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Abstract

We propose a novel one-step transformer-based person
search framework, PSTR, that jointly performs person de-
tection and re-identification (re-id) in a single architec-
ture. PSTR comprises a person search-specialized (PSS)
module that contains a detection encoder-decoder for per-
son detection along with a discriminative re-id decoder for
person re-id. The discriminative re-id decoder utilizes a
multi-level supervision scheme with a shared decoder for
discriminative re-id feature learning and also comprises
a part attention block to encode relationship between dif-
ferent parts of a person. We further introduce a sim-
ple multi-scale scheme to support re-id across person in-
stances at different scales. PSTR jointly achieves the di-
verse objectives of object-level recognition (detection) and
instance-level matching (re-id). To the best of our knowl-
edge, we are the first to propose an end-to-end one-step
transformer-based person search framework. Experiments
are performed on two popular benchmarks: CUHK-SYSU
and PRW. Our extensive ablations reveal the merits of the
proposed contributions. Further, the proposed PSTR sets a
new state-of-the-art on both benchmarks. On the challeng-
ing PRW benchmark, PSTR achieves a mean average preci-
sion (mAP) score of 56.5%. The source code is available at
https://github.com/JialeCao001/PSTR.

1. Introduction
Person search aims to detect and identify a target person

from a gallery of real-world uncropped images, which can
be seen as a joint task of person detection [1,19,21,32] and
re-identification (re-id) [6, 17, 34]. Person search involves
addressing the challenges of these two diverse sub-tasks as
well as jointly optimizing them in a unified framework.

Person search approaches can be roughly divided into
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Figure 1. Comparison of our PSTR architecture (c) with the exist-
ing two-step (a) and one-step paradigms (b). (a) Within the two-
step paradigm, person detection and re-id sub-tasks are performed
with two separate independent networks. Here, bounding-boxes
are first predicted by a detection network and then cropped and
resized (C&R) before being fed to a re-id network. (b) Within the
one-step paradigm, detection and re-id branches share the same
backbone network. (c) Distinct from these two paradigms, our
PSTR is an end-to-end one-step transformer-based architecture
with a person-search specialized module to jointly perform detec-
tion and re-id without requiring an NMS post-processing step.

two-step [4, 10, 35] and one-step methods [5, 29, 31]. Two-
step approaches typically disentangle the two sub-tasks,
where person detection and re-id are performed separately
(Fig. 1(a)). First, an off-the-shelf detection network (e.g.,
Faster R-CNN [22]) is employed to detect pedestrians. Sec-
ond, the detected pedestrians are cropped and resized into
a fixed resolution, followed by utilizing a re-id network to
identify cropped pedestrians. While achieving promising
performance, most two-step approaches are computation-
ally expensive. In contrast, one-step approaches simultane-
ously detect and identify the persons using a single network
(Fig. 1(b)). First, the features are extracted by a shared net-
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work. Then, person detection and re-id are performed by
two branches within the same network.

Despite recent progress in person search, both two-step
and one-step approaches employ hand-designed mecha-
nisms, such as non-maximum suppression (NMS) proce-
dure to filter out duplicate predictions for each person. Re-
cently, transformers [9,24] have shown promising results in
several vision tasks, including object detection [2, 37]. The
encoder-decoder design of transformer-based object detec-
tors alleviates the need to employ different hand-designed
components, leading to a simpler end-to-end trainable ar-
chitecture. Further, the transformer architecture can be eas-
ily extended to a multi-task learning framework [13, 27].
Despite their recent success, transformers are yet to be in-
vestigated for person search. In this work, we investigate
the problem of designing a simple but accurate end-to-end
one-step transformer-based person search framework.

When designing a one-step transformer-based person
search framework, a straight-forward way is to adopt an ob-
ject detector, such as DETR [2] to detect persons, while the
re-ID sub-task can be performed in different ways. (i) The
transformer decoder within object detector can be modified
by introducing an auxiliary task of re-id. (ii) Two separate
standard encoder-decoder networks can be utilized to per-
form detection and re-id sub-tasks. However, we observe
these strategies struggle to achieve satisfactory results.

