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Figure 1. Results on a Real-World Video. In this work, we investigate various tradeoffs caused by the complex and diverse degradations
in real-world VSR. Such tradeoffs are largely neglected in the literature. We propose simple yet effective solutions to the tradeoffs, and the
resulting model RealBasicVSR acts as a strong baseline for real-world VSR. (Zoom-in for best view)

Abstract

The diversity and complexity of degradations in real-
world video super-resolution (VSR) pose non-trivial chal-
lenges in inference and training. First, while long-term
propagation leads to improved performance in cases of mild
degradations, severe in-the-wild degradations could be ex-
aggerated through propagation, impairing output quality.
To balance the tradeoff between detail synthesis and arti-
fact suppression, we found an image pre-cleaning stage in-
dispensable to reduce noises and artifacts prior to propa-
gation. Equipped with a carefully designed cleaning mod-
ule, our RealBasicVSR outperforms existing methods in
both quality and efficiency (Fig. 1). Second, real-world
VSR models are often trained with diverse degradations to
improve generalizability, requiring increased batch size to
produce a stable gradient. Inevitably, the increased com-

putational burden results in various problems, including
1) speed-performance tradeoff and 2) batch-length trade-
off. To alleviate the first tradeoff, we propose a stochas-
tic degradation scheme that reduces up to 40% of training
time without sacrificing performance. We then analyze dif-
ferent training settings and suggest that employing longer
sequences rather than larger batches during training al-
lows more effective uses of temporal information, leading to
more stable performance during inference. To facilitate fair
comparisons, we propose the new VideoLQ dataset, which
contains a large variety of real-world low-quality video se-
quences containing rich textures and patterns. Our dataset
can serve as a common ground for benchmarking. Code,
models, and the dataset are publicly available at https :
//github.com/ckkelvinchan/RealBasicVSR.
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1. Introduction

In real-world video super-resolution (VSR), we aim at
increasing the resolution of videos containing unknown
degradations. The diversity of degradations in this task
poses significant challenges in designing benchmarks and
training settings, and hence earlier works assume either syn-
thetic [4,0,35] or camera-specific [4 1] degradations and fo-
cus on network designs. Although these works achieve re-
markable success in restricted settings, the designs for these
over-simplified scenarios cannot generalize well to the com-
plex degradations in the wild. In addition, the complexity
and diversity of degradations in real-world VSR introduce
extra obstacles in both inference and training, including ar-
tifact amplification and increased computational budgets.
This paper dives into the problems and tradeoffs in real-
world VSR to share useful experiences in addressing the
task.

It is shown by Chan et al. [4] that long-term information
is beneficial to restoration. However, in real-world VSR,
such information could also result in exaggerated artifacts,
owing to error accumulation during propagation. This phe-
nomenon leads to a tradeoff between enhancing details and
suppressing artifacts, since the synthesizing power of a net-
work comes at the cost of amplifying noises and artifacts.
In this work, we show that a simple solution can sufficiently
remedy this tradeoff. In particular, we place an image clean-
ing module prior to propagation for removing degradations
in the input images. The resulting model RealBasicVSR
avoids amplification of artifacts and achieves improved out-
put quality while maintaining simplicity. We further de-
velop a dynamic refinement scheme that repeatedly applies
the cleaning module to remove excessive degradations in
the inputs. Our scheme allows a flexible tradeoff between
smoothness and detailedness, which can be adjusted based
on a pre-defined threshold or user preference. A system-
atic analysis of different combinations of losses and archi-
tectures is conducted to demonstrate the significance of our
designs.

Real-world VSR models are generally trained with di-
verse degradations to improve generalizability, and hence
they are often trained with increased batch size to ensure
stable gradient. As a result, real-world VSR usually re-
quires a longer training time and more immense computa-
tional resources than the non-blind counterpart. This work
inspects two tradeoffs in real-world VSR to improve train-
ing efficiency, hence shortening research cycles.

