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Abstract

Although existing semantic segmentation approaches
achieve impressive results, they still struggle to update
their models incrementally as new categories are uncov-
ered. Furthermore, pixel-by-pixel annotations are expen-
sive and time-consuming. This paper proposes a novel
framework for Weakly Incremental Learning for Semantic
Segmentation, that aims at learning to segment new classes
from cheap and largely available image-level labels. As op-
posed to existing approaches, that need to generate pseudo-
labels offline, we use a localizer;, trained with image-level
labels and regularized by the segmentation model, to obtain
pseudo-supervision online and update the model incremen-
tally. We cope with the inherent noise in the process by us-
ing soft-labels generated by the localizer. We demonstrate
the effectiveness of our approach on the Pascal VOC and
COCO datasets, outperforming offline weakly-supervised
methods and obtaining results comparable with incremental
learning methods with full supervision. '

1. Introduction

Semantic segmentation is a fundamental problem in
computer vision where significant progress has been made
thanks to the surge of deep learning [I3-15] and the
availability of large-scale human-annotated or synthetic
datasets [4, 17,23,40,55]. Despite the fact that many pre-
trained models using public datasets are available online,
one of their key disadvantages is that they are not meant to
be incrementally updated over time and their knowledge is
often limited to the predefined set of classes.

A naive solution to this problem would be to extend ex-
isting datasets with new annotated samples and train new
models from scratch. However, this approach is impractical
in case of frequent updates because training on the entire
augmented dataset would take too long, increasing the en-
ergy consumption and carbon footprint of machine learning
models [51,58,61]. Moreover, retraining or fine-tuning be-
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Figure 1. Illustration of WILSS. A model is first pre-trained on
a set of classes (e.g., person, motorbike, car), using expensive
pixel-wise annotations. Then, in the following incremental learn-
ing steps, the model is updated to segment new classes (e.g., cow)
being provided image-level labels and without access to old data.

Step t

comes infeasible when the original data is no longer avail-
able, e.g., due to privacy concerns or intellectual property.
A better solution is to incrementally add new classes to
the pre-existing model, as done in some recent works [&,
,43,45,46]. Incremental learning approaches update the
model’s parameters by training only on new data and em-
ploying ad-hoc techniques to avoid catastrophic forgetting
on old classes [44]. While they reduce the cost of training,
they rely on pixel-wise supervision on novel classes, which
is expensive and time-consuming to collect, and usually re-

quires expert human annotators [6,40].
To reduce the annotation cost, different types of weak
supervision have been proposed: bounding boxes [, 32],

scribbles [39, 62], points [16], and image-level labels [34,
, 52]. Image labels can be easily retrieved from im-
age classification benchmarks [19] or the web, dramatically
lowering the annotation cost. Nevertheless, their use has
never been investigated in an incremental learning setting.
In light of these considerations, we argue that it is cru-
cial to jointly address the problems of incrementally updat-
ing the model and reducing the annotation cost of new data
for semantic segmentation. To this end, we propose to in-
crementally train a segmentation model using only image-
level labels for the new classes. We call this task Weakly-
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Supervised Incremental Learning for Semantic Segmenta-
tion (WILSS). This novel setting combines the advantages
of incremental learning (training only on new class data)
and weak supervision (cheap and largely available annota-
tions). An illustration of WILSS is reported in Fig. 1.

Directly applying existing weakly-supervised methods
to incremental segmentation would require to (i) extract
pixel-wise pseudo-supervision offline using a weakly super-
vised approach [3, 5,36,59,63] and (ii) update the segmen-
tation network resorting to an incremental learning tech-
nique [8,21,43]. However, we argue that generating pseudo-
labels offline in incremental settings is sub-optimal, as it in-
volves two separate training stages and ignores the model’s
knowledge on previous classes that can be exploited to learn
new classes more efficiently.

Hence, we propose a Weakly Incremental Learning
framework for semantic Segmentation that incrementally
trains a segmentation model generating ONline pseudo-
supervision from image-level annotations (WILSON) and
exploits previous knowledge to learn new classes. We
extend a standard encoder-decoder segmentation architec-
ture [ | 3—15] by introducing a localizer on the encoder, from
which we extract pseudo-supervision for the segmentation
backbone. To improve the pseudo-supervision, we train the
localizer with a pixel-wise loss guided by the predictions
of the segmentation model. This regularization serves two
purposes: i) it acts as a strong prior for the previous class
distribution, informing the model on where old classes are
located in the image, and (ii) it provides a saliency prior for
extracting better object boundaries. To address the noise
present in the pseudo-supervision, instead of using hard
pseudo-labels as in previous works [5, 36, 63], we obtain
soft-labels from the localizer, which provides information
on the probability assigned to a pixel to belong to a certain
class.