1.1. Motivation

We consider two desirable properties when designing a
transformer-based person search framework.
Improved re-id feature discriminability: The sub-tasks
of detection and re-id within person search have differ-
ent objectives. Person detection strives to perform object-
level recognition and localization by differentiating the per-
son category from background. Here, all person instances
within and across images are grouped into a single person
category. On the other hand, person re-id sub-task aims to
identify a person at instance-level. Here, a person instance
is desired to be matched with a database of images, thereby
requiring to discriminate among instances of different per-
sons within the same person category. Therefore, trans-
former re-id decoders need to be distinct from their detector
counterparts and are desired to generate discriminative fea-
tures specialized to perform instance-level matching.
Encoding multi-scale information for re-id: Scale varia-
tion is a challenging problem in person search. The same
person captured by different cameras may have a large
variation in scale, which increases the difficulty for per-
son matching. Most existing approaches either follow the
strategy where pedestrians are first detected and then re-
sized into a fixed resolution or adopt a feature RoI pool-
ing scheme [22] to obtain scale-invariant representation. In-
stead of image resizing or feature pooling, we look into an
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Figure 2. Accuracy (AP) vs. speed (ms) comparison with existing
one-step methods on PRW test set. All methods use a ResNet50
backbone and the speed is reported on a V100 GPU. Our end-to-
end one-step transformer-based PSTR outperforms existing meth-
ods in terms of both speed and accuracy.

approach to encode multi-scale information within a trans-
former architecture for re-id in person search.

1.2. Contributions

We propose a novel end-to-end one-step transformer-
based person search framework, named PSTR. Our PSTR
treats person search as a sequence prediction problem,
where all persons in an image are detected along with their
respective re-id features (Fig. 1(c)). To this end, we in-
troduce a person search-specialized (PSS) module within
PSTR that performs both detection and re-id. The PSS mod-
ule aims to improve feature discriminability of re-id features
by introducing a discriminative re-id decoder that utilizes a
multi-level supervision scheme with a shared decoder de-
sign. Further, we introduce a part attention block within the
discriminative re-id decoder to capture the relationship of
different parts. Moreover, we propose a simple multi-scale
scheme of our discriminative re-id decoder to address the
issue of person matching at different scales. To the best of
our knowledge, PSTR is the first end-to-end one-step per-
son search framework based on transformers.

We validate PSTR on CUHK-SYSU [29] and PRW [35].
Our comprehensive ablations reveal the merits of the con-
tributions. Further, PSTR sets a new state-of-the-art on both
benchmarks. When using ResNet50 [12], PSTR achieves a
mAP score of 49.5% on PRW benchmark, while running at
a speed of 56 milliseconds (ms) on a single V100 GPU (see
Fig. 2). With a transformer-based backbone [26], PSTR ob-
tains the best reported results with a mAP score of 56.5%.

2. Related Work
Person search: Existing person search approaches can be
roughly divided into two-step and one-step methods. To
address the sub-tasks of detection and re-id, two-step ap-
proaches [10,15,35] utilize two separate networks dedicated
for detection and re-id. Zhang et al. [35] explore person
search by introducing two independent models. Chen et
al. [4] propose a mask-guided two-stream network to obtain
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Figure 3. (a) Overall architecture of our end-to-end one-step PSTR. PSTR comprises a backbone and a person search-specialized (PSS)
module designed to perform detection and re-id for person search. (b) The PSS module consists of a detection encoder-decoder and a novel
discriminative re-id decoder. The detection encoder-decoder takes backbone features and performs pedestrian regression and classification
using three cascaded decoders followed by a prediction head. The discriminative re-id decoder utilizes a multi-level supervision scheme
with a shared decoder that takes re-id feature queries from one of the three detection decoders as input during training. The multi-level
supervision scheme enables diversity in detected box locations and input re-id feature queries, thereby enhancing the discriminability of
re-id features. We further introduce a part attention block in discriminative re-id decoder to capture the relationship between different parts
of a person. The PSS module is utilized in a multi-scale extension to support re-id across person instances at different scales.

enhanced feature representation. Wang et al. [25] utilize an
identity-guided query detector to extract the query-like pro-
posals and employ a detection adapted model for re-id.

