSDF) were also proved
informative [6, 9, 10, 12, 20, 21, 41, 59, 64, 77, 79]. Among
others originalities, some SSC works use adversarial train-
ing to guide realism [10, 64], exploit multi-task [6, 38], or
use lightweight networks [40, 55]. Of interest for us, while
others have used RGB as input [6, 8, 9, 14, 20, 20, 25, 29,
39, 40, 42, 45, 81] it is always along other geometrical input
(e.g. depth, TSDF, etc.). A remarkable point in [56] is that
existing methods are designed for either indoor or outdoor,
performing suboptimally in the other setting. The same sur-
vey highlights the poor diversity of losses for SSC. Instead,
we address SSC only using a single RGB image, with novel
SSC losses, and are robust to various types of scenes.

Contextual awareness. Contextual features are crucial
for semantics [71] and SSC [56] tasks. A simple strat-
egy is to concatenate multiscale features with skip con-
nections [9, 19, 45, 59, 77] or use dilated convolutions for
large receptive fields [73], for example with the popular
Atrous Spatial Pyramid Pooling (ASPP) [7] also used in
SSC [39,40,45,55]. Long-range information is gathered by
self-attention in [24, 33] and global pooling in [72, 76]. Ex-
plicit contextual learning is shown to be beneficial in [71].
We propose a 3D contextual component that leverages mul-
tiple relation priors and provides a global receptive field.

3. Method

3D Semantic Scene Completion (SSC) aims to jointly in-
fer geometry and semantics of a 3D scene ŷ by predicting
labels C = {c0, c1, . . . , cM}, being free class c0 and M se-
mantic classes. This has been almost exclusively addressed
with 2.5D or 3D inputs [56], such as point cloud, depth or
else, which act as strong geometrical cues.

Instead, MonoScene solves voxel-wise SSC from a
single RGB image xrgb, learning ŷ = f(xrgb). This is
significantly harder due to the complexity of recovering 3D
from 2D. Our pipeline in Fig. 2 uses 2D and 3D UNets
bridged by our Features Line of Sight Projection module
(FLoSP, Sec. 3.1), lifting 2D features to plausible 3D
locations, that boosts information flow and enables 2D-3D
disentanglement. Inspired by [71], we capture long-range
semantic context with our 3D Context Relation Prior com-
ponent (3D CRP, Sec. 3.2) inserted between the 3D encoder
and decoder. To guide the SSC training, we introduce
new complementary losses. First, a Scene-Class Affinity
Loss (Sec. 3.3.1) optimizes the intra-class and inter-class
scene-wise metrics. Second, a Frustum Proportion Loss
(Sec. 3.3.2) aligns the classes distribution in local frustums,
which provides supervision beyond scene occlusions.

2D-3D backbones. We rely on consecutive 2D and
3D UNets with standard skip connections. The 2D UNet
bases on a pre-trained EfficientNetB7 [61] taking as input
the image xrgb. The 3D UNet is a custom shallow encoder-
decoder with 2 layers. The SSC output ŷ is obtained by
processing the 3D UNet output features with our comple-
tion head holding a 3D ASPP [7] block and a softmax layer.

3.1. Features Line of Sight Projection (FLoSP)

Lifting 2D to 3D is notoriously ill-posed due to the scale
ambiguity of single view point [22]. We rather reason from
optics and backproject multiscale 2D features to all possible
3D correspondences, that is along their optical ray, aggre-
gated in a unique 3D representation. Our intuition here is
that processing the latter with a 3D network will provide
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Figure 3. Features Line of Sight Projection (FLoSP). We project
multi-scale 2D features F1:s

2D (here, s ∈ {1, 2, 4, 8}) along their line
of sight by sampling (Φ(·)) them where the 3D voxels centroids
(xc) project (ρ(·)). This boosts the 2D-3D information flow, and
lets the 3D network discover which 2D features are relevant.

guidance from the ensemble of 2D features. Our projec-
tion mechanism is akin to [52] but the latter projects each
2D map to a given 3D map – acting as 2D-3D skip con-
nections. In contrast, our component bridges the 2D and
3D networks by lifting multiscale 2D features to a single
3D feature map. We argue this enables 2D-3D disentangled
representations, providing the 3D network with the freedom
to use high-level 2D features for fine-grained 3D disam-
biguation. Compared to [52], ablation in Sec. 4.3 shows
our strategy is significantly better.

