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Abstract

Temporal contexts among consecutive frames are far
from being fully utilized in existing visual trackers. In this
work, we present TCTrack1, a comprehensive framework to
fully exploit temporal contexts for aerial tracking. The tem-
poral contexts are incorporated at two levels: the extraction
of features and the refinement of similarity maps. Specifi-
cally, for feature extraction, an online temporally adaptive
convolution is proposed to enhance the spatial features us-
ing temporal information, which is achieved by dynamically
calibrating the convolution weights according to the previ-
ous frames. For similarity map refinement, we propose an
adaptive temporal transformer, which first effectively en-
codes temporal knowledge in a memory-efficient way, be-
fore the temporal knowledge is decoded for accurate ad-
justment of the similarity map. TCTrack is effective and effi-
cient: evaluation on four aerial tracking benchmarks shows
its impressive performance; real-world UAV tests show its
high speed of over 27 FPS on NVIDIA Jetson AGX Xavier.

1. Introduction

Visual tracking is one of the most fundamental tasks in

computer vision. Owing to the superior mobility of un-

manned aerial vehicles (UAVs), tracking-based applications

are experiencing rapid developments, e.g., motion object

analysis [57], geographical survey [61], and visual local-

ization [47]. Nevertheless, aerial tracking still faces two

difficulties: 1) aerial conditions inevitably introduce special

challenges including motion blur, camera motion, occlu-

sion, etc; 2) the limited power of aerial platforms restricts

the computational resource, impeding the deployment of

time-consuming state-of-the-art methods [6]. Hence, an

ideal tracker for aerial tracking must be robust and efficient.

Most existing trackers adopt the standard tracking-by-
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Figure 1. Overview of our framework namely TCTrack. It ex-

ploits temporal information at two levels: (a) the extraction of
features by the temporally adaptive convolutional neural networks

(TAdaCNN) and (b) the refinement of similarity maps by the adap-

tive temporal transformer (AT-Trans).

detection framework and perform detection for each frame

independently. Among these trackers, discriminative cor-

relation filter (DCF)-based methods are widely applied on

aerial platforms because of their high efficiency and low

resource requirements originated from the operations in

the Fourier domain [16, 31, 38]. However, these trackers

struggle when there are fast motions and severe appear-

ance variations. Recently, the Siamese-based network has

emerged as a strong framework for accurate and robust

tracking [2, 4, 11, 41, 42]. Its efficiency is also optimized

in [7,21,22] for the real-time deployment of Siamese-based

trackers on aerial platforms.

However, the strong correlations inherently existing

among consecutive frames, i.e., the temporal information,

are neglected by these frameworks, which makes it diffi-

cult for these approaches to perceive the motion informa-

tion of the target objects. Therefore, those trackers are

more likely to fail when the target undergoes severe appear-

ance change caused by different complex conditions such

as large motions and occlusions. This has sparked the re-

cent research into how to make use of temporal information

for visual tracking. For DCF-based approaches, the varia-

tion in the response maps along the temporal dimension is

penalized [33, 47], which guides the current response map
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by previous ones. In Siamese-based networks, which is the

focus of this work, temporal information is introduced in

most works through dynamic templates, which integrates

historical object appearance in the current template through

concatenation [72], weighted sum [74], graph network [24],

transformer [68], or memory networks [23, 73]. Despite

their success in introducing temporal information into the

visual tracking task, most of the explorations are restricted

to only a single stage, i.e., the template feature, in the whole

tracking pipeline.

In this work, we present a comprehensive framework for

exploiting temporal contexts in Siamese-based networks,

which we call TCTrack. As shown in Fig. 1, TCTrack in-

troduces temporal context into the tracking pipeline at two
levels, i.e., features and similarity maps. At the feature
level, we propose an online temporally adaptive convolution

(TAdaConv), where features are extracted with convolu-

tion weights dynamically calibrated by the previous frames.

Based on this operation, we transform the standard convo-

lutional networks to temporally adaptive ones (TAdaCNN).