One-step person search methods integrate detection and
re-id into a unified framework. Xiao et al. [29] introduce a
re-id branch into Fast R-CNN for person matching. Chen
et al. [5] propose to use norm-aware embedding to separate
detection and re-id. Munjal et al. [20] build the relation-
ship between query image and gallery image by integrating
a query-guided Siamese squeeze-and-excitation block into
the backbone. The work of [7] employs a Siamese network
that takes input both the entire image and cropped persons
to better guide the feature learning of persons. Several exist-
ing works [3,16,31] explore the problem of utilizing contex-
tual information for person search. Recently, Yan et al. [30]
introduce a novel anchor-free approach for person search.
End-to-end object detection with transformers: Re-
cently, DETR [2] introduces an end-to-end pipeline for ob-
ject detection, which predicts objects by a set of detection
queries. DETR faces the issues of slow convergence and
lower performance on small-sized objects. To solve these
issues, deformable DETR [37] replaces standard attention
module by a deformable attention module, which focuses
on a small set of local sampling points around a reference.
For an input image, features obtained from the backbone are
first enhanced by an encoder. With enhanced features and
detection queries, deformable transformer decoder gener-
ates N final object features. Finally, a prediction head pre-
dicts classification scores and bounding locations.

3. Method
Overall architecture: Fig. 3(a) shows the overall archi-
tecture of our PSTR. We base it on transformer-based ob-
ject detector, deformable DETR [37]. Our PSTR replaces

the standard encoder-decoder in deformable DETR with a
person-search specialized (PSS) module (Fig. 3(b)). The
PSS module is designed to perform detection and re-id
for person search, which comprises a detection encoder-
decoder along with a discriminative re-id decoder. The de-
tection encoder-decoder takes backbone features and per-
forms pedestrian regression and classification using three
cascaded decoders followed by a prediction head, as in [37].
The discriminative re-id decoder utilizes a multi-level su-
pervision scheme with a shared decoder design by taking
re-id feature queries from one of the three detection de-
coders as input. It then generates discriminative re-id fea-
tures for instance-level matching. The multi-level super-
vision scheme in our discriminative (shared) re-id decoder
provides diverse input re-id feature queries and box sam-
pling locations, thereby guiding the feature learning for per-
son search. In addition to its shared design, our novel dis-
criminative re-id decoder comprises a part attention decoder
to capture the relationship between different person parts.
To support re-id across person instances at different scales,
we employ our PSS module in a multi-scale extension by
using the features of different layers. Consequently, the re-
sulting multi-scale re-id features are concatenated to per-
form instance-level matching with the query person.

3.1. Person Search-Specialized Module

In our PSTR, we obtain features from backbone (e.g.,
ResNet [12] or PVT [26]) and pass it through a deformable
convolution layer to extract local information. The result-
ing feature Pi is fed to our person search-specialized (PSS)
module. Further, the PSS module takes a set of detection
queries as additional inputs, and generates the features for
detection and re-id, respectively. The PSS module consists
of a detection encoder-decoder (Sec. 3.1.1) and a discrim-
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inative re-id decoder (Sec. 3.1.2). The detection encoder-
decoder predicts the features of classification and regression
for detection queries. On the other hand, the discriminative
re-id decoder extracts re-id features for detection queries.

3.1.1 Detection Encoder-Decoder

Within the PSS module, the detection encoder-decoder is
built on deformable DETR [37]. As shown in Fig. 3(b),
the detection encoder-decoder consists of three encoders
and three decoders, utilizing the feature Pi as input. Each
encoder has a deformable self-attention layer and a MLP
layer. The output features of each encoder are represented
as Fe1,Fe2,Fe3. Consequently, the first decoder takes the
Fe3 feature and the N detection queries as inputs. Each de-
coder contains a standard self-attention layer, a deformable
cross-attention layer, and a MLP layer. The output features
from each decoder are represented as Fd1,Fd2,Fd3. We
use a feature length of 256 for all the three encoders and
decoders. The decoder features are utilized in a prediction
head for box classification and regression, and these fea-
tures are further used to obtain re-id feature queries for our
discriminative re-id decoder presented next.