Our process is illustrated in Fig. 3. In practice, assum-
ing known camera intrinsics, we project 3D voxels cen-
troids (xc) to 2D and sample corresponding features from
the 2D decoder feature map F1:s

2D of scale 1:s. Repeating the
process at all scales S, the final 3D feature map F3D writes

F3D =
∑
s∈S

Φρ(xc)(F
1:s
2D ) , (1)

where Φa(b) is the sampling of b at coordinates a, and ρ(·)
is the perspective projection. In practice, we backproject
from scales S={1, 2, 4, 8}, and apply a 1x1 conv on 2D
maps before sampling to allow summation. Voxels pro-
jected outside the image have their feature vector set to 0.
The output map F3D is used as 3D UNet input.

3.2. 3D Context Relation Prior (3D CRP)

Because SSC is highly dependent on the context [56],
we inspire from CPNet [71] that demonstrates the benefit of
binary context prior for 2D segmentation. Here, we propose
a 3D Context Relation Prior (3D CRP) layer, inserted at the
3D UNet bottleneck, which learns n-way voxel↔voxel se-
mantic scene-wise relation maps. This provides the network
with a global receptive field, and increases spatio-semantic
awareness due to the relations discovery mechanism.

Because SSC is a highly imbalanced task, learning
binary (i.e. n=2) relations as in [71] is suboptimal.

(a) Voxel↔Voxel relations

free occ
fs fd os od

↔ ✓ ✓ ✗ ✗

↔ ✗ ✓ ✗ ✗

↔ ✗ ✗ ✓ ✓

(b) Samples Supervoxel↔Voxel relations.

Figure 4. 2D illustration of 4-way relations. (a) We consider
voxel↔voxel relations whether one is free or both are occupied,
and if their semantics is similar or different. (b) For memory rea-
son, we encode Supervoxel↔Voxel relations framed as multi-label
classification. ( free, occupied - colors denote semantics)

We instead consider n=4 bilateral voxel↔voxel relations,
grouped into free and occupied corresponding to ‘at least
one voxel is free’ and ‘both voxels are occupied’, respec-
tively. For each group, we encode whether the voxels se-
mantic classes are similar or different, leading to the 4 non-
overlapping relations: M={fs, fd, os, od}. Fig. 4a illus-
trates the relations in 2D (see caption for colors meaning).

As voxels relations are greedy with N2 relations for N
voxels, we present the lighter supervoxel↔voxel relations.

Supervoxel↔Voxel relation. We define supervoxels
as non-overlapping groups of s3 neighboring voxels each,
and learn the smaller supervoxel↔voxel relation matrices
of size N2

s3 . Considering a supervoxel V having voxels
{ν1, . . . , νs3} and a voxel ν, there are s3 pairwise relations
{ν1↔ν, . . . , νs3↔ν}. Instead of regressing the complex
count of M relations in V↔ν, we predict which of the M
relations exist, as depicted in Fig. 4b. This writes,

V↔ν = {ν1↔ν, . . . , νs3↔ν} ̸=, (2)

where {·}̸= returns distinct elements of a set.

3D Context Relation Prior Layer. Fig. 5 illustrates the
architecture of our layer. It takes as input a 3D map of
spatial dimension HxW xD, on which is applied a serie of
ASPP convolutions [7] to gather a large receptive field, then
split into n=|M| matrices of size HWD×HWD

s3 .
Each matrix Âm encodes a relation m∈M , supervised

by its ground truth Am. We then optimize a weighted multi-
label binary cross entropy loss:

Lrel=−
∑

m∈M,i

[(1-Am
i ) log(1-Âm

i )+wmAm
i log Âm

i ], (3)

where i loops through all elements of the relation matrix
and wm =

∑
i(1−Am

i )∑
i A

m
i

. The relation matrices are multiplied
with reshaped supervoxels features to gather global context.