Since the calibration in the online TAdaConv is based on

the global descriptor of the features in the previous frames,

TAdaCNN only introduces a negligible frame rate drop but

notably improves the tracking performance. At the sim-
ilarity map level, an adaptive temporal transformer (AT-

Trans) is proposed to refine the similarity map according to

the temporal information. Specifically, AT-Trans adopts an

encoder-decoder structure, where (i) the encoder produces

the temporal prior knowledge for the current time step, by

integrating the previous prior with the current similarity

map, and (ii) the decoder refines the similarity map based

on the produced temporal prior knowledge in an adaptive

way. Compared to [23,24,68], AT-Trans is memory efficient

and thus edge-platform friendly since we keep updating the

temporal prior knowledge at each frame. Overall, our ap-

proach provides a holistic temporal encoding framework to

handle temporal contexts in Siamese-based aerial tracking.

Extensive evaluations of TCTrack show both the ef-

fectiveness and the efficiency of the proposed framework.

Competitive accuracy and precision are observed on four

standard aerial tracking benchmarks in comparison with 51

state-of-the-art trackers, where TCTrack also has a high

frame rate of 125.6 FPS on PC. Real-world deployment on

NVIDIA Jetson AGX Xavier shows that TCTrack maintains

impressive stability and robustness for aerial tracking, run-

ning at a frame rate of over 27 FPS.

2. Related Work
Tracking by detection. After D. S. Bolme et al. firstly

proposed the MOSSE filter [5], many researches [16,31,38]

have been made to boost the tracking performance. How-

ever, since they suffer from poor representative feature ex-

pression, they are hard to maintain robustness under com-

plex aerial tracking conditions. Recently, Siamese-based

trackers have stood out attributing to their SOTA accuracy

and attractive efficiency [2, 3, 9, 26, 41, 42, 78]. For meeting

the aerial tracking requirement, some works propose effi-

cient tracking methods [7, 21, 22].

Despite achieving SOTA performance, those trackers

above disregard the temporal contexts in the tracking sce-

narios, thereby blocking the performance improvement.

Differently, our tracker can effectively model the histori-

cal temporal contexts during the tracking for increasing the

discriminability and robustness.

Temporal-based tracking methods. Previously, many

works are devoted to exploiting the temporal information in

tracking scenarios for raising the tracking performance [10,

33, 43, 47]. Recently, many DL-based temporal tracking

methods focus on dynamic templates based on transformer

integration [68], template memory update [23,27,73], graph

network [24], weighted sum [74], and explicit template up-

date [72]. They try to update the template features in an

explicit way or implicit way based on the pre-defined pa-

rameters. Then, based on the transformed template features,

those trackers exploit the discrete temporal information in

tracking sequences.

Despite superior tracking performance, they introduce

temporal information via only a single level in the whole

tracking pipeline, blocking further improvement of tracking

performance. To fully exploit the temporal contexts, in this

work, we propose a comprehensive framework for explor-

ing the temporal contexts via two levels, i.e., features level

and similarity maps level.

Temporal modelling in videos. Modelling the temporal

dynamics is essential for a genuine understanding of videos.

Hence, it is widely explored in both supervised [20, 35, 48,

49,63,70] and self-supervised paradigm [28,29,34,36,39].

Self-supervised approaches learns temporal modelling by

solving various pre-text tasks, such as dense future predic-

tion [28, 29], jigsaw puzzle solving [36, 39], and pseudo

motion classification [34], etc. Supervised video recogni-

tion explores various connections between different frames,

such as 3D convolutions [62], temporal convolution [63],

and temporal shift [48], etc. Closely related to our work is

the temporally adaptive convolutions [35], which is applied

for temporal modeling in videos. In this work, to adapt to

the tracking task, we propose an online CNN which can

extract spatial features according to temporal contexts for

enriching the temporal information comprehensively.