To summarize, the contributions are as follows:

* We propose the Weakly supervised Incremental Learn-
ing for Semantic Segmentation (WILSS) task to extend
pre-trained segmentation models with new classes us-
ing image-level supervision only.

e We propose WILSON, a novel framework that gen-
erates pseudo-supervision online using a simple lo-
calizer trained with an image-level classification loss
and a pixel-wise localization loss that relies on old
class knowledge. To model the noise in the pseudo-
supervision, we use a convex combination of soft and
hard labels that improves the segmentation perfor-
mance over hard labels only.

¢ We evaluate our method on the Pascal VOC [23] and
COCO [40] datasets, showing that our approach out-
performs offline weakly-supervised methods, and that
it is comparable or slightly inferior w.r.t. fully super-
vised incremental learning methods.

2. Related work

Incremental learning semantic segmentation. Incremen-
tal learning (IL) aims at addressing the phenomenon known
as catastrophic forgetting [25,44]: a model, expanding its
knowledge with new classes over time, gradually forgets
previously learned ones. Even if in image classification it
has been exhaustively studied [!, | 1,20, 22, 24,30, 38,41,

,57,68], in semantic segmentation it is still in its early
stages [8,9,21,33,43,45-47]. As first shown by [&], catas-
trophic forgetting in segmentation is exacerbated by the
background shift problem; hence, they proposed a mod-
ified version of the traditional cross-entropy to propagate
only the probability of old classes through the incremen-
tal steps and a distillation term to preserve previous knowl-
edge. Later, [2 1] proposed to preserve long and short-range
spatial relationships at feature level, while [46] regularized
the latent space to improve class-conditional features sepa-
rations. Alternatively, [43] used samples of old classes with
replay methods to mitigate forgetting. Finally, [9] proposed
the incremental few-shot segmentation setting, where only
a few images to learn new classes are provided.

Differently from these works, we focus on a more chal-
lenging scenario where the supervision on new classes is
provided as cheap image-level labels.

Weakly supervised semantic segmentation. Collect-
ing accurate pixel-wise annotations for supervising se-
mantic segmentation models is generally costly and time-
consuming. To address this issue, Weakly Supervised Se-
mantic Segmentation (WSSS) methods aim to obtain ef-
fective segmentation models using cheaper supervisions
such as bounding boxes [18, 32, 49], scribbles [39, 60],
points [6, 53], and image-level labels [31, 34, 35,59]. Be-
cause of low prices and large availability on the web, image-
level supervision gained the most attention over other types
of weak supervision. Most image-based weakly supervised
approaches [2,3, 10,31,34,35,48,59] use a two-stage pro-
cedure: (i) they generate pixel-wise pseudo-labels and then
(ii) use them for training a segmentation backbone. The
pseudo-labels are often extracted from an image-level clas-
sifier exploiting its Class Activation Maps (CAMs) [67].
An exception is [5], which proposes to learn a segmenta-
tion model in a single stage. Previous works focused on
improving the pseudo-labels through multiple refinements
steps [2, 3], additional losses [5, 10,31, 34,59,63], or eras-
ing techniques that force the CAM to expand and focus on
non-discriminative parts of the image [!2,29,64]. Finally,
arecent trend uses external information, such as saliency, to
improve the object boundaries [36, 66].

Despite the rapid development of pseudo-labels genera-
tion techniques from image-level supervision, these works
operate in a static scenario where the model learns from a
fixed set of classes. Instead, we focus on the more challeng-
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Figure 2. Illustration of the end-to-end training of WILSON. The localizer is directly trained using a classification loss ¢ s and the
Localization Prior loss £1,0¢, which exploits the prior information of the old model at step ¢ — 1. The segmentation model is supervised
using CAM and old model output. The gradient is not backpropagated on dotted lines.

ing incremental learning setting where we learn new classes
over time, extending a pre-trained segmentation model us-
ing only image-level labels.