Alternatively, relations in Am can be self-discovered
(w/o M) by removing Lrel, i.e. behaving as attention ma-
trices.
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Figure 5. 3D Context Relation Prior (3D CRP). We infer re-
lation matrices Âm (here, 4), where each encodes a unique re-
lation m ∈ M – optionally supervised with a relation loss (Lrel).
The matrices are multiplied with the supervoxels features to gather
context, and later combined (concate, conv, DDR [40]) with input
features. The feature dimension is omitted for clarity.

3.3. Losses

We now introduce new losses pursuing distinct global
(Sec. 3.3.1) or local (Sec. 3.3.2) optimization objectives.

3.3.1 Scene-Class Affinity Loss

We seek to explicitly let the network be aware of the global
SSC performance. To do so, we build upon the 2D binary
affinity loss in [71] and introduce a multi-class version di-
rectly optimizing the scene- and class- wise metrics.

Specifically, we optimize the class-wise derivable
(P)recision, (R)ecall and (S)pecificity where Pc and Rc

measure the performance of similar class c voxels, and Sc

measures the performance of dissimilar voxels (i.e. not of
class c). Considering pi the ground truth class of voxel i,
and p̂i,c its predicted probability to be of class c, we define:

Pc(p̂, p) = log

∑
i p̂i,cJpi = cK∑

i p̂i,c
, (4)

Rc(p̂, p) = log

∑
i p̂i,cJpi = cK∑

iJpi = cK
, (5)

Sc(p̂, p) = log

∑
i(1− p̂i,c)(1− Jpi = cK)∑

i(1− Jpi = cK)
, (6)

with J.K the Iverson brackets. For more generality, our loss
Lscal maximizes the above class-wise metrics with:

Lscal(p̂, p) = − 1

C

C∑
c=1

(Pc(p̂, p)+Rc(p̂, p)+Sc(p̂, p)). (7)

In practice, we optimize semantics Lsem
scal=Lscal(ŷ, y) and ge-

ometry Lgeo
scal=Lscal(ŷ

geo, ygeo), where {y, ygeo} are semantic
and geometric labels with respective predictions {ŷ, ŷgeo}.

3.3.2 Frustum Proportion Loss

Disambiguation of occlusions is impossible from a single
viewpoint and we observe that occluded voxels tend to be

Image
2x2 patches

Prediction Ground-truth

soft labels labels

Figure 6. Frustum Proportion Loss. Considering an image di-
vided into same-size 2D patches (here, 2×2), each corresponds to
a 3D frustum in the scene, we align the predicted frustum class
probabilities (e.g. P̂ k) with the corresponding ground truth (P k).
This provides cues to the network for occlusions disambiguation.

predicted as part of the object that shadows them. To miti-
gate this effect, we propose a Frustum Proportion Loss that
explicitly optimizes the class distribution in a frustum.

As illustrated in Fig. 6, rather than optimizing the cam-
era frustum distribution, we divide the input image into ℓ×ℓ
local patches of equal size and apply our loss on each local
frustum (defined as the union of the individual pixels frus-
tum in the patch). Intuitively, aligning the frustums distri-
butions provide additional cues to the network on the scene
visible and occluded structure, giving a sense of what is
likely to be occluded (eg. cars are likely to occlude road).

Given a frustum k, we compute Pk the ground truth class
distribution of voxels in k, and Pk,c the proportion of class
c in k. Let P̂k and P̂k,c be their soft predicted counter-
parts, obtained from summing per-class predicted probabil-
ities. To enforce consistency, we compute Lfp as the sum of
local frustums Kullback-Leibler (KL) divergence:

Lfp=

ℓ2∑
k=1

DKL(Pk||P̂k) =

ℓ2∑
k=1

∑
c∈Ck

Pk(c) log
Pk(c)

P̂k(c)
. (8)

Note the use of Ck instead of C. Indeed, frustums include
small scene portions where some classes may be missing,
making KL locally undefined. Instead, we compute the KL
on Ck, the ground truth classes that exist in the frustum k.