3. Temporal Contexts for Aerial Tracking
In this section, the detailed structure of our framework is

described as shown in Fig. 2. The proposed framework con-

siders temporal contexts from two new perspectives: (1) on-

line feature extraction where we incorporate temporal con-

text by TAdaCNN (Sec. 3.1); and (2) similarity map refine-
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Figure 2. Overview of our framework. It mainly consists of three components, i.e., TAdaCNN for online feature extraction shown in

Fig. 3, AT-Trans for similarity map refinement shown in Fig. 4, and classification&regression for final prediction. This figure illustrates the

workflow of our TCTrack when tracking sequences are t frames. Through temporal contexts before correlation and after, comprehensive

temporal knowledge is introduced in our framework. Best view in color.

ment where we use a novel AT-Trans to encode the temporal

knowledge and then refine the similarity map according to

the temporal prior knowledge (Sec. 3.2).

3.1. Feature extraction with online TAdaConv

As a key component of our framework, an online TAda-

Conv is proposed for feature extraction based on [35] to

consider temporal contexts whose structures are shown in

Fig. 3. Formally, given the input feature to the online TAda-

Conv at a certain stage in the network Xt in the t-th frame,

the output of the online TAdaConv X̃t can be obtained as

follows:

X̃t = Wt ∗Xt + bt , (1)

where the operator ∗ denotes the convolution operation and

Wt,bt are the temporal weight and bias of our convolu-

tion. A standard convolution layer uses learnable param-

eters for weights and bias, and shares them in the whole

tracking sequence. Differently, in our online convolution

layer, the parameters are calculated by the learnable param-

eters (Wb and bb) and calibration factors that are varied for

each frame, i.e., Wt = Wb · αw
t and bt = bb · αb

t . Dif-

ferent from the original structure in video understanding,

online TAdaConv processes one frame at a time. Hence,

it only considers the temporal context in the past just like

tracking in the real world. Specifically, we keep a temporal

context queue X̂ ∈ R
L×Cof L frame descriptors X̂t ∈ R

C

including that of the current frame:

X̂ = Cat(X̂t, X̂t−1, ..., X̂t−L+1) , (2)

where Cat represents the concatenation and the frame de-

scriptor is obtained by a global average pooling (GAP) over

the feature of the each coming frame, i.e., X̂t = GAP(Xt).
For the generation of calibration factors αw

t and αb
t , we per-

form two convolutions over the temporal context queue X̂
with a kernel size of L, i.e., αw

t = Fw(X̂) + 1, αb
t =

Fb(X̂) + 1, where Fi denotes the convolution operation.

Besides, the weights of F are initialized to zero so that at

the initialization, Wt = Wb and bt = bb. For t ≤ L − 1,

where there is not enough previous frames, we fill that with

the descriptor of the first frame X̂1. Given our backbone

ϕtada that considers the temporal contexts in the feature ex-

traction process, the similarity map Rt for the t-th frame

can be obtained as:

Rt = ϕtada(Z) � ϕtada(Xt) , (3)

where Z denotes the template and � represents the depth-

wise correlation [41]. After that, Ft can be obtained by a

convolution layer, i.e., Ft = F(Rt).
Remark 1: To the best of our knowledge, our online

TAdaCNN is the first to integrate temporal contexts in the

feature extraction process in the tracking task.

3.2. Similarity Refinement with AT-Trans

Besides considering temporal contexts in the feature ex-

traction process, in this work, we also propose an AT-Trans

for refining the similarity map Ft according to the tempo-

ral contexts. Specifically, our AT-Trans has an encoder-

decoder structure, where the encoder aims to integrate tem-
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poral knowledge and the decoder focuses on similarity re-

finement. In this section, we first revisit the multi-head at-

tention [64] before describing the details of our AT-Trans.