3. WILSON Framework

Adapting current WSSS methods [3,34,36,37,63] for in-
cremental learning requires generating pseudo-labels offline
for the new classes and then training a segmentation model
separately. Instead, we propose an end-to-end framework
for WILSS that can learn incrementally from pseudo-labels
generated online by a localizer attached to the model. In
the following, we first define the problem and the notation
(Sec. 3.1). Then we illustrate how the classification module
can be trained to obtain pseudo-supervision (Sec. 3.2). Fi-
nally, in Sec. 3.3 we describe how to train the segmentation
model to learn new classes without forgetting old ones. The
framework is depicted in Fig. 2.

3.1. Problem Definition and Notation

We consider an input space X (i.e. the image space)
and assume, without loss of generality, that each image is
composed by a set of pixels Z with constant cardinality
|Z| = H x W = N. The output space }"V is defined as the
product set of [NV-tuples with elements in a label space ). In
the standard semantic segmentation setting, given an image
x € X, we want to learn a mapping to assign each pixel x; a
label y; € V), representing its semantic class. The mapping
is realized by a model fy = dga 0 ege : X > RV >l from
the image space X to a pixel-wise class probability vector.
e and d denote the encoder and decoder of the segmentation
network, respectively.

The output segmentation mask is obtained as y* =
{argmax, .y, pf I, where p§ is the model prediction of

pixel 7 for class c.

In the incremental segmentation setting [8], training is
realized over multiple learning steps. At each learning
step ¢, the previous label set )'~! is augmented with novel
classes C', yielding a new label set ! = Y~ U C!. Dif-
ferently from the original incremental setting, in WILSS
we are provided with dense annotations only for the ini-
tial step (f = 0). That is, the model is pre-trained on a
densely-annotated dataset 7° C X x (C°) only for the
initial classes. Then, we learn new classes only from cheap
image-level labels for all the following steps. Namely, for
(t > 0), we have access to multiple training sets with only
image-level annotations for novel classes 78 C X x (C!).
As in [8], we assume that data from previous training steps
is not accessible anymore, and we want to update the model
to perform segmentation on new classes preserving its per-

. . Nx |V
formance on old classes i.e. fyt : X — IR .

3.2. Training the Localizer

Inspired by the WSSS literature [3, 5, 34, 36, 37, 63],
we introduce a localizer g, trained with image-level la-
bels, to produce the pseudo-supervision for the segmenta-
tion model. The localizer uses the features from the seg-
mentation encoder e to predict a score for all classes (back-

ground, old and new ones) i.e. z = g(e(z)) € R I¥HxW,

Learning from image-level labels. To learn from image-
level labels first we need to aggregate the pixel-level classi-
fication scores z. The common solution is to use a Global
Average Pooling (GAP) [3,63].

However, simply averaging the scores produces coarse
pseudo-labels [5], as all pixels in the feature map are en-
couraged to be less discriminative for the target class. For
this reason, we use the normalized Global Weighted Pooling
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(nGWP) [5], that weights every pixel based on its relevance
for the target class. In particular, the weight of each pixel
is computed normalizing the classification scores with the
softmax operation ¢, i.e. m = (z). The aggregated
scores are computed as:

_ D iez MiZi
== (1)
€+ Ziel' my;

where € is a small constant. Moreover, to encourage the
scores to identify all the visible parts of the object, we use
the focal penalty term introduced by [5], that is obtained as:

~nGW P

ZieI m;
\Z|

ZieI m;

~FOC — (1 _
Izl

Yy )Vlog(A + ), @
where A and ~ are hyper-parameters. We refer the readers
to [5] for more details on the nGWP and the focal penalty.
Since WILSS is an incremental learning scenario, we as-
sume to have access only to image-level annotations y for
the new classes C*. The localizer is then trained minimizing

the multi-label soft-margin loss:

g oot

ce
+ (1 =y%)log(1 -4, (3)

nGW P + QFOC)

Lons(9,y)

where K = Ct, § = o(g , and o is the lo-
gistic function. We note that, while the loss is computed
only on new classes, it implicitly depends on the old classes
scores due to the softmax-based aggregation in Eq. (1).
However, since image-level annotations are cheap, and new
images can be easily annotated, we may also consider a re-
laxed setting in which weak annotations are provide for both
old and new classes. In this scenario the classification loss
in Eq. (3) is computed on all classes and K = *.