First, with increased batch size, training with long se-
quences is prohibitive owing to the I/O bottleneck induced
by hardware limitations. The bottleneck is often alleviated
by reducing either the batch size or sequence length, which
results in degraded performance. To ameliorate the prob-
lem, we propose a stochastic degradation scheme that ef-
fectively reduces the I/0 bottleneck without sacrificing the

output quality. Notably, our degradation scheme yields up
to 40% reduction of training time in comparison to the con-
ventional training scheme.

Second, with a fixed computational budget, the increased
batch size in real-world VSR inevitably decreases sequence
length during training. We are interested in the tradeoff be-
tween them with an aim to search for a more effective set-
ting. To this end, we compare models trained with differ-
ent combinations of batch sizes and sequence lengths. We
conclude that networks trained with longer sequences rather
than larger batches could more effectively employ the long-
term information in the input sequence, improving stability.

In addition to the studies above, we introduce a new
benchmark for real-world VSR. Most existing bench-
marks [25,32,40,42] are constructed by contaminating the
high-resolution (HR) videos with pre-defined degradations.
The most recent Real VSR dataset [41] exploits the dual-
camera system in iPhone to capture paired data. Yet, the
Real VSR dataset consists of only degradations specifically
for the iPhone camera. With only pre-defined degradations,
the benchmarks mentioned above cannot accurately reflect
the generalizability of the models on real-world videos. In
this work, we propose VideoLQ, a real-world video dataset
consisting of diverse LR videos to cover various contents,
resolutions, and degradations. Our dataset could serve as a
common benchmark for future methods. We test existing
methods on our datasets. Their quantitative and qualitative
results and our dataset will be released for ease of future
research.

2. Related Work

Video Super-Resolution. Most existing VSR methods [2,
, , 19, 35, 39-41] are trained with pre-defined
degradations (e.g., either synthetic [25,32,40,42] or camera-
specific [41]), and they deteriorate significantly when han-
dling unknown degradations in reality. However, extending
from non-blind VSR to real-world VSR is non-trivial due
to various problems induced by the complex degradations
in the wild. For example, artifact amplification during long-
term propagation limits the performance of existing VSR
methods, and increased computational costs lengthen re-
search cycles. In this work, we investigate the challenges
in both inference and training, and provide respective solu-
tions to the challenges.
Real-World Super-Resolution. Extended from synthetic
settings [3, 8—10, 37, 45], blind super-resolution [12, 14,
,23,24,27,39] assumes the inputs are degraded by a
known process with unknown parameters. The networks
are trained with a pre-defined set of degradations with the
parameters chosen at random. While the trained networks
are able to restore images/videos with a range of degra-
dations, the variation of degradations is often limited, and
the generalizability to real-world degradations is in doubt.
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Two recent studies [36,44] propose to employ more diverse
degradations for data augmentation during training. By us-
ing ESRGAN [38] with no changes in architecture, these
two methods demonstrate promising performance in real-
world images. However, we find that such a direct extension
at the data augmentation level is not feasible in real-world
VSR as the network tends to amplify the noise and artifacts.
In this work, we investigate the cause and propose a simple
yet effective image cleaning module to remedy the problem.
Equipped with the cleaning module, RealBasicVSR outper-
forms existing works, including [36,44], in both quality and
efficiency.

Input Pre-Processing. In this study, we find that a seem-
ingly trivial image cleaning module is critical to remove
degradations prior to propagation and suppress artifacts in
the outputs. The merit is even more profound in the ex-
istence of long-term propagation. In SISR, similar no-
tions [21, 26,29, 34,43] have been discussed for unsuper-
vised settings. Despite the success in the unsupervised
paradigm, input pre-processing in supervised settings and
in VSR are not explored. In contrast to the works above,
we focus on an entirely different supervised VSR setting
to remove degradations that are amplified during long-term
propagation. In addition, we devise a dynamic refinement
scheme, which has not been explored in previous works, to
remove excessive degradations by repeatedly applying the
cleaning module during inference. We also conduct system-
atic analysis on our image cleaning module and refinement
scheme to verify its effectiveness and provide insights for
future studies.