3.4. Training strategy

MonoScene is trained end-to-end from scratch by opti-
mizing our 4 losses and the standard cross-entropy (Lce):

Ltotal = Lce + Lrel + Lsem
scal + Lgeo

scal + Lfp . (9)

Because real-world data comes with sparse ground truth y
due to occlusions, the losses are computed only where y is
defined [45, 56, 59]. Ground truths ygeo and Am, for Lgeo

scal
and Lrel, respectively, are simply obtained from y. We em-
ploy class weighting for Lce following [9, 55].
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4. Experiments
We evaluate MonoScene on popular real-world SSC

datasets being, indoor NYUv2 [58] and outdoor Se-
manticKitti [3]. Because we first address 3D SSC from a
2D image, we detail our non-trivial adaptation of recent
SSC baselines [9, 39, 55, 69] (Sec. 4.1) and then detail our
performance (Sec. 4.2) and ablations (Sec. 4.3).

Datasets. NYUv2 [58] has 1449 Kinect captured indoor
scenes, encoded as 240x144x240 voxel grids labeled with
13 classes (11 semantics, 1 free, 1 unknown). The input
RGBD is 640x480. Similar to [9,39,40,45] we use 795/654
train/test splits and evaluate on the test set at the scale 1:4.

SemanticKITTI [3] holds outdoor Lidar scans voxelized
as 256x256x32 grid of 0.2m voxels, labeled with 21 classes
(19 semantics, 1 free, 1 unknown). We use RGB image of
cam2 of size 1226x370, left cropped to 1220×370. We use
the official 3834/815 train/val splits and always evaluate at
full scale (i.e. 1:1). Main results are from the hidden test
set (online server), and ablations are from the validation set.

Training setup. Unless otherwise mentioned, we use
FLoSP at scales (1,2,4,8), 4 supervised relations for
3D CRP (i.e. n=4, with Lrel), and ℓ×ℓ=8×8 frustums for
Lfp. The 3D UNet input is 60x36x60 (1:4) for NYUv2 and
128x128x16 (1:2) for Sem.KITTI due to memory reason.
The output of Sem.KITTI is upscaled to 1:1 with a deconv
layer in the completion head. Details in supp. Sec. 1. We
train 30 epochs with an AdamW [46] optimizer, a batch size
of 4 and a weight decay of 1e-4. The learning rate is 1e-4,
divided by 10 at epoch 20/25 for NYUv2/SemanticKITTI.

Metrics. Following common practices, we report the in-
tersection over union (IoU) of occupied voxels, regardless
of their semantic class, for the scene completion (SC) task
and the mean IoU (mIoU) of all semantic classes for the
SSC task. Note the strong interaction between IoU and
mIoU since better geometry estimation (i.e. high IoU) can
be achieved by invalidating semantic labels (i.e. low mIoU).

As mentioned in [56], the training and evaluation prac-
tices differ for indoor (with metrics evaluated only on ob-
served surfaces and occluded voxels) or outdoor settings
(evaluated on all voxels) due to the different depth/Lidar
sparsity. To cope with both settings, we use the harder met-
rics on all voxels. We subsequently retrained all baselines.

4.1. Baselines

We consider 4 main SSC baselines among the best open-
source ones available – selecting two indoor-designed meth-
ods, 3DSketch [9] and AICNet [39], and two outdoor-
designed, LMSCNet [55] and JS3CNet [69]. We also
locally compare against S3CNet [12], Local-DIFs [53],

CoReNet [52]. We evaluate baselines in their 3D-input ver-
sion and main baselines also in an RGB-inferred version.
RGB-inferred baselines. Unlike us, all baselines need
a 3D input e.g. occupancy grid, point cloud or depth map,
giving them an unfair geometric advantage. For fair com-
parison, we adapt main baselines to infer their 3D inputs di-
rectly from the 2D image (xrgb) – relying on the best found
methods –, coined as ‘RGB-inferred’, denoted with a super-
script, e.g. AICNetrgb. Note that baselines are unchanged.
Inferred 3D inputs are denoted with a hat, eg. x̂depth.

We use the pretrained AdaBin [4] to infer a depth map
(x̂depth) serving as input for AICNetrgb. Using intrinsic
calibration, we further converted depth to TSDF (x̂TSDF)
with [74] for 3DSketchrgb input, and unproject depth to get
a point cloud (x̂pts) directly used as input for JS3CNetrgb or
discretized as occupancy grid (x̂occ) input for LMSCNetrgb.
For training only, JS3CNetrgb also requires a semantic point
cloud (x̂sem pts), obtained by augmenting x̂pts with 2D se-
mantic labels from a pretrained network [82].