Localization Prior. The image-level labels provide super-
vision only on the presence of new classes in the image.
However, they do not provide any cue on their boundaries
or any information about the location of old classes. We ar-
gue that these insights can be freely obtained from the seg-
mentation model learned in previous learning steps. In par-
ticular, the background score can be used as a saliency prior
to extracting better object boundaries. Moreover, the scores
of the old classes guide the localizer in detecting whether
and where an old class is present in the image, directing its
attention to alternative regions.

Hence, we introduce a direct supervision on the local-
izer coming from the segmentation model trained on step
t—1,ie. f; ~L. The supervision acts as a Localization Prior
(LOC) and can be provided as a pixel-wise loss between the
segmentation model outputs w = o(f; ' (z)) and the clas-
sification scores z. Formally, we minimize the following

objective function:

lroc(z,w) =

ST X O wiles(o(:i)+

1€ ceYt—1
+ (L =wi)log(1 —a(z]))), 4

where o (-) is the logistic function.

In Eq. (4), the segmentation model provides a dense tar-
get on old classes. Unlike the softmax operator, which
enforces competition among classes, the 1ogistic func-
tion makes the class probabilities independent which is ben-
eficial for a correct localization prior; in the case of a novel
class, both old classes and the background will have a low
score, implicitly informing the localizer that the pixel be-
longs to a new class.

3.3. Learning to Segment from Pseudo-Supervision

A solution often adopted by WSSS methods to train the
semantic segmentation network is to extract hard-pseudo la-
bels from an image-level classifier. In particular, these are
obtained generating a one-hot distribution ¢"-¢ for each
pixel, attributing value one to the class with the maximum
score for each pixel and zero to the others, i.e.

qHard, c_ 1
! 0

where m is the softmax normalized score extracted from the
localizer.

However, it is well-known that pseudo-supervision gen-
erated from an image-level classifier is noisy [5, 36,37, 63],
and using ¢¢ to supervise the segmentation network may
be detrimental for learning, causing the model to fit the
wrong targets. For this reason, we propose to smooth the
pseudo-labels to reduce the noise [42]. Formally, given a
class c, the pseudo-supervision ¢¢ is computed as:

if ¢ = arg maxy, ¢y mg, 5)

otherwise,

qc _ aqHard,c + (1 _ a)mc, (6)

where « is a hyper-parameter that controls the smoothness.

Although the localizer produces scores for both new and
old classes, the output distribution might be biased towards
new classes due to the incremental training step. Thus, us-
ing q as a target for the segmentation model would lead to
catastrophic forgetting [44]. Inspired by the knowledge dis-
tillation framework [2&], we replace the pseudo-supervision
extracted from the localizer on old classes with the output
of the segmentation model trained in the previous learning
step. The final pixel-level pseudo-supervision ¢ is thus com-
posed as follows:

min(o(fge—1(x))¢,¢¢) ifc=Db
c =94 ifceC, (7
o(for—1(2))° otherwise,

4374



where b is the background class and o (-) is the logistic func-
tion. We note that we utilize the minimum value of the two
distributions for the background class, which contributes in
modeling the background shift [&].

Since the pseudo-supervision ¢€ is not a probability dis-
tribution that sums to one, as required by the standard
softmax-based cross-entropy loss, we propose to use a train-
ing loss based on the multi-label soft-margin loss:

A 1 ~c c
lspa(p,4) = 7 Z Z Gilog(pi)+

i€L ceYt
+ (1 = gi)log(1 —o(p;)), (8)

where )'? is the set of all seen classes and p = fy: () is the
segmentation model output.

In conclusion, we remark that the localizer is not em-
ployed during the testing phase, thus our method does not
increase the time required for the inference.

4. Experiments
4.1. Datasets and Settings

We provide an extensive evaluation of WILSON on
the two standard benchmarks Pascal VOC 2012 [23] and
COCO [40]. Following the standard methodology [3, 34],
we augment the Pascal VOC dataset with images from [26]
for a total of 10582 images for training and 1449 for vali-
dation annotated on 20 object categories. COCO is a large-
scale dataset providing 164K images and 80 object classes.
We follow the training split and the annotation of [7] that
solves the overlapping annotation problem present in [40].