3.1.2 Discriminative Re-id Decoder

We introduce our discriminative re-id decoder that produces
discriminative re-id features for each person. Fig. 3(b)
shows our discriminative re-id decoder. It takes the fea-
ture Pi as input. The discriminative re-id decoder utilizes
multi-level supervision with a shared decoder design. To
this end, the discriminative re-id decoder utilizes the fea-
tures Fd1,Fd2,Fd3 from different detection decoders as re-
id feature queries to improve the diversity of re-id feature
queries and the box locations (sampling locations) during
training. During inference, we utilize the feature Fd3 as the
re-id feature query to obtain the discriminative re-id feature.
We further introduce a part attention block that consists of
two part attention layers to capture the relationship between
different parts of a person. Our discriminative re-id decoder
directly operates on the feature Pi by taking re-id queries
from the detection decoder. We observe this architectural
design to be more accurate for the re-id sub-task, than stan-
dard encoder-decoder based design.
Multi-level supervision with shared decoder design: A
straightforward way to design the re-id decoder is to use
the last detection feature Fd3 as the re-id feature query and
employ a re-id decoder for feature prediction, as shown in
Fig. 4(a). However, we observe this design to achieve sub-
optimal performance likely due to lack of discriminative
re-id features learned from a single-level supervision. To
this end, we introduce two alliterative schemes that employ
multi-level (intermediate) supervision within the re-id de-
coder for better re-id feature learning. We call the two pro-
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Figure 4. Comparison of re-id decoder design schemes. (a) The
single-level supervised re-id decoder scheme uses the last detec-
tion feature Fd3 as re-id feature query, employing a re-id decoder
for feature prediction. Distinct from such a single-level super-
vised scheme, we introduce two multi-level supervised re-id de-
coder designs: (b) parallel re-id and (c) shared re-id decoder. (b)
The parallel re-id scheme employs three parallel decoder layers
to generate re-id features by treating the detection decoder fea-
tures (Fd1,Fd2,Fd3) as queries. Different from the parallel re-id
scheme, (c) the shared re-id scheme utilizes a Siamese architecture
where all detection decoders have a common shared re-id decoder
to produce corresponding re-id features (Fr1,Fr2,Fr3).

posed schemes as parallel re-id decoder and shared re-id
decoder. Fig. 4(b) and Fig. 4(c) show the two proposed
schemes. The parallel re-id decoder treats the features from
each detection decoder as the re-id feature queries and em-
ploys three parallel decoder layers to generate the re-id
features Fr1,Fr2,Fr3. Here, the re-id features Fr1,Fr2

are only used during training to provide multi-level (in-
termediate) supervision. Different to the parallel re-id de-
coder scheme, the shared re-id decoder scheme employs a
Siamese architecture where all three re-id feature queries
have a shared decoder to generate three re-id features. Simi-
lar to parallel re-id decoder, the shared re-id decoder scheme
also utilizes the features Fr1,Fr2 only during training.

As discussed earlier, the two sub-tasks of person de-
tection and re-id within person search have diverse objec-
tives (object-level recognition and instance-level matching).
Based on this, we directly utilize the backbone features as
input to the discriminative re-id decoder, instead of using
the features from the detection encoder. We empirically val-
idate that this leads to superior performance, compared to
using features from the detection encoder.
Part attention block: To encode the relationship between
different parts of a person, we introduce a part attention
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Figure 5. (a) The part attention block in our discriminative re-id
decoder. The block comprises two part attention layers to encode
the relationship between different parts (points). (b) The part at-
tention layer utilizes query features to predict the sampling points.
The features corresponding to these sampled points are aggregated
by fusing the features from different parts through cross-attention.

block (see Fig. 5) in our discriminative re-id decoder, that
employs two layers. Similar to deformable attention [37],
we use query features to predict the sampling points, which
represent different parts of a person. However, we observe
that the attention weights from the query struggles to effec-
tively capture part relations within a person instance. There-
fore, different from standard deformable attention, we do
not use attention weights from query feature. Our part at-
tention averages features at sampling points and then ag-
gregates features from different parts by adapting cross-
attention module to generate the output.

3.2. Multi-Scale Discriminative Re-id Decoder

Scale variation poses a major challenge in person match-
ing, since the same person can be captured by different cam-
eras at different scales. To address this issue, we introduce
a simple extension of our discriminative re-id decoder by
employing it at different scales. Here, the discriminative
re-id decoders at different scales employ the detection de-
coder features as the re-id feature queries. To extract multi-
scale re-id features, the additional re-id decoders employ
the features (e.g., P2,P3) as the input and perform re-id fea-
ture generation. During training, these discriminative re-id
decoders are supervised by independent re-id losses. Dur-
ing inference, we concatenate these discriminative re-id fea-
tures from different scales and obtain the multi-scale re-id
feature for person matching.