3. Tradeoff in Inference
3.1. Motivation

VSR networks boost details and improve perceptual
quality through aggregating information from multiple
frames. But in the case of unseen degradations, the net-
work may fail to distinguish unwanted artifacts from favor-

Real-World VSR

Input L=1 L=5 L=100
Figure 2. Effects of Long-Term Propagation. While employmg long-term information leads to improved performance in non-blind VSR,
propagation in real-world scenarios could lead to undesirable artifacts. L denotes the sequence length. (Zoom-in for best view)

able details. Therefore, such artifacts and noises are en-
hanced through temporal propagation. To verify our hy-
pothesis, we retrain BasicVSR [4] for real-world VSR. Ba-
sicVSR accepts sequences with arbitrary lengths, allowing
us to explore the effects of temporal propagation by adjust-
ing the sequence length. We train BasicVSR with the degra-
dation scheme and settings of Real-ESRGAN [36], which
are shown effective in real-world SISR.

As shown in Fig. 2 (left), in non-blind settings, when the
sequence length L increases, BasicVSR is able to aggregate
useful information through long-term propagation, generat-
ing more details in the outputs. In contrast, in real-world
VSR, while propagation helps enhance details in cases of
mild degradations, it is observed in Fig. 2 (right) that propa-
gating through a longer sequence could amplify noises and
artifacts. For instance, when restoring the sequence using
only one frame, BasicVSR is able to remove the noises
in the inputs and produce smooth outputs, but propagating
across the entire sequence leads to outputs with severe arti-
facts.

In real-world VSR, temporal propagation is a double-
edged sword. While employing long-term information
helps synthesize fine details, it can also introduce unpleas-
ant artifacts. Clearly, there is a tradeoff between enhancing
details and suppressing artifacts.

3.2. Input Pre-Cleaning for Real-World VSR

Motivated by the above, we propose a simple plugin to
suppress degradations prior to temporal propagation. The
high-level idea is to “clean” the input sequence so that the
degradations in the inputs have a weaker effect on the sub-
sequent VSR network. Despite being conceptually simple,
the designs of the module require special care. More analy-
sis of our cleaning module can be found in Sec. 3.3.
Formulation. An overview is shown in Fig. 3. The image

cleaning module is used prior to BasicVSR [4]. The input
images are first independently passed to the cleaning mod-
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Figure 3. Overview of RealBasicVSR. The input images are first
independently passed to our image cleaning module. The clean
sequence is then passed to the VSR network (i.e., BasicVSR [4]).
Note that the whole network is trained end-to-end.

ule for degradation removal. Let z; be the i-th image of the
input sequence, and C' be our image cleaning module, we
have

The clean sequence is then passed to the VSR network S
for super-resolution:

{viy = S({z:}). 2)

We adopt BasicVSR [4] in this work because of its promis-
ing performance in non-blind VSR through long-term prop-
agation, and its simplicity in architecture.

To guide the image cleaning module, we constrain
the outputs of the cleaning module with a low-resolution
ground-truth:

Letean = Zp (i'z - d(zz)) , 3

where z; is the ground-truth high-resolution image, and d is
a downsampling operator'. Here p represents the Charbon-
nier loss [7]. In addition to the cleaning loss, we also use
the output fidelity loss to guide the cleaning module.

Louwr =Y pyi—2). )

Note that the cleaning module does not receive gradients
from perceptual loss [20] and adversarial loss [| 1] when we
finetune the network with these two losses.

Dynamic Refinement. A single pass of input to the clean-
ing module cannot effectively remove the excessive degra-
dations in many challenging cases. A simple yet effective

'The area mode in PyTorch.