Following prior works [, 43], we adopt two incremen-
tal learning settings on the Pascal VOC dataset: the 15-
5 VOC, where 15 classes are learned in the first learning
phase and 5 new classes added in a second step, and the
10-10 VOC, where two steps of 10 classes are performed.
Following [&, 43], we report results using two experimen-
tal protocols: (i) the disjoint scenario, in which each train-
ing step includes images containing only new or previously
seen classes; (ii) the overlap scenario, in which each train-
ing step includes all the images containing at least one pixel
from a novel class. In addition, we propose a novel incre-
mental learning scenario, the COCO-to-VOC, composed
of two training steps. First, we learn the 60 COCO classes
not present in the Pascal VOC dataset, removing all the im-
ages containing at least one pixel of the latter. Then, in
the second step, we learn 20 Pascal VOC classes. Follow-
ing previous protocols [8,43], we report the results on the
dataset validation sets since the test set labels have not been
publicly released. We adopt the standard mean Intersection
over Union metric (mloU) [23] to evaluate the performance
of the segmentation model.

We recall that, differently from [5,43], in the proposed
WILSS setting the incremental steps provide only image-
level labels for the new classes.

4.2. Baselines

Given that WILSS is a new setting, we compare WIL-
SON with both incremental learning and weakly super-
vised semantic segmentation approaches. We report eight
methods that represent the current state-of-the-art for incre-
mental learning using pixel-wise supervision: LWF [3&],
LWF-MC [54], ILT [45], MiB [&], PLOP [21], CIL [33],
SDR [46], and RECALL [43]. We note that RECALL [43],
differently from other methods, uses additional images
taken from the Web. For Pascal VOC, we use the results
published in [21,43], while we run the experiments on the
COCO-to-VOC setting using the code provided by [£].

Furthermore, we report the performance of several state-
of-the-art WSSS methods adapted to operate in the incre-
mental learning scenario. In particular, we first train a clas-
sification model using the images available in the incre-
mental learning steps. Then, we generate the hard pseudo-
labels offline and train the segmentation model minimiz-
ing Eq. (8). We report the results with the pseudo-labels
generated from: the class activation maps obtained from a
standard image classifier (CAM), SEAM [63], SS [5], and
EPS [36]. As for WILSON we followed the same experi-
mental protocols provided by [¢], training each method us-
ing only the images belonging to disjoint and overlap sce-
narios. For each method, we used the implementation re-
leased by the authors to produce the results. For CAM,
we used the implementation of EPS to generate the pseudo-
labels. It is important to remark that, while CAM, SS, and
SEAM rely only on image-level labels, EPS also makes use
of an off-the-shelf saliency detector trained on external data.

4.3. Implementation Details

We employ Deeplab V3 [13] architecture for all the ex-
periments, with a ResNet-101 [27] backbone with output
stride equal to 16 for Pascal VOC and a Wide-ResNet-
38 [65] with output stride 8 for COCO, both pre-trained on
ImageNet. As in [8], we use in-place activated batch nor-
malization [56] to reduce the memory footprint required by
the experiments. The localizer used to generate the CAMs
is composed of 3 convolutional layers followed by batch
normalization and Leaky ReLU, where the first two have
kernel size 3 x 3 while the last 1 x 1, with channel numbers
{256, 256, number of classes}, and stride 1. The model
is trained for 40 epochs using batch size 24 and SGD with
an initial learning rate of 0.001 (0.01 for the Deeplab head
and the localizer), momentum 0.9, and weight decay 10~
We train only the localizer for the first 5 epochs. Then, we
train the whole network by adding the pseudo-supervision
from the localizer and decay the learning rate using a poly-
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Disjoint Overlap

Method Sup 1-15 16-20 All | 1-15 16-20 Al

Joint Pixel | 755 73,5 754 | 755 735 754
FT Pixel 84 335 144|125 369 183
LWF * [38] Pixel | 39.7 333 382 | 67.0 418 61.0
LWF-MC « [54]  Pixel | 41.5 254 37.6 | 598 22,6 510
ILT * [45] Pixel | 31.5 25.1 30.0 | 69.0 464 63.6
CIL  [33] Pixel | 42.6 350 408 | 149 373 202
MIB * [¢] Pixel | 71.8 433 647 | 755 494 69.0
PLOP o [21] Pixel | 71.0 428 643 | 757 51.7 70.1
SDR * [40] Pixel | 73.5 473 672|754 526 699
RECALL = [43]  Pixel | 69.2 529 663 | 677 543 65.6
CAM Image | 693 26.1 594|699 256 59.7
SEAM [67] Image | 71.0 33.1 62.7 | 683 31.8 604
SS [5] Image | 71.6 260 615 | 722 275 62.1
EPS [30] Image | 724 385 652 | 694 345 621
WILSON (ours) Image | 73.6 43.8 673 | 742 417 672

Table 1. Results on the 15-5 setting of Pascal VOC expressed in
mloU%. The best method using Image-level supervision is bold.
The best method using Pixel supervision is underlined. %: results
from [43]. ©: results from [21].