3.3. Training and Inference

Our PSTR predicts classification score, location, and re-
id feature for each detection query in an image. The de-
tection features Fd1,Fd2,Fd3 respectively go through two
MLP layers for classification and localization. The features
Fr1,Fr2,Fr3 are directly used as the re-id features.

During training, we build a lookup table V and a circu-
lar queue U to guide re-id feature learning. We store re-
id features of all L labeled identities in V and re-id fea-
tures of Q unlabeled identities from recent mini-batches
in U . At each iteration, we first compute similarities be-

tween re-id features (e.g., Fr1) in current mini-batch and
all features in V and U . Then, we compute online in-
stance matching (OIM) loss (described below) based on
similarities. During backward propagation, if the re-id fea-
ture in mini-batch belongs ground truth identity i, we up-
date the i-th entry of V . We simultaneously push the re-
id features of new unlabelled identities into U by popping
older ones. The OIM loss [29] maximizes expected log-
likelihood of each re-id feature in current mini-batch, i.e.,
Loim = log pt. Here, pt is the probability of a re-id fea-
ture belonging to the ground truth identity t, computed
based on the similarities between a re-id feature and the fea-
tures at V and U . Finally, the overall loss can be write as
L = λ1Lcls + λ2Liou + λ3Ll1 + λ4Loim. Lcls represents
classification loss, Liou represents bounding-box IoU loss,
Ll1 represents bounding-box ℓ1 cost, and Loim represents
OIM loss. λ1, λ2, λ3, λ4 are the hyper-parameters to bal-
ance different losses, which are set as 2.0, 5.0, 2.0, 0.5.

During inference, we search an annotated (bounding
box) query person in a given query image from a set of
gallery images. First, we generate multiple predictions of
query image using our PSTR, where each prediction in-
cludes a classification score, a bounding box and a re-id
feature. Then, the re-id feature of query person is set as the
re-id feature of a prediction having maximum overlap with
query person bounding box. Finally, we generate the pre-
dictions for all the gallery images, and compute re-id fea-
ture similarities of query person and predictions in gallery
images to identify matching persons in gallery images.

4. Experiments

4.1. Datasets and Implementation Details

CUHK-SYSU [29] is a large-scale person search dataset.
There are a total 18,184 images covering various real-world
challenges, including viewpoint changes, illumination vari-
ations, and diverse backgrounds. It has 96,143 annotated
pedestrians, with 8,432 different identities. The training
set includes 11,206 images, 55,272 pedestrians, and 5,532
identities. The test set contains 6,978 images, 40,871 pedes-
trians, and 2,900 identities. During inference, the dataset
defines a gallery set with different sizes ranging from 50 to
4,000. As in [29, 30], we perform experiments with the
standard setting of gallery size 100. Additionally, we ana-
lyze the performance when varying the the gallery size.
PRW [35] is a challenging person search dataset collected
by 6 static cameras. The training set contains 5,704 im-
ages, 18,048 pedestrians, and 482 identities. The test set
has 6,112 images, 25,062 pedestrians, and 450 identities.
Evaluation metrics: We employ two standard metrics for
person search performance evaluation: mean Averaged Pre-
cision (mAP) and top-1 accuracy.
Implementation details: We conduct experiments with
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Method Backbone CUHK-SYSU PRW
mAP Top-1 mAP Top-1