Multi-head attention. As a fundamental component of the

transformer, multi-head attention is formulated as follows:

MultiHead(Q,K,V) =
(
Cat(H1

att, ...,HN
att)

)
W

Hn
att = Attention(QWn

q ,KWn
k ,VWn

v )

Attention(Q,K,V) = Softmax(QKT/
√
d)V

, (4)

where
√
d is the scaling factor while W ∈ R

Ci×Ci ,

Wn
q ∈ R

Ci×Ch , Wn
k ∈ R

Ci×Ch , and Wn
v ∈ R

Ci×Ch

are learnable weights. In our AT-Trans, we employ multi-

head attention with 6 heads, i.e., N = 6 and Ch=Ci/6.

Compared to CNN, Transformer can more effectively

encode the global context information [18, 64]. Hence, to

exploit the global temporal contexts more effectively, we

propose a transformer-based temporal integration strategy

to successively encode global contexts information. More-

over, most existing temporal-based methods generally store

the input features for temporal modeling, inevitably intro-

ducing sensitive parameters and unnecessary computation.

In this work, for eliminating unnecessary operations and

sensitive parameters, we adopt an online update strategy for

temporal knowledge.

Transformer encoder. The encoder generates temporal

prior knowledge by integrating the previous knowledge

with current features. Generally, we stack two multi-head

attention layers before a temporal information filter is ap-

plied. The final temporal prior knowledge for the current

step is obtained by further attaching a multi-head attention

layer to the filtered information. The structure of the en-

coder is presented in Fig. 4(a).

Given the previous temporal prior knowledge Fm
t−1 and

the current similarity map Ft, there are two ways to in-
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Figure 4. Structure of the adaptive temporal transformer. The left

sub-window illustrates the adaptive temporal encoder to model the

temporal knowledge. The right sub-window shows the component

of the decoder. Best viewed in color.

tegrate their information into the current prior knowledge

Fm
t , with respect to the selection of the query, key, and val-

ues. One uses Fm
t−1 as the query and Ft as the value and

key, while the other uses them in reverse. In our method, we

adopt the former, as this essentially puts more emphasis on

the current similarity map. This is plausible as closer tem-

poral information is more valuable than the previous one for

representing the characteristics of the current object more

accurately. Empirical results in Sec. 4.3 also validate the

effectiveness of this choice. Hence, we obtain the output of

the stacked multi-head attention layer in t-th frame F2
t by:

F1
t = Norm(Ft +MultiHead(Fm

t−1,Ft,Ft))

F2
t = Norm(F1

t +MultiHead(F1
t ,F

1
t ,F

1
t ))

, (5)

where Norm represents the layer normalization.

Since aerial tracking may frequently encounter less use-

ful contexts caused by motion blur or occlusion, some un-

wanted contexts may be included if we pass along the com-

plete temporal information without any filtering. To elimi-

nate the unwanted information, a neat temporal information

filter is generated by attaching a feed-forward network FFN
to the global descriptor of F1

t obtained by global average

pooling GAP, i.e., α = FFN(GAP(F(F1
t ))). The filtered

information Ff
t is obtained by:

Ff
t = F2

t + F(Cat(F2
t ,F

1
t )) ∗α , (6)

where F denotes a convolution layer. With this, the tempo-

ral knowledge of t-th frame, Fm
t can be obtained as follows:

Fm
t = Norm(Ff

t +MultiHead(Ff
t ,F

f
t ,F

f
t )) . (7)

Hence, for each frame, we update the temporal knowl-

edge rather than saving all of them. This makes the memory
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occupancy of the temporal prior knowledge fixed during the

whole tracking process, which makes TCTrack memory-

efficient compared to approaches that require saving all the

intermediate temporal information. Overall, owing to this

strategy as well as the temporal filter and the multi-head at-

tention, our AT-Trans adaptively encodes the temporal prior

in a memory-efficient way.

For the first frame in a tracking sequence, since the char-

acteristics of different targets are distinct, using a unified

initialization for the initial temporal prior Fm
0 would be un-

reasonable. Observing that the similarity map in the first

frame essentially represents the semantic features of the tar-

get object in an effective way, we set the initial temporal

prior by a convolution over the initial similarity map F0,

i.e., Fm
0 = Finit(R1). We also empirically show our ini-

tialization is better in Sec. 4.3.