Disjoint Overlap

Method Sup 1-10 11-20 Al | 1-10 11-20 Al

Joint » Pixel | 76.6 740 754|766 740 754
FT % Pixel 77 608 33.0| 7.8 589 32.1
LWEF * [38] Pixel | 63.1 61.1 622|707 634 672
LWE-MC « [54]  Pixel | 524 425 477|539 430 487
ILT % [45] Pixel | 67.7 613 647|703 619 663
CIL % [23] Pixel | 374 60.6 488 | 384 600 487
MIB * [¢] Pixel | 669 575 624 | 704 637 672
PLOP [21] Pixel | 63.7 602 634 | 696 622 67.1
SDR * [46] Pixel | 675 579 629|705 639 674
RECALL  [43]  Pixel | 64.1 569 619 | 660 588 63.7
CAM Image | 654 413 545|708 442 585
SEAM [63] Image | 65.1 535 60.6 | 67.5 554 627
SS [5] Image | 60.7 257 450 | 69.6 328 525
EPS [30] Image | 642 54.1 60.6 | 69.0 57.0 643
WILSON (ours) Image | 645 543 60.8 | 704 571 65.0

Table 2. Results on the 10-10 setting of Pascal VOC expressed in
mloU%. The best method using Image-level supervision is bold.
The best method using Pixel supervision is underlined. x:results
from [43].

nomial schedule with a power of 0.9. Following [5], we set
A = 0.01, v = 3 of Eq. (2), and after the fifth epoch, we
use the self-supervised segmentation loss on the localizer.
Finally, we set a = 0.5 in Eq. (6) for all the experiments.

4.4. Results

Single step addition of five classes (15-5). In this setting,
after the initial learning stage, the following 5 classes of
the VOC dataset are added: plant, sheep, sofa, train, tv-
monitor. We report results in Tab. 1. Despite being trained
only with image-level labels, WILSON achieves competi-
tive results in all settings (disjoint and overlap) against ap-
proaches trained with pixel-wise supervision. Considering
all the classes, in the disjoint scenario, we are able to out-
perform RECALL [43] by 1.0% and SDR [46] by 0.1%,
demonstrating the resilience of WILSON to forgetting with-

COCO voOC
Method Sup 1-60 61-80 All 61-80
FT Pixel 1.9 41.7 12.7 75.0
LWF [38] Pixel 36.7 49.0 40.3 73.6
ILT [45] Pixel 37.0 439 39.3 68.7
MIB [8] Pixel 349 47.8 38.7 73.2
PLOP [21] Pixel 35.1 394 36.8 64.7
CAM Image | 30.7 20.3 28.1 39.1
SEAM [63] Image | 31.2 28.2 30.5 48.0
SS [5] Image | 35.1 36.9 35.5 52.4
EPS [30] Image | 34.9 38.4 35.8 55.3
WILSON (ours) Image | 39.8 41.0 40.6 55.7

Table 3. Results on the COCO-to-VOC setting expressed in
mloU%. The best method using Image-level supervision is bold.
The best method using Pixel supervision is underlined.

out the need for a replay buffer while maintaining enough
plasticity for learning new classes. Moreover, in the dis-
joint scenario, we surpass PLOP [21] by 1.0% and MIB [8]
by 0.5% on new classes.

Considering WSSS methods adapted to the WILSS sce-
nario, the results are a demonstration of the strengths of
WILSON: the ability to retain the knowledge of past classes
and, most importantly, the capability of learning new se-
mantic classes given only image-level annotations. Indeed,
when considering new classes, we outperform EPS [36]
by +5.3% mloU in the disjoint scenario, although it uses
saliency maps generated from an external off-the-shelf
model. Moreover, SEAM [63] is outperformed by 11.7%
and SS [5] by 17.8%. These achievements are even more
pronounced in the overlap scenario, where WILSON not
only preserves all the prior knowledge but also achieves a
+7.2% boost when learning new classes w.r.t. EPS. In this
situation, the overall improvement is +5.1% when com-
pared to the best methods (SS, EPS).