4.2. Performance

4.2.1 Evaluation

Tab. 1 reports performance of MonoScene and RGB-
inferred baselines for NYUv2 (test set) and SemanticKITTI
official benchmark (hidden test set). The low numbers for
all methods advocate for task complexity.

On both datasets we outperform all methods by a sig-
nificant mIoU margin of +4.03 on NYUv2 (Tab. 1a) and
+2.11 on SemanticKITTI (Tab. 1b). Importantly, the IoU is
improved or on par (+3.87 and +0.16) which demonstrates
our network captures the scene geometry while avoiding
naively increasing the mIoU by lowering the IoU. On in-
dividual classes, MonoScene performs either best or sec-
ond, excelling on large structural classes for both datasets
(e.g. floor, wall ; road, building). On SemanticKITTI we
get outperformed mostly on small moving objects classes
(car, motorcycle, person, etc.) which we ascribe to the ag-
gregation of moving objects in the ground truth, highlighted
in [53,56]. This forces to predict the individual object’s mo-
tion which we argue is eased when using a 3D input.

Qualitative. We compare our SSC outputs in Fig. 7 show-
ing the input image (leftmost column) and its correspond-
ing camera frustum in ground truth (rightmost). Notice the
noisy labels in NYUv2 having missing objects (e.g. win-
dows, rows 2; ceiling, row 3), and in SemanticKITTI having
sparse geometry (e.g. holes in buildings, rows 1–3).

On indoor scenes (NYUv2, Fig. 7a), all methods cor-
rectly capture global scene layouts though only MonoScene
recovers thin elements as table legs and cushions (row 1),
or the painting frame and properly sized TV (row 2).

On complex cluttered outdoor scenes (SemanticKITTI,
Fig. 7b), compared to baselines, MonoScene evidently cap-
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LMSCNetrgb [55] x̂occ 31.38 46.70 19.50 13.50 3.10 10.30 14.30 0.30 0.00 0.00 0.00 10.80 0.00 10.40 0.00 0.00 0.00 5.40 0.00 0.00 7.07
3DSketchrgb [9] xrgb,x̂TSDF 26.85 37.70 19.80 0.00 0.00 12.10 17.10 0.00 0.00 0.00 0.00 12.10 0.00 16.10 0.00 0.00 0.00 3.40 0.00 0.00 6.23
AICNetrgb [39] xrgb,x̂depth 23.93 39.30 18.30 19.80 1.60 9.60 15.30 0.70 0.00 0.00 0.00 9.60 1.90 13.50 0.00 0.00 0.00 5.00 0.10 0.00 7.09
*JS3C-Netrgb [69] x̂pts 34.00 47.30 21.70 19.90 2.80 12.70 20.10 0.80 0.00 0.00 4.10 14.20 3.10 12.40 0.00 0.20 0.20 8.70 1.90 0.30 8.97
MonoScene (ours) xrgb 34.16 54.70 27.10 24.80 5.70 14.40 18.80 3.30 0.50 0.70 4.40 14.90 2.40 19.50 1.00 1.40 0.40 11.10 3.30 2.10 11.08

* Uses pretrained semantic segmentation network.
(b) Semantic KITTI (hidden test set)

Table 1. Performance on (a) NYUv2 [58] and (b) SemanticKITTI [3]. We report the performance on semantic scene completion (SSC -
mIoU) and scene completion (SC - IoU) for RGB-inferred baselines and our method. Despite the various indoor and outdoor setups, we
significantly outperform other RGB-inferred baselines, in both mIoU and IoU.