Transformer decoder. According to the temporal prior

knowledge Fm
t , the decoder aims to refine the similarity

map. To better explore the interrelations between tempo-

ral knowledge and current spatial features Ft, we adopt two

multi-head attention layers with feed-forward before out-

put. Its structure is presented in Fig. 4(b). By generating the

attention map, the valid information in the temporal knowl-

edge Fm
t can be extracted for refining the similarity map Ft

to obtain the final output F∗
t :

F3
t = Norm(Ft +MultiHead(Ft,Ft,Ft))

F4
t = Norm(F3

t +MultiHead(F3
t ,F

m
t ,Fm

t ))

F∗
t = Norm(F4

t + FFN(F4
t ))

. (8)

Relying on the encoder-decoder structure of AT-Trans,

the temporal contexts are effectively exploited to refine the

similarity maps for boosting robustness and accuracy. The

comparison of similarity maps in Fig. 5 shows the effec-

tiveness of the similarity map refinement, especially where

camera motion, severe motion, and occlusion exist.

Table 1. Comparison of inference time and parameters on

NVIDIA Jetson AGX Xavier. Here, we use 287×287×3 as the

input image and only evaluate the inference time of the CNN.

Backbone Inference time Parameters

AlexNet [40] 3.4ms 2.47M

VGG11 [58] 3.7ms 9.22M

ResNet18 [30] 10.1ms 11.2M

MobileNet v2 [56] 13.7ms 2.2M

EfficientNet [60] 27.4ms 39.4K

SqueezeNet1 0 [37] 8.8ms 735.42K

ShuffleNet v2 x0.5 [77] 16.6ms 341.8K

Remark 2: To the best of our knowledge, AT-Trans is the

first attempt to use temporal contexts for similarity maps.

4. Experiments
Our framework is evaluated on four public authoritative

benchmarks and tested on real-world aerial tracking condi-

tions. In this section, our method is comprehensively eval-

uated on four well-known aerial tracking benchmarks, i.e.,
UAV123 [54], UAVTrack112 L [21], UAV123@10fps [54],

and DTB70 [45]. 51 existing top trackers are included for

a thorough comparison, where their results are obtained by

running the official codes with their corresponding hyper-

parameters. For a clearer comparison, we divide them into

two groups, (i) light-weight trackers [1,2,6,7,12,14–17,22,

27,33,38,41,43,44,46,47,51,52,65–67,75,76,80] and (ii)
deep trackers [4, 8, 9, 11, 13, 23, 25, 26, 41, 50, 53, 59, 68, 69,

71, 74, 78, 79].

4.1. Implementation Details

We use AlexNet as the backbone of our tracker, as ef-

ficiency is essential for aerial tracking. As shown in Ta-

ble 1, the comparison in inference time of different popular

backbones on the NVIDIA Jetson AGX Xavier platform has

shown that AlexNet has the lowest latency, while the recent

developments in mobile networks [37, 56, 77] suffer from

high memory access cost (MAC). For initialization, we use

ImageNet pre-trained model for AlexNet and use the same

initialization for online TAdaConv as in [55]. The AT-Trans

in our TCTrack is randomly initialized.

We train our tracker with the videos whose length are 4

from VID [55], Lasot [19], and GOT-10K [32]. We train

TCTrack for a total of 100 epochs on two NVIDIA TITAN

RTX GPUs. For the first 10 epochs, the parameters of the

backbone are frozen, following [41]. The rest of the training

process employs a learning rate decreasing from 0.005 to

0.0005 in log space. SGD is employed as the optimizer with

a momentum of 0.9, where the mini-batch size is 124 pairs.

The input sizes of the template and the search area are 1272

and 2872 respectively. The proposed online TAdaConv is

used in the replacement of the last two convolutional layers.

Remark 3: For more detailed information about the evalu-

ation criteria and loss function, please refer to the supple-
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Figure 6. Overall performance of all trackers on three well-known aerial tracking benchmarks. Our tracker achieves superior performance

against other SOTA trackers. TCTrack-L represents the tracker with AT-Trans while the TCTrack denotes the full version of our framework.

mentary material.