No cleaning Recurrent

loss cleaning

Figure 4. Analysis of the Cleaning Module. The proposed clean-
ing loss plays an important role in removing the artifacts. The de-
sign of the cleaning module requires special care. An alternative
model that uses a recurrent structure fails to remove the artifacts.
(Zoom-in for best view)

method is to suppress the degradations further with another
pass to the cleaning module. Formally, we design a refine-
ment scheme that dynamically removes the degradations in
test time:

{izf“ = C(&))
= i

Ti = Ty

if mean <|a~c§ - qu‘) >0,

otherwise,

®)

where ) = x;, and 0 is a pre-determined stopping criteria.
We find that §=1.5 for non GAN-based models and §=5 for
GAN-based models are reasonable settings.

Architecture. In this work, we simply use a stack of resid-
ual blocks [13] as the cleaning module. It is noteworthy
that while our cleaning module is conceptually straightfor-
ward, it cannot take arbitrary designs, as we will discuss in
Sec. 3.3. In our design, the role of artifact suppression of
VSR network is shared by the cleaning module, and hence
a lighter VSR network can be adopted. In our experiments,
we reduce the residual blocks in BasicVSR from 60 to 40 to
maintain a comparable complexity.

3.3. Analysis of Input Pre-Cleaning

Designs. We study the effects of the proposed image clean-
ing loss and the architecture of the cleaning module. Exam-
ples are shown in Fig. 4.

First, we train RealBasicVSR with the image cleaning
loss (Eqn. (3)) removed. When the loss is removed, Real-
BasicVSR can be regarded as a single-stage network as Ba-
sicVSR. The network exaggerates the noises and artifacts,
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Figure 5. Effect of Dynamic Refinement. Our dynamic refine-
ment scheme automatically stops the cleaning process to avoid
over-smoothing and unnaturally flat regions. More examples are
provided in the supplementary material. (Zoom-in for best view)
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Figure 6. Ablations on Refinement. (a) The NIQE is signifi-
cantly lower with our dynamic refinement. The thresholds con-
trol the levels of details, leading to different NIQE. (b) Our dy-
namic refinement scheme obtains a better NIQE than fixed itera-
tions. NIQE is computed on our VideoLQ dataset.

and the original content is distorted, showing the impor-
tance of the image cleaning loss. Note that additional losses
such as adversarial loss and perceptual loss can be adopted,
but we find the simplest pixelwise loss suffices.

Second, we keep the image cleaning loss and replace our
cleaning module with a recurrent network. Even with the
cleaning loss, the network fails to remove the unwanted
degradations, also leading to distorted outputs. This ob-
servation is coherent to our hypothesis that video-based
networks tend to exaggerate artifacts through aggregation,
and demonstrates the importance of adopting an image-
based network as the cleaning module. When compared
to the aforementioned variants, our designs produce much
smoother outputs, and preserve more image content.

Dynamic Refinement. In Fig. 5 we show an example us-
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Figure 7. Stochastic Degradation Scheme. By loading fewer
frames per iteration and using temporally-varying degradations,
our stochastic degradation scheme reduces the training time by
40% without sacrificing performance. Each circle represents one
video frame, and p; = p;—1 + 7.
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Figure 8. Results Using Stochastic Degradation. While directly
flipping the sequence results in degraded performance, applying
our stochastic degradation scheme leads to improved performance
with up to 40% reduction of training time.

ing our dynamic refinement scheme. On one hand, when
applying the cleaning module only once, the noises cannot
be completely removed despite more details are shown. On
the other hand, it is observed that the outputs are unnatu-
rally flat and details disappear when the cleaning module is
applied five times. In contrast, with our dynamic refinement
scheme, the cleaning stage is halted automatically to avoid
over-smoothing. We see that the outputs contain fewer arti-
facts while preserving necessary details. We observe that at
most three iterations are needed in most scenarios.