Method Input IoU mIoU

2.5/3D
LMSCNet [55] xocc 44.1 20.4
AICNet [39] xrgb, xdepth 43.8 23.8
3DSketch [9] xrgb, xTSDF 49.5 29.2

2D
MonoScene xrgb 42.5 26.9

(a) NYUv2 (test set)

Method Input IoU mIoU

3D
LMSCNet [55] xocc 56.7 17.6
Local-DIFs [53] xocc 57.7 22.7
JS3C-Net [69] xpts 56.6 23.8
S3CNet [12] xocc 45.6 29.5

2D
MonoScene xrgb 34.2 11.1

(b) Semantic KITTI (hidden test set)

Table 2. 2.5/3D input baselines. Despite a single RGB,
MonoScene still outperforms the mIoU of some indoor baselines.

tures better the scene layout, e.g. cross-roads (rows 1,3). It
also infers finer occluded geometry which is apparent with
cars in rows 1–3 having better shapes. Interestingly, de-
spite a narrow camera field of view (FOV) with respect to
the scene, MonoScene properly hallucinates scenery not im-
aged, i.e. outside of the camera FOV (darker voxels). This
is striking in rows 3,4 where the bottom part of the scene
is reasonably guessed, though not in the viewing frustum.
Supp. Sec. 2.1 provides in-/out-FOV performance details.

4.2.2 Comparison against 2.5/3D-input baselines

For completeness, we also compare with some original
baselines (i.e. using real 3D input) in Tab. 2. Despite the

NYUv2 SemanticKITTI
IoU ↑ mIoU ↑ IoU ↑ mIoU ↑

Ours 42.51 ±0.15 26.94 ±0.10 37.12 ±0.15 11.50 ±0.14

Ours w/o FLoSP 28.39 ±0.53 14.11 ±0.21 27.55 ±0.87 4.78±0.10

Ours w/o 3D CRP 41.39 ±0.08 26.27 ±0.15 36.20 ±0.19 10.96 ±0.21

Ours w/o Lsem
scal 42.82 ±0.22 25.33 ±0.26 36.78 ±0.34 9.89 ±0.11

Ours w/o Lgeo
scal 40.96 ±0.28 26.34 ±0.23 34.92 ±0.34 11.35 ±0.22

Ours w/o Lfp 41.90 ±0.26 26.37 ±0.16 36.74 ±0.33 11.11 ±0.24

Table 3. Architecture ablation. Our components boost perfor-
mance on NYUv2 [58] (test set) and SemanticKitti [3] (val. set).

unfair setup since we use only RGB, in NYUv2 (Tab. 2a)
we still beat the recent LMSCNet and AICNet in mIoU by
a comfortable margin (+6.48 and +3.17), but with a lower
IoU (-1.6 and -1.26). Of note AICNet also uses RGB in
addition to depth, showing our method excels at recovering
geometry from image only. 3DSketch, using RGB + TSDF,
outperforms us on both mIoU and IoU showing the benefit
of TSDF for SSC as mentioned in [56]. In SemanticKITTI
(Tab. 2b), the baselines clearly surpass us in all metrics
which relates both to the lidar-originated 3D input having a
much wider horizontal FOV than the camera (180◦ vs 82◦),
and to the far more complex and cluttered outdoor scenes –
thus harder to reconstruct from a single image viewpoint.

The large 2D – 2.5/3D gaps in Tab. 2 partly result of the
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Input LMSCNetrgb [55] AICNetrgb [39] 3DSketchrgb [9] MonoScene (ours) Ground Truth

■ceiling ■floor ■wall ■window ■chair ■sofa ■table ■tvs ■furniture ■objects
(a) NYUv2 [58] (test set).

Input AICNetrgb [39] LMSCNetrgb [55] JS3CNetrgb [69] MonoScene (ours) Ground Truth

■bicycle ■car ■motorcycle ■truck ■other vehicle ■person ■bicyclist ■motorcyclist ■road ■parking
■sidewalk ■other ground ■building ■fence ■vegetation ■trunk ■terrain ■pole ■traffic sign

(b) SemanticKITTI [3] (val set).

Figure 7. Outputs on (a) NYUv2 [58] and (b) SemanticKITTI [3]. In both, the input is shown left and the camera viewing frustum is
shown in the ground truth (rightmost) with darker colors being parts of scenes unseen by the image in (b). MonoScene better captures the
scene layout on both datasets. On indoor scene (a), it reconstructs thin objects like table legs (row 1), painting and tv (row 2), while in
outdoor (b), it better estimates occluded geometry e.g. car (row 1–3) and better hallucinates the scenery beyond the field of view (row 1–4).

low depth accuracy. For example, on NYUv2/Sem.KITTI
AdaBins [4] gets 0.36/2.36m RMSE while voxels size is
0.08/0.2m. Furthermore, as we account for occluded vox-
els, our geometry is expectedly better. This is assessed us-
ing MonoScene geometry as input of LMSCNet, which im-
proves IoU/mIoU on Sem.KITTI val. set from 28.61/6.70
to 35.94/9.44. Still, Tab. 3 shows that MonoScene predicts
better geometry and semantics reaching 37.12/11.50.