4.2. Comparison with Light-Weight Trackers

In this subsection, TCTrack is compared with 29 exist-

ing efficient trackers on the standard aerial tracking bench-

marks. For Siamese-based methods, we evaluate them with

the same backbone as ours for a fair comparison.

UAV123. UAV123 [54] is a large-scale aerial tracking

benchmark involving 123 challenging sequences with more

than 112K frames. Performance evaluation on UAV123 can

verify the tracking performance in most commonly aerial

tracking conditions. As shown in Fig. 6, our TCTrack out-

performs HiFT and SiamRPN++ in AUC (3%) and (4.3%).

DTB70. DTB70 [45] includes 70 severe motion scenar-

ios in various challenging scenes. For evaluating the effec-

tiveness of our method in handling motion, we adopt this

benchmark to prove the robustness of TCTrack. Our tracker

ranks 1st with an improvement of 5% in AUC against the

other best tracker illustrated in Fig. 6.

UAV123@10fps. Adopting an image rate of 10 FPS,

the motion and variation are more abrupt and severe in

UAV123@10fps [54], thereby significantly raising the dif-

ficulty of tracking. From the comparison with our other

SOTA trackers, we can clearly see that our tracker maintains

superior robustness and exceeds the second-best tracker in

terms of success and precision rate.

Attribute-based performance. In aerial tracking condi-

tions, the severe motion of UAVs will increase the difficulty

of tracking. To fully analyze the robustness of our tracker in

Table 2. Overall performance on UAVTrack112 L. The best three

performances are respectively highlighted with red, green, and

blue colors.

Trackers Succ. Prec. Trackers Succ. Prec.

AutoTrack [47] 0.405 0.675 C-COT [17] 0.422 0.691

ARCF [33] 0.399 0.640 UDT+ [66] 0.405 0.637

STRCF [43] 0.360 0.609 ECO [12] 0.436 0.684

UDT [66] 0.388 0.620 TADT [46] 0.462 0.712

SRDCF [16] 0.320 0.508 SiameseFC [2] 0.452 0.690

CoKCF [75] 0.283 0.520 DaSiamRPN [80] 0.479 0.729

BACF [38] 0.358 0.593 SiamAPN++ [7] 0.537 0.735
DSiam [27] 0.321 0.512 SiamRPN++ [41] 0.559 0.773
HiFT [6] 0.551 0.734 TCTrack (ours) 0.582 0.786

specific challenges such as fast motion, camera motion, oc-

clusion, deformation, etc, attribute-based comparisons are

conducted. The comparison between other SOTA trackers

presented in Fig. 7 proves the robustness of our framework

in several challenging conditions. Since our tracker can

accumulate the consecutive temporal knowledge from 1st

frame to the current frame, our tracker can learn the histor-

ical location of the object. Therefore, our tracker achieves

superior performance in occlusion and fast-motion scenes.

Furthermore, benefiting from our content-adaptive tempo-

ral knowledge and online TAdaConv, TCTrack can handle

the negative influence introduced by the environment.

UAVTrack112 L. To validate the effectiveness of our

framework in long-term tracking performance, we conduct

the evaluations on UAVTrack112 L [21], which is the cur-

rent biggest long-term aerial tracking benchmark including

over 60k frames. Table 2 reports the comparison of TC-

Track and other SOTA trackers. Thanks to our comprehen-
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Figure 7. Attribute-based evaluation of all trackers on three well-known aerial tracking benchmarks. Our temporal tracker can maintain

promising performance under severe motion, occlusion, and deformation. More results are shown in the supplementary material.

Table 3. Ablation study of different components of adaptive temporal transformer on UAV123 [54]. TIF denotes the temporal information

filter in the AT-Trans (Fig. 4). SF/MF refer to single-frame (SF) training, i.e., the standard tracking-by-detection training method and our

multi-frame (MF) training method. CI/RI refer to convolutional initialization and random initialization for temporal prior knowledge.