We then study the effect of the threshold 6 in Fig. 6(a).
First, our dynamic refinement scheme leads to a signifi-
cantly lower NIQE for all thresholds we used. Second,
it is observed that different choices of thresholds lead to
different levels of details, and hence different NIQE. In
Fig. 6(b) we compare our scheme with fixed numbers of
iterations. Our dynamic refinement scheme determines an
image-specific threshold, yielding better performance. It is
noteworthy that one can design a more sophisticated deci-
sion process, or manually determine the number of passes
to the cleaning module. More elaborative designs of the re-
finement scheme are left as our future work.
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4. Tradeoff in Training

In real-world VSR, networks are required to deal with di-
verse degradations, and hence they are usually trained with
multiple degradations. As a result, these networks are often
trained with increased batch size to produce a stable gra-
dient. Therefore, training real-world VSR networks often
require more computational resources than the non-blind
counterparts. In this work, we delve into two challenges
induced by the increased computational budgets, namely 1)
speed-performance tradeoff and 2) batch-length tradeoff.

4.1. Training Speed vs. Performance

When training with batch size B and sequence length
L, the CPU needs to load B x L images in each iteration.
With increased B in real-world VSR, severe 1/0 bottleneck
is introduced, substantially slowing down training. Usually,
the bottleneck is circumvented by reducing either the batch
size or sequence length, resulting in degraded performance.
In this work, we propose a stochastic degradation scheme,
which significantly improves the training speed without sac-
rificing performance. The graphical illustration of L=4 is
shown in Fig. 7.

In our stochastic degradation scheme, instead of loading
L frames in each iteration, we load L/2 frames and flip the
sequence temporally. This design allows us to train with
sequences with the same length while reducing the work-
load of the CPU by half. However, in such a setting, the
network perceives content with less variation, and the net-
work can potentially make use of the shortcut that the se-
quences are temporally flipped. To improve the diversity
of data, we model the degradations to each frame as a ran-
dom walk. Specifically, let p; be the parameters correspond-
ing to the degradations applied to the i-th frame, we have
Di+1 = pi; + ri+1, where r;;1 represents the differences
between the parameters for the (i+1)-th and i-th frames.

As shown in Fig. 8, when compared to the conventional
training scheme, directly flipping the sequence results in
similar or degraded performance qualitatively. For instance,
the orientations of the line patterns are distorted due to the
aliasing effect in the inputs. When our stochastic degra-
dation scheme is applied, the network is more robust to the
variation of degradations, leading to improved performance.
In addition, as depicted in Table 1, by reducing the number
of images processed, the workload of the CPUs is signifi-
cantly reduced. As a result, the I/O bottleneck is amelio-
rated, and the training time is reduced by up to 40%” with-
out sacrificing performance.

2Different hardware could lead to different levels of bottleneck, and
hence different levels of speedup.

Table 1. Comparison to Stochastic Degradation Scheme. Our
scheme leads to 40% reduction of training time while maintaining
comparable performance.

‘ Time per iteration |, ‘ NIQE |

Conventional Scheme ~2.5s 4.7191
Flip Only ~1.5s 4.6926
Stochastic Degradation ~1.5s 4.6836

Input

Figure 9. Tradeoff Between Batch and Length. With a fixed
computational constraint, training with large batch size and short
sequence results in color artifacts and blurrier outputs. Surpris-
ingly, when the length is small, training with large batch size
harms the performance.

4.2. Batch Size vs. Sequence Length

With a fixed computation budget, the increased batch
size when training real-world VSR models inevitably leads
to a decrease in sequence length. On one hand, training with
a larger batch size enables the network to perceive more
degradations and scene content in each iteration, leading
to more stable gradients. On the other hand, training with
longer sequences allows the network to employ long-term
information more effectively. However, one must choose
between a larger batch or a longer sequence when com-
putational resources are limited. We are interested in the
tradeoff between them, with an aim to provide an effec-
tive setting for future works. In this section, we train Real-
BasicVSR with a constraint of Bx L=480 and discuss the
performance of these models. Our stochastic degradation
scheme is used.

As shown in Fig. 9, when training with B=48, L=10,
it is observed that the outputs contain severe color artifacts
and distorted details. This undesirable effect reduces when
we increase the sequence length. In particular, the color
artifacts are significantly reduced when L increases from
10 to 20, and are further eliminated when L increases to 30.