4.3. Ablation studies

We ablate our MonoScene framework on both NYUv2
(test set) and SemanticKITTI (validation set), and report the
average of 3 runs to account for training variability.
Architectural components. Tab. 3 shows that all com-
ponents contribute to the best results. For ‘w/o FLoSP’,
we instead interpolate and convolve the 2D decoder fea-

tures to the required 3D UNet input size. Specifically,
FLoSP (Sec. 3.1) is shown to be the most crucial as it im-
proves remarkably both semantics ([+12.83,+6.72] mIoU)
and geometry ([+14.11,+9.56] IoU). 3D CRP (Sec. 3.2)
contributes equally to IoU (in [+0.77,+1.12]) and mIoU (in
[+0.54,+1.33]). Both SCAL losses (Sec. 3.3.1) contribute
differently as expected, since Lsem

scal helps semantics (+1.61
mIoU in both), while Lgeo

scal boosts geometry ([+1.55,+2.20]
IoU). In NYUv2 only, Lsem

scal harms IoU (-0.31) but improves
the same metric on SemanticKITTI (+0.34). Finally, the
frustums proportion loss (Sec. 3.3.2) boosts both metrics on
both datasets by at least +0.38 and up to +0.61.
Effect of features projection. We now study in-depth the
effect of FLoSP (Sec. 3.1) at the core our RGB-based task.
In Tab. 4a, we use our FLoSP projecting only 2D features
from given 2D scales by changing S in Eq. (1). More 2D
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2D scales
(S) IoU ↑ mIoU ↑

1, 2, 4, 8 42.51 ±0.15 26.94 ±0.10

1, 2, 4 42.08 ±0.69 26.28 ±0.24

1, 2 41.56 ±0.18 25.66 ±0.21

1 41.57 ±0.11 25.61 ±0.43

w/o FLoSP 28.39 ±0.53 14.11 ±0.21

(a) Scales in FLoSP

n Lrel IoU ↑ mIoU ↑

4 ✓ 42.51 ±0.15 26.94 ±0.10

✗ 42.24 ±0.15 26.55 ±0.29

2 ✓ 42.09 ±0.15 26.63 ±0.05

✗ 42.15 ±0.26 26.47 ±0.16

w/o 3D CRP 41.39 ±0.08 26.27 ±0.15

(b) Relations and supervision in 3D CRP

Table 4. Study of FLoSP and 3D CRP. (a) Projecting from differ-
ent 2D scales (S) in FLoSP (Sec. 3.1) show more scales is better.
(b) In our 3D CRP (Sec. 3.2) using more relations (n) and super-
vision (Lrel) lead to higher metrics. Results are on NYUv2.

C
oR

eN
et

Ray-traced skip conn.

Pool & Deconv
E D

O
ur

s-
lig

ht

FLoSPE D

(a) Architectures (2D or 3D)

IoU ↑ mIoU ↑

CoReNet (1,2,4) 30.60 ±0.46 17.34 ±0.37

Ours-light (1,2,4) 40.80 ±0.43 25.90 ±0.63

Ours-light (1) 40.13 ±0.31 25.33 ±0.58

(b) Performance

Figure 8. Type of 2D-3D features projections. (a) Comparing
our FLoSP and ‘Ray-traced skip connections’ from CoReNet [52]
(cf. text) shows in (b) we get significantly better results at compa-
rable (1,2,4) scales or even with only one (1).

scales boosts IoU and mIoU consistently and leans to lower
variance – showing (1,2,4,8) projections are indeed best.