Query denotes which feature map is used as the query in the adaptive temporal encoder in AT-Trans mentioned in Sec. 3.2.

Camera Motion Fast motion Partial Occlusion Overall

Model Train Init. Query Prec. Succ. Prec. Succ. Prec. Succ. Prec. Succ.

Transformer SF - Fm
t−1 0.750 0.549 0.712 0.509 0.663 0.458 0.750 0.550

Transformer+TIF SF - Fm
t−1 0.7672.3%↑ 0.5785.3%↑ 0.7201.1%↑ 0.5253.1%↑ 0.6670.6%↑ 0.4743.5%↑ 0.7652.0%↑ 0.5734.2%↑

Transformer MF CI Fm
t−1 0.7492.4%↓ 0.5257.6%↓ 0.7192.4%↓ 0.5007.6%↓ 0.6392.4%↓ 0.4157.6%↓ 0.7322.4%↓ 0.5087.6%↓

Transformer+TIF MF RI Fm
t−1 0.7793.9%↑ 0.5927.8%↑ 0.7667.6%↑ 0.56611.2%↑ 0.6701.1%↑ 0.4835.5%↑ 0.7722.9%↑ 0.5866.6%↑

Transformer+TIF MF CI Ft 0.7854.7%↑ 0.5876.9%↑ 0.7262.0%↑ 0.5283.7%↑ 0.6762.0%↑ 0.4804.8%↑ 0.7712.8%↑ 0.5805.5%↑
Transformer+TIF MF CI Fm

t−1 0.8108.0%↑ 0.61512.0%↑ 0.79311.3%↑ 0.58615.1%↑ 0.7107.1%↑ 0.51011.4%↑ 0.8006.7%↑ 0.6049.8%↑

Table 4. Different sequence lengths for the online TAdaConv on

UAV123 [54].

Different Variations Overall Precision Overall Success

Transformer 0.750 0.550
Transformer+TAdaConv (L=1) 0.7490.1%↓ 0.5612.0%↑
Transformer+TAdaConv (L=2) 0.7743.2%↑ 0.5734.2%↑
Transformer+TAdaConv (L=3) 0.7763.5%↑ 0.5805.5%↑

sive framework that fully exploits temporal contexts, TC-

Track achieves superior performance against other trackers

in terms of precision (0.786) and success rate (0.582).

4.3. Ablation Study

To verify the effectiveness of our framework, compre-

hensive ablation studies are presented in this subsection.

Clarification of symbol. In Table. 3, we denote our pro-

posed transformer architecture without temporal informa-

tion filter as Transformer. We analyze the influence

caused by different models, training methods, initializa-

tions, and query selections. Furthermore, for ensuring the

correctness of our experiments, all tracker adopts the same

process (including training, parameter settings, etc.) except

for the studied module.

Analysis on AT-Trans. I) Adding the consecutive tempo-

ral knowledge without filtering out the invalid information

(third line) will confuse the tracker. Therefore, the track-

ing performance is impeded significantly. By adding our

information filter in the tracking-by-detection framework,

our module can also raise the performance by adaptively

selecting valid contexts (second line). II) As we discussed

before, using the unique information of the tracking object

in the first frame to initiate the temporal knowledge is more

appropriate than random initiation, especially in occlusion

conditions (raising about 6%). III) We also analyze the ef-

fect caused by the different queries. The results prove that

refinement based on the current similarity map is more ef-

fective and suitable for raising performance, especially in

motion scenarios (improved over 10%).

Compared with Transformer, there is a significant

improvement brought by our temporal knowledge encoded

by AT-Trans (9.8% in overall AUC and 6.7% in overall pre-

cision). Specifically, our tracker yields the best performance

with an improvement of about 12.0% and 15.1% in han-

dling the motion scenes. In the occlusion conditions, owing

to the consecutive temporal contexts, our tracker can relo-

cate the object via the previous information, thereby boost-

ing the success rate by 11.4%.