The above comparison shows that training with longer
sequences is preferable. We speculate that networks trained
with short sequences cannot adapt to long sequences during
inference, due to the domain gap between training and in-
ference. To further demonstrate that the importance of long
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Table 2. Quantitative Comparison. RealBasicVSR obtains the best performance on all four metrics than existing methods with faster
speed. Runtime is computed with an output size of 720x 1280, with an Nvidia V100 GPU. Green and blue colors represent the best and

second best performance, respectively. Metrics are computed on the Y-channel of first, middle, and last frames of each sequence.

Bicubic | BasicVSR++ [6] || RealVSR [41] | DAN [27] | DBVSR [33] | BSRGAN [44] | Real-ESRGAN [36] | RealSR [15] | RealBasicVSR
Params (M) - 73 2.7 43 255 16.7 16.7 16.7 6.3
Runtime (ms) - 71 1082 185 239 149 149 149 63
NRQM [28] 1 2.8016 3.5646 2.4958 3.3346 3.4097 5.7172 5.7108 5.6187 6.0477
NIQE[31]1] 8.0049 6.3662 8.0606 7.1230 6.7866 4.2460 42091 4.1482 3.7662
PI[I]] 7.6017 6.4008 7.7824 6.8942 6.6885 42644 42492 4.2648 3.8593
BRISQUE [30] | | 54.899 50.841 54.988 51.563 50.936 30.213 32.103 30.542 29.030

Figure 10. VideoLQ Dataset. Our VideoLQ dataset consists of
videos with a wide range of content and resolutions, collected from
different video hosting sites such as Flickr and YouTube. It can be
served as a common ground for future comparison.

sequences in training, we fix B to 16 and reduce L from 30
to 10. It is observed that the corresponding regions shows
the same color artifacts and blur when L is reduced. There-
fore, it is suggested to employ a longer sequence when a
computational constraint is imposed.

5. VideoLQ Dataset and Benchmark

To assess the generalizability of real-world VSR meth-
ods, a benchmark that covers a wide range of degrada-
tions, content, and resolution is indispensable. Most exist-
ing datasets [25,32,40,42] focus only on synthetic degrada-
tions such as bicubic downsampling, and hence they cannot
reflect the efficacy of real-world VSR methods. The recent
Real VSR dataset [41] consists of LR-HR pairs of videos
captured by the dual-camera system in iPhone. Although
the data is not constructed by synthetic degradations, the se-
quences are captured by a single camera, and hence the LR
videos contain only camera-specific degradations. Hence,
there is no guarantee that methods performing superiorly in
the Real VSR dataset can generalize to videos in the wild.

In this work, we propose the VideoLQ dataset. Exam-
ples of the videos are shown in Fig. 10. The videos in
our VideoLQ dataset are downloaded from various video-
hosting sites such as Flickr and YouTube, with a Creative
Common license. To ensure diversity of the videos, we se-

lect videos with different resolutions and contents to cover
as many degradations as possible. For each video, we ex-
tract a sequence of 100 frames with no scene changes al-
lowed, so that methods relying on long-term propagation
can be assessed. The sequences are selected to contain
enough textures or texts for ease of comparison. Addition-
ally, the ground-truth videos in Vid4 [25] are also included.

5.1. Experimental Settings

We conduct experiments on our VideoLQ dataset. We
compare our RealBasicVSR with seven state of the arts, in-
cluding four image models: RealSR [/ 8], DAN [27], Real-
ESRGAN [26], BSRGAN [44] and three video models: Ba-
sicVSR++> [6], Real VSR [41], DBVSR [33]. More discus-
sion are provided in the supplementary material.

Training Degradations. Following Real-ESRGAN [36],
we adopt the second-order order degradation model, and we
apply random blur, resize, noise, and JPEG compression
as image-based degradations. In addition, we incorporate
video compression, which is a common technique to reduce
video size. Unlike the aforementioned degradations, video
compression implicitly considers the inter-dependencies be-
tween video frames, providing us with temporally and spa-
tially varying degradations. We apply compression with
randomly selected codecs and bitrates during training, and
we observe performance gain with video compression in-
cluded. The detailed settings are provided in the supple-
mentary material. For the methods in comparison, we use
their publicly available code.