Two-step
IDE [29] ResNet50 - - 20.5 48.3
MGTS [4] VGG16 83.0 83.7 32.6 72.1
CLSA [15] ResNet50 87.2 88.5 38.7 65.0
RDLR [10] ResNet50 93.0 94.2 42.9 70.2
IGPN [8] ResNet50 90.3 91.4 47.2 87.0
TCTS [25] ResNet50 93.9 95.1 46.8 87.5
One-step with two-stage detector
OIM [29] ResNet50 75.5 78.7 21.3 49.4
IAN [28] ResNet50 76.3 80.1 23.0 61.9
NPSM [18] ResNet50 77.9 81.2 24.2 53.1
RCAA [3] ResNet50 79.3 81.3 - -
CTXG [31] ResNet50 84.1 86.5 33.4 73.6
QEEPS [20] ResNet50 88.9 89.1 37.1 76.7
BINet [7] ResNet50 90.0 90.7 45.3 81.7
APNet [36] ResNet50 88.9 89.3 41.9 81.4
NAE [5] ResNet50 91.5 92.4 43.3 80.9
NAE+ [5] ResNet50 92.1 92.9 44.0 81.1
PGSFL [14] ResNet50 90.2 91.8 42.5 83.5
PGSFL [14] ResNet50-dilated 92.3 94.7 44.2 85.2
SeqNet [16] ResNet50 93.8 94.6 46.7 83.4
DMRN [11] ResNet50 93.2 94.2 46.9 83.3
One-step with anchor-free detector
AlignPS [30] ResNet50 93.1 93.4 45.9 81.9
AlignPS [30] ResNet50-DCN 94.0 94.5 46.1 82.1
One-step with end-to-end transformer
PSTR (Ours) ResNet50 93.5 95.0 49.5 87.8
PSTR (Ours) ResNet50-DCN 94.2 95.2 50.1 87.9
PSTR (Ours) PVTv2-B2 95.2 96.2 56.5 89.7

Table 1. State-of-the-art comparison in terms of mAP and top-1
accuracy on CUHK-SYSU and PRW test sets. When compared
with the recently introduced anchor-free AlignPS on CHUK-
SYSU, PSTR achieves favorable results in terms of both mAP and
top-1 accuracy, using the same ResNet50 backbone. On PRW,
PSTR achieves absolute gains of 3.6% and 5.9% in terms of mAP
and top-1 accuracy, respectively over AlignPS using the same
ResNet50 backbone. Further, PSTR obtains the best reported re-
sults using the transformer-based PVT backbone on both datasets.

two ImageNet [23] pre-trained backbones: ResNet50 [12]
and recently introduced transformer-based PVTv2-B2 [26],
which have similar parameters. Our PSTR is trained on a
single Tesla V100 GPU using AdamW optimizer. During
training, we employ a multi-scale training scheme and fo-
cal OIM loss as AlignPS [30]. Further, we rescale the test
images to a fixed size of 1500 × 900 pixels during infer-
ence. The model is trained for a total of 24 epochs and we
use a mini-batch size of 2. The initial learning rate is set to
0.0001 and we decrease the learning rate by a factor of 10 at
19th and 23th epochs. We will support it with MindSpore.

4.2. State-of-the-art Comparison

Here, we compare our one-step transformer-based PSTR
with state-of-the-art two-step and one-step methods.
Comparison on CUHK-SYSU: Tab. 1 shows the perfor-
mance on CUHK-SYSU test set [29] with the gallery size
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Figure 6. State-of-the-art comparison with existing two-step (left)
and one-step methods (right) on CUHK-SYSU dataset [29] with
different gallery sizes. Our PSTR achieves consistent improve-
ment in performance compared to existing methods with different
gallery sizes. Further, PSTR outperforms the best existing two-
step and one-step methods with a larger performance margin on
the more challenging scenario of large gallery size.

of 100. Among existing two-step methods IGPN [8] and
TCTS [25] achieve mAP scores of 90.3% and 93.9%, re-
spectively. Among one-step with two-stage detection-based
methods, SeqNet [16] and DMRN [11] obtain mAP scores
of 93.8% and 93.2%, respectively. The recently introduced
one-step anchor-free AlignPS [30] with the same ResNet50
backbone achieves mAP score of 93.1. Our PSTR with the
same backbone achieves a mAP score of 93.5%. In terms of
top-1 accuracy, PSTR achieves 95.0%, corresponding to an
absolute of 1.6% over the recently introduced AlignPS [30],
while operating at a slightly faster speed (AlignPS: 61ms vs.
PSTR: 56ms) with the same Resnet50 backbone. Further,
when using the transformer-based PVTv2-B2 backbone, the
proposed PSTR achieves improved results with mAP and
top-1 accuracy of 95.2% and 96.2%, respectively. It is
worth mentioning that the parameters of both the PVTv2-
B2 and ResNet50 backbones are comparable.