Studies about the length of temporal sequences in TAda-
Conv. As shown in Table. 4, when the image range of

TAdaConv is increasing, the performance is raising. To in-

troduce the temporal contexts effectively and efficiently, in

this work, we adopt 3 as the length of sequences, i.e., L=3.

4.4. Comparison with Deep Trackers

Our approach aims to introduce temporal information

to raise the robustness and handle the challenges in aerial

tracking. Therefore, to comprehensively illustrate our effi-

ciency and performance against other SOTA trackers with

deeper backbones, further comparisons are constructed in-

cluding over 20 trackers on NVIDIA TITAN RTX. As il-

lustrated in Fig. 8, although adopting the lightweight CNN

as our backbone, TCTrack achieves competitive perfor-

mance compared with the best tracker while running 2.49
times faster than the best tracker (TransT). Attribute to
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Figure 8. Comparisons to trackers with deeper backbones on

DTB70. Our tracker achieves competitive performance compared

with other deeper trackers while possessing superior efficiency.

our content-adaptive and memory-efficient structure, our

framework with temporal contexts can fill the performance

margin caused by deeper backbones while maintaining the

promising efficiency in aerial tracking conditions.

5. Real-world Tests
In this section, we implement our tracker on UAV to vali-

date its practicability in real-world conditions. Specifically,

NVIDIA Jetson AGX Xavier and Pixhawk2 are adopted as

the aerial onboard computer and flight controller. During

the real-world UAV tests, RAM usage and GPU VRAM us-

age are 15.29% and 3%, respectively. Additionally, the uti-

lization of GPU and CPU is 46% and 12.43% on average.

The center location error (CLE) is adopted to evaluate the

tracking performance (20 is the success threshold).

The special challenges in the real-world tests involve dif-

ferent illumination, scale variation, occlusion, motion blur,

and low-resolution scenes. The visualization of our tracking

recording of practical UAV is shown in Fig. 9. When fac-

ing partial occlusion and low illumination (the first row),

our tracker can maintain impressive stability and robust-

ness via exploiting the consecutive temporal knowledge.

Meantime, our tracker also achieves satisfying accuracy

when facing motion blur and the occluded object (the sec-

ond row). Additionally, the visualization of the third row

strongly presents the powerful ability of our tracker under

camera motion conditions. Finally, our tracker remains at

a speed of over 27 FPS during the tests without the accel-

eration of TensorRT3. The real-world tests on our practi-

cal UAV strongly demonstrate the practicability and feasi-

ble deployment ability of our framework. Furthermore, our

tracker presents stable and promising tracking performance

in complex aerial tracking conditions.

6. Conclusion and Discussion
In this work, we propose a comprehensive framework

for introducing temporal contexts into aerial tracking which

2https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-agx-xavier/, https://pixhawk.org/
3https://developer.nvidia.com/tensorrt
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Figure 9. Recording of real-world tests on the embedded platform.

The tracking targets are marked with red while the CLE represents

the center location error. To avoid unpredictable disclosure of per-

sonally identifiable information, images are processed merely.

consists of two perspectives, e.g., feature extraction and

similarity refinement. Specifically, in this work, AT-Trans

and online TAdaCNN are the first attempts for exhaustively

exploring temporal contexts. Besides, attributing to our on-

line updating strategy, unnecessary operations and memory

loading are avoided. Extensive experiments on four bench-

marks and real-world tests on our UAV demonstrate the ef-

fectiveness and efficiency of our framework. We hope that

our framework can inspire further research in aerial and

even general tracking with temporal contexts.

Potential limitations. Hindered by the short-term training

method, the potential of our framework in very long-term

temporal modeling and long-time occlusion is not fully ex-

plored. Moreover, the TensorRT and ONNX versions will

be developed in our future works.

Negative impacts. Although TCTrack aims to explore tem-

poral contexts comprehensively for aerial tracking, impres-

sive efficiency and effectiveness make it easy to be deployed

on UAVs for unauthorized surveillance.
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