Training Settings. Following DBVSR [33], we use the
REDS dataset [32] for training. We adopt Adam opti-
mizer [22] with constant learning rates. The patch size of
input LR frames is 64x64. We apply our stochastic degra-
dation scheme with temporal length 30*. The training is
divided into two stages: We first pre-train RealBasicVSR
with only output loss and image cleaning loss for 300K it-
erations, with batch size 16 and learning rate 10~%. We then
finetune the network with also perceptual loss [20] and ad-
versarial loss [11] for 150K iterations. The batch size is
reduced to 8. The learning rates of the generator and dis-
criminator are set to 5x 1075 and 10~%.

3Trained with bicubic downsampling as a reference.
4That means, the CPU loads 15 images in each iteration.
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Figure 11. Qualitative Comparison. Our RealBasicVSR is able to aggregate long-term information effectively. It generates much
more details when compared to existing works. In particular, by aggregating long-term information through propagation, RealBasicVSR
successfully restores the word “hobby”, which can be clearly seen in latter frames . (Zoom-in for best view)

Architecture. In the adversarial training, we use RealBa-
sicVSR as the generator, and adopt the discriminator of
Real-ESRGAN. For the generator, our image cleaning mod-
ule C consists of 20 residual blocks. We use BasicVSR as
our VSR network S, with the number of residual blocks set
to 40. The number of feature channels is 64. Detailed ex-
perimental settings and model architectures are provided in
the supplementary material.

Quantitative Metric. As ground-truths are not available
for real-world videos, common metrics such as PSNR and
SSIM cannot be used in this task. Therefore, we adopt
four commonly used non-reference metrics NIQE [31],
NRQM [28], PI [1], and BRISQUE [30] to supplement our
qualitative comparison.

5.2. Comparison to State of the Arts

We show real-world examples on our VideoLQ dataset
in Fig. 11. Equipped with the image cleaning module,
RealBasicVSR is able to aggregate long-term information
through propagation effectively. As a result, it generates
much more details in fine regions, improving visual qual-
ity. For instance, only RealBasicVSR is able to recover the
word “hobby”, which can be clearly seen in other frames.

In addition to qualitative results, we also provide quanti-
tative measures as a reference. When compared to existing
methods, RealBasicVSR achieves better performance on all
metrics with faster speed. In particular, RealBasicVSR out-
performs the recent RealVSR [41] with 17X faster speed.
When compared to Real-ESRGAN [36], which uses a sim-
ilar training pipeline, RealBasicVSR performs superiorly
with lower complexity and faster speed.

The above methods employ only either single-image or

short-term information. While these methods demonstrate
significant improvements in terms of degradation removal,
they cannot effectively recover the details beyond the in-
put image and its local neighbors, which require aggrega-
tion of information from distant frames. In contrast, Real-
BasicVSR explores the possibility of exploiting long-term
information in real-world VSR, and both our qualitative
and quantitative results show the effectiveness of RealBa-
sicVSR in exploiting such information for detail synthesis.

6. Discussion

A common belief in existing VSR studies [4, 6] is that
long-term propagation is beneficial to restoration perfor-
mance. Yet, such discussion is limited to non-blind VSR. In
this work, we examine the contributions of temporal prop-
agation in real-world VSR and find that long-term informa-
tion is also beneficial to this task but do not come for free,
due to the diverse and complicated degradations in the wild.
As an explorational study, we reveal several challenges in
real-world VSR. We find that the domain gap on degrada-
tions and the increased computational costs result in vari-
ous challenges and tradeoffs. We then provide respective
solutions to the challenges including the cleaning module
and stochastic degradation scheme, which are easy to im-
plement. We hope our study and findings in our work as
well as our VideoLQ dataset will lay a good foundation and
inspire future works in real-world VSR.
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