Single step addition of ten classes (10-10). In this setting,
we introduce 10 classes in the incremental step: dining-
table, dog, horse, motorbike, person, plant, sheep, sofa,
train, tv-monitor. Tab. 2 shows consistent results with the
15-5 setting. The differences between WILSON and IL
(pixel-wise supervision) methods are quite small and the re-
sults are nearly comparable. In terms of accuracy, the gap
using the most accurate incremental learning method, ILT,
is 3.9% in the disjoint scenario and shrinks to 2.4% in the
overlap one when compared to SDR. The efficacy of WIL-
SON is confirmed when compared to the WSSS (image-
level supervision) method as well. Indeed, while learning
novel semantic classes, our online technique outperforms
all offline competitors in the overlap protocols by more than
+0.7% overall mloU, while achieving a comparable result
(+0.2%) in the disjoint scenario. In Fig. 3 we report quali-
tative results demonstrating the superiority of WILSON on
both new and old classes.

COCO-to-VOC. This set of experiments can be considered
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the most challenging. Initially, the network is trained on 60
classes from the COCO dataset (which are not shared with
VOC), while additional 20 classes from the VOC dataset
are added in the second step. Tab. 3 shows evaluations
on both COCO and VOC validation sets. Despite the fact
that WILSON performance drops 8% when learning new
classes compared to LwF, this experiment better showcases
our ability to retain prior information while learning new
classes under image-level supervision, surpassing ILT per-
formance on old classes (+2.8%), which is the top competi-
tor trained with pixel-wise supervision. When comparing
against WSSS methods, WILSON is the best method, mark-
ing 4.8% improvements in terms of mIoU from the best
WSSS method (EPS) on COCO. Similar results hold also
for the VOC validation set. WILSON outperforms all the
previous weakly supervised methods on both the old and
new classes, both on COCO and VOC.

4.5. Ablation studies

Localization Prior. To validate the robustness of the
pseudo-supervision generation, we perform an ablation
study considering different choices for training the local-
izer. Results are reported in Tab. 4 on the VOC 10-10
disjoint and overlap scenarios. In particular, we compare
different strategies for training the localizer: (i) we use a
constant value for the old classes, as in [5], (ii) we use
a fixed prior, directly concatenating the segmentation out-
put of the old model to the class scores when computing
m, (iii) we provide a localization supervision to the lo-
calizer with the softmax cross-entropy loss and (iv) with
the loss in Eq. (4). Using a constant value and disregard-
ing past knowledge from the old segmentation network re-
sults in lower performance when compared to the overall
mloU obtained if using a localization prior, particularly on
new classes (-4.4% on disjoint and -5.1 on overlap). This
demonstrates that teaching the localizer the location of pre-
vious classes might be an effective way to prevent forget-
ting and improve performance while learning new classes.
Thereby, using aggressive priors, such as directly using the
segmentation output of the old model, does not allow the
network to learn effectively the new classes, thus resulting
in a gap of —4.0% on disjoint and —4.3% on overlapped
scenario w.r.t. {1 oc. Moreover, using the softmax cross-
entropy loss to match the segmentation output is detrimental
for the performance, achieving poor results on both new and
old classes (—6.3% on disjoint and —5.8% on overlapped
with respect to £;,0¢). The reason for this result is that, due
to the softmax normalization the cross-entropy loss does not
consider each class independently, and forces the localizer
to produce high scores for old classes even when they have
low segmentation scores.

Smoothing effect on pseudo-supervision. We tune the

Disjoint Overlap
Prior  Loss | 1-10 11-20 All | 1-10 11-20 All
- - 648 499 588 | 694 520 620
Fixed - 66.1 503 597 | 714 528 634
Learned CE | 61.1 460 545 | 67.6 495 592
Learned {poc | 645 543 608 | 704 57.1 65.0

Table 4. Ablation study to validate the robustness of pseudo-
supervision considering different types of localization priors for
training the localizer.