We further perform a state-of-the-art performance com-
parison on CUHK-SYSU test set with a gallery size ranging
from 50 to 4,000. Fig. 6 compares our PSTR with exist-
ing two-step and one-step approaches in terms of mAP. Our
PSTR consistently outperforms existing person search ap-
proaches under different gallery sizes.
Comparison on PRW: Tab. 1 shows the state-of-the-art
comparison on the PRW test set [35]. Among existing two-
step approaches, TCTS [25] and IGPN [8] achieve respec-
tive mAP scores of 46.8% and 47.2% and top-1 accuracy
scores of 87.5% and 87.0%. In case of one-step with two-
stage detection-based person search methods, DMRN [11]
and SeqNet [16] obtain respective mAP scores of 46.9%
and 46.7% and top-1 accuracy scores of 83.3% and 83.4%.
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Re-id decoder design mAP Top-1

(a) Decoder structure
Single re-id decoder 47.4 84.9
Parallel re-id decoder 51.4 87.0
Shared re-id decoder 51.9 88.3

(b) Input feature
Encoder layer 1 49.8 88.0
Encoder layer 2 49.3 87.4
Encoder layer 3 47.5 86.3
The feature P4 51.9 88.3

(c) Attention layer Deformable attention 51.5 87.8
Part attention 51.9 88.3

Table 2. Impact of different design choices in our discriminative
re-id decoder. (a) Impact of different decoder structures, shown in
Fig. 4, including single re-id decoder, parallel re-id decoder, and
shared re-id decoder. (b) Impact of different features for re-id de-
coder, including the features from detection encoder layers 1, 2, 3
and backbone. (c) Impact of different attention layers, including
deformable attention and our part attention.

Further, AlignPS [30] achieves mAP and top-1 accuracy of
45.9% and 81.9%, respectively. Our PSTR achieves an ab-
solute gain of 3.6 and 5.9 in terms of mAP and top-1 ac-
curacy over AlignPS, using the same ResNet50 backbone.
Note that distinct from AlignPS, our transformer-based one-
step PSTR does not rely on an NMS post-processing step.

In addition, we compare with the SeqNet variant
(SeqNet†) that further introduces a post-processing strategy
within SeqNet to refine the matching scores between query
and gallery. For a fair comparison with SeqNet†, we intro-
duce same matching scoring strategy in our PSTR (named
PSTR†) achieving mAP and top-1 accuracy of 50.1% and
89.2%, corresponding to absolute gains of 2.5% and 1.6%
over SeqNet†. We also compare with the recent work of [33]
that introduces a person search approach, DKD, where a
novel knowledge distillation strategy is employed. How-
ever, DKD requires training a re-id model and a person
search model separately along with careful augmentation
design. Further, the DKD requires a longer training (more
than 4× longer compared to ours). Our PSTR achieves fa-
vorable top-1 performance (DKD: 87.1% vs. Ours: 87.8%),
while being 25% faster at inference. Further, our PSTR does
not require a specialized training scheme (separate model
for re-id as well as person search and longer training).
Lastly, we utilize our one-step PSTR (without any post-
processing step) with the PVTv2-B2 backbone (Tab. 1),
achieving the best results reported on this dataset with mAP
and top-1 accuracy of 56.5% and 89.7%, respectively.

4.3. Ablation Study

We perform extensive ablations to validate the effective-
ness of proposed contributions on PRW. Throughout the ab-
lations, we use same PVTv2-B2 backbone. For a fair com-
parison, all ablations, except the impact of multi-scale re-id
decoder, are performed using re-id decoder at a single scale.
Design choices for transformer-based person search: We
compare our PSS module with two straightforward strate-

Scale 1 (P4) Scale 2 (P3) Scale 3 (P2) mAP Top-1
✓ 51.9 88.3
✓ ✓ 54.7 89.0
✓ ✓ ✓ 56.5 89.7
✓ 51.7 88.0

✓ 53.9 88.2
✓ 48.5 86.7

Table 3. Impact of multi-scale re-id decoder. The top part shows
the performance of single-scale, two-scale, and three-scale re-id
decoders. The bottom part shows performance of individual scales
in our multi-scale re-id decoder with three scales.