We further compare FLoSP to the ‘Ray-traced skip con-
nections’ of CoReNet [52] being close in nature, putting our
best effort to push CoReNet performance. To properly eval-
uate only the effect of features projection, we remove our
other components, producing a light version (‘Ours-light’)
with the same 2D encoder (E), 3D decoder (D), and pro-
jection scales (1,2,4), corresponding to all possible scales
in the 3D decoder, as in CoReNet, shown in Fig. 8a. On
NYUv2, Fig. 8b shows FLoSP is very significantly better
(+10.2 IoU, +8.56 mIoU). We conjecture this relates to the
fact that CoReNet applies same-scale 2D-3D connections,
while FLoSP disentangles 2D-3D scales, letting the net-
work relies on self-learned relevant features, confirmed by
the good performance of the (1) scale in Fig. 8b.
Effect of relations in 3D CRP. While 3D CRP (Sec. 3.2)
is shown beneficial in Tab. 3, we evaluate the effect of dif-
ferent numbers of relations (i.e. n). Tab. 4b shows the ben-
efit of our 4 relations M={fs, fd, os, od} instead of only 2
(i.e. M={s,d}), which matches our expectation due to the
overwhelming imbalance of free/occupied voxels (≈ 9:1 in
NYUv2). Our supervision of relation matrices Â with the
relation loss Lrel from Eq. (3) also shows an increase of
all metrics. Without supervision, our 3D CRP acts as a self-
attention layer that learns the context information implicitly.
Effect of local frustums loss. Tab. 5 shows the effect of
varying number of ℓ×ℓ frustums (Eq. (8), Sec. 3.3.2) on
both datasets. Higher numbers result in smaller frustums,

NYUv2 SemanticKITTI
ℓ×ℓ IoU ↑ mIoU ↑ IoU ↑ mIoU ↑

8× 8 42.51 ±0.15 26.94 ±0.10 37.12 ±0.15 11.50 ±0.14

4× 4 42.52 ±0.12 26.85 ±0.19 37.09 ±0.09 11.45 ±0.15

2× 2 42.41 ±0.13 26.85 ±0.22 36.88 ±0.11 11.27 ±0.25

1× 1 42.39 ±0.18 26.52 ±0.31 36.83 ±0.42 11.33 ±0.11

w/o Lfp 41.90 ±0.26 26.37 ±0.16 36.74 ±0.33 11.11 ±0.24

Table 5. Frustums Proportion loss ablation. Varying the num-
ber of local frustums (ℓ×ℓ) in our loss shows more frustums (i.e.
smaller) lead to finer guidance and better results on both datasets.

Cityscapes [17] Nuscenes [5] SemanticKITTI [3] KITTI-360 [44]

(49◦, 25◦) (65◦, 39◦) (H=82◦, V=29◦) (104◦, 38◦)

Figure 9. Camera effects. Outputs of MonoScene when trained
on Sem.KITTI having horizontal FOV of 82◦, and tested on
datasets with decreasing (left) or increasing (right) FOV.

i.e. finer local supervision. As ℓ×ℓ increases, all metrics
increase accordingly, showing the loss benefit, especially
when compared to applied image-wise (i.e. 1×1).

5. Discussion
MonoScene tackles monocular SSC originally using suc-

cessive 2D-3D UNets, bridged by a new features projection,
with increased contextual awareness and new losses.
Limitations. Despite good results, our framework still
struggles to infer fine-grained geometry, or to separate
semantically-similar classes, e.g. car/truck or chair/sofa. It
also performs poorly on small objects partly due to their
scarcity (<0.3% in Sem.KITTI [3]). Due to the single
viewpoint, occlusion artefacts such as distortions are visi-
ble along the line of sight in outdoor scenes. Additionally,
as we exploit 2D-3D projection with the FLoSP module
(Sec. 3.1), we evaluate the effect of inferring from datasets
having various camera setups, showing in Fig. 9 that results
– though consistent – have increasingly greater distortion
when departing from the camera settings of the training set.
Broader impact, Ethics. Jointly understanding the 3D
geometry and semantics from image paves ways for bet-
ter mixed reality, photo editing or mobile robotics applica-
tions. But the inevitable errors in the scene understanding
could have fatal issues (e.g. autonomous driving) and such
algorithms should always be seconded by other means.
Acknowledgment This work used HPC resources from GENCI–IDRIS
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