VOC 15-5
Disjoint Overlap
Method 1-15 16-20 All 1-15 16-20 All
CAM 70.5 34.7 62.6 71.6 36.0 63.7
SEAM [63] 71.9 26.9 61.7 70.8 28.1 61.0
SS [5] 71.8 26.3 61.7 72.1 27.6 62.1
EPS [36] 73.5 45.7 67.7 75.3 47.6 69.4

WILSON (ours) 75.0 46.0 68.9 76.1 45.6 69.5

VOC 10-10
Disjoint Overlap
1-10 11-20 All 1-10 11-20 All
CAM 63.1 422 539 66.6 45.0 56.8
SEAM [63] 66.0 50.4 59.7 70.9 54.6 64.0
SS [5] 60.8 26.0 452 69.6 33.0 52.6
EPS [30] 69.1 53.0 62.4 729 55.7 65.4

WILSON (ours) 69.5 56.4 64.2 73.6 57.6 66.7

Table 5. Performance evaluation of weakly supervised segmenta-
tion methods trained with direct supervision on both old and new
classes in the incremental step.

hyper-parameter « of Eq. (4), which regulates the smooth-
ness of the pseudo-labels supervising the segmentation
model. In Fig. 4 we show the final mIoU in the VOC 10-
10 disjoint and overlap scenarios, for five distinct « values
ranging from O to 1. As expected, in the case of @ = 1,
which corresponds to using hard labels, the model fits the
noise in the supervision, leading to worst results, forgetting
the prior knowledge, and being incapable of learning novel
classes. We chose o = 0.5 for our experiment since it is
a reasonable trade-off in accuracy between learning and re-
membering. It is crucial to note that changing the values
from 0 to 0.7 affects the results by less than 0.5% on av-
erage between the disjoint and overlap case, indicating the
robustness of WILSON to different o values.

Using supervision for all the classes. Since image-
level supervision is cheap, we evaluate the performance of
weakly-supervised methods when the supervision is pro-
vided for both old and new classes in the incremental steps.
Tab. 5 reports the results on VOC. Comparing the results
with Tab. 1 and Tab. 2, we note a performance improvement.
In particular, all the methods improved, with WILSON
achieving, on average, 2% on both old and new classes on
the 15-5 and 10-10. This result demonstrates that introduc-
ing knowledge about old classes in the pseudo-supervision
generation is crucial to both learning new classes and avoid-
ing forgetting. Moreover, we show that also in this scenario
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Figure 3. Qualitative results on the 10-10 VOC setting comparing different weakly supervised semantic segmentation methods. The image
emphasized the efficiency of WILSON in both learning new classes (e.g. sheep, dog, motorbike) and preserving knowledge of old ones
(e.g. cow, car). From left to right: image, CAM, SEAM [63], SS [5], EPS [36], WILSON and the ground-truth. Best viewed in color.

WILSON outperforms the offline WSSS methods. In par-
ticular, WILSON achieves better performance on every set-
ting, outperforming EPS by 1.2% and 0.1% in the VOC 15-
5 and by 1.8% and 1.3% in the VOC 10-10, respectively for
the disjoint and overlapped scenario.

4.6. Limitations

Despite the remarkable results achieved by WILSON, it
still has some drawbacks. To begin with, it is unable to
perform single-class incremental learning steps, since Eq. 3
requires negative examples to properly guide the training.
Moreover, we still need a considerable amount of images to
train the model. Investigating learning from a few images
could be an interesting future direction.

5. Conclusions

In this paper, we proposed WILSS, a novel setting that
aims to extend the knowledge of semantic segmentation
models through cheap image-level annotations. Applying
current weakly-supervised learning approaches would re-
quire to generate the pseudo-supervision offline and then
train the segmentation model. Differently, we propose
WILSON, that couples the semantic segmentation model
with a localizer and use image-level annotations on the new
classes to generate online the pseudo-supervision for the

66|

64 ———
b62
<
R 60 0" S —

58

56
0 0,3 0,5 0,7 1,0

Figure 4. Ablation study about the effect of o to smooth the one-
hot pseudo-labels used to supervise the £src. Test reporting the
mloU for both the Disjoint and VOC 10-10 protocols.

segmentation backbone. We show that adding a localization
prior from the old model to the localizer improves the gen-
eration of the pseudo-labels. We prove the effectiveness of
our approach in three incremental settings. We outperform
the WSSS baselines that generate pseudo-labels offline and
we get results close to fully supervised incremental learning
methods.
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