gies for detection and re-id within a one-step transformer
pipeline. The first strategy shares the standard encoder-
decoder for detection and re-id, achieving 23.1% mAP and
66.8% on top-1 accuracy. The second strategy adopts two
separate encoder-decoder for detection and re-id, and ob-
tains 44.5% mAP and 84.6% top-1 accuracy. Our PSTR
with the proposed PSS module achieves superior results
with mAP and top-1 accuracy of 51.9% and 88.3%, respec-
tively, compared to both these strategies.
Multi-level supervision with a shared re-id decoder:
Tab. 2(a) shows the impact of multi-level supervision with a
shared decoder design (shared re-id decoder) within our re-
id decoder, as illustrated Fig. 4(c). When employing a sin-
gle re-id decoder (Fig. 4 (a)) and taking the features of last
detection decoder as input, we obtain 47.4% on mAP and
84.9% on top-1 accuracy. Compared to the single-level su-
pervision design, our multi-level supervision scheme (Fig. 4
(b)) in a parallel re-id decoder design has the absolute gains
of 4.0% and 2.1% in terms of mAP and top-1 accuracy,
respectively. The best results are obtained when utiliz-
ing our multi-level supervision with a shared decoder de-
sign (shared re-id decoder). It is worth mentioning that all
the aforementioned levels of supervisions (single or multi-
level) are only utilized during training. At inference, the
features from the last detection decoder are used as input
to the re-id decoder for all aforementioned methods (a-
c). These results show that multi-level supervision with a
shared decoder design enables better re-id feature learning.
Impact of input features to re-id decoder: Tab. 2(b)
shows the impact of different input features on discrimina-
tive re-id decoder. When utilizing the output features of de-
tection encoder as input features for re-id decoder, there is
a drop in performance. For example, when taking the out-
put features of last detection encoder as the input of re-id
decoder, the performance drops by 4.4% in mAP. This drop
is likely due to the diverse objectives of detection (object-
level recognition) and re-id (instance-level matching).
Impact of part attention block: We also compare the
standard deformable attention with our part attention in
Tab. 2(c). Part attention provides 0.4% improvement on
mAP and 0.5% improvement on top-1 accuracy.
Multi-scale re-id decoder: Lastly, we analyze the impact
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Figure 7. Qualitative results on CUHK-SYSU test set [29]. We show the top-two matching results for five different queries. Our PSTR
accurately detects and recognizes the query persons under challenging outdoor and indoor scenes.

Figure 8. Qualitative results on PRW test set [35]. We show the top-two matching results for four different queries. Our PSTR accurately
detects and recognizes the query persons across different cameras.

Figure 9. Qualitative comparison with AlignPS+ [30]. We show
the top-1 matching results of AligPS+ and our PSTR. For all the
three queries, our PSTR achieve the correct matching.

of multi-scale re-id decoder by comparing it with the single-
scale, two-scale and three-scale variant in Tab. 3. We show
impact of multi-scale re-id decoder, including single-scale
re-id decoder, two-scale re-id decoder, and three-scale re-
id decoder. Multi-scale re-id decoder takes the last N fea-
ture maps as the inputs for different re-id decoder branches.
Three-scale re-id decoder achieves the best performance.
Further, we show the performance of individual scales in
our three-scale re-id decoder.
Qualitative results: We first provide some qualitative com-
parisons between our PSTR with state-of-the-art AlignPS+
[30] in Fig. 9. For a given query person, the top-1 matching

result is shown. Compared to AlignPS+, our PSTR success-
fully detects and recognizes the persons in different scenes.
We further show some qualitative results on CUHK-SYSU
test set [29] and PRW test set [35] in Fig. 7 and Fig. 8. Our
PSTR accurately identifies the query person in the gallery
images under different challenging scenes.

5. Conclusion and Limitations
We proposed an end-to-end one-step transformer-based

person search approach, named PSTR. Within PSTR, we
introduced a novel person search-specialized (PSS) module
for detection and re-id. The PSS module comprises a de-
tection encoder-decoder and a discriminative re-id decoder
that employs a multi-level supervision scheme with a shared
decoder for better re-id feature learning. Further, it utilizes
a part attention block to capture relationship between dif-
ferent parts. Moreover, we introduce a simple multi-scale
extension of our re-id decoder. Experiments on two bench-
marks reveal benefits of the proposed contributions, lead-
ing to state-of-the-art results on both datasets. We observe
our PSTR to occasionally struggle at heavy occlusion or ex-
treme low-light conditions. We will be exploit it in future.

Similar to other vision tasks (i.e., face recognition), per-
son search may invade personal privacy if deployed irre-
sponsibly. It is important to establish relevant laws and poli-
cies to protect the privacy when using person search or other
vision technologies for the security of citizens in future.
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