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Figure 1. Given a set of photographs, our method is capable of making line drawings in different styles seen above. Our method only
requires unpaired data during training.

Abstract
This paper presents an unpaired method for creating line

drawings from photographs. Current methods often rely
on high quality paired datasets to generate line drawings.
However, these datasets often have limitations due to the
subjects of the drawings belonging to a specific domain, or
in the amount of data collected. Although recent work in
unsupervised image-to-image translation has shown much
progress, the latest methods still struggle to generate com-
pelling line drawings. We observe that line drawings are en-
codings of scene information and seek to convey 3D shape
and semantic meaning. We build these observations into
a set of objectives and train an image translation to map
photographs into line drawings. We introduce a geometry
loss which predicts depth information from the image fea-
tures of a line drawing, and a semantic loss which matches
the CLIP features of a line drawing with its corresponding
photograph. Our approach outperforms state-of-the-art un-
paired image translation and line drawing generation meth-
ods on creating line drawings from arbitrary photographs.

1. Introduction
Through introspection and experimentation, human

artists have learned to create line drawings that provide

compelling depictions of shape and meaning. A longstand-
ing goal of non-photorealistic rendering is to reproduce
this feat and, given an input image, to automatically gen-
erate line drawings that are effective at conveying geom-
etry and identity. Manually instilling these qualities into
computer-generated line drawings is difficult however be-
cause the goals are defined in elusive terms of human per-
ception and cognition. Generating line drawings from pho-
tographs presents additional challenges: most photographs
lack ground-truth geometry data, and often portray complex
scenes with multiple subjects and interactions. Naturally, it
would make sense to learn from drawings created by hu-
mans or to use humans to evaluate automatic line draw-
ing methods. Unfortunately, the creation of such datasets
is challenging and scalability is low.

In this paper, we seek to automatically generate effective
line drawings from photographs without requiring paired
training data and without requiring human judgment of the
implied shape. Our key idea is to view the problem as
an encoding through a line drawing and to maximize the
quality of this encoding through explicit geometry, seman-
tic, and appearance decoding objectives. Our method ap-
proaches line drawing generation as an unsupervised image
translation problem which uses various losses to assess the
information communicated in a line drawing. This evalua-
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tion is performed by deep learning methods which decode
depth, semantics, and appearance from line drawings. The
aim is for the extracted depth and semantic information to
match the scene geometry and semantics of the input pho-
tographs. Appearance preservation follows from cycle con-
sistency [45, 81, 86]. With these objectives, our method is
able to create convincing line drawings given unpaired data.

Our main contributions are as follows. We present an
unsupervised method for automatic line generation which
explicitly instills geometry and semantic information into
drawings. We apply our method on many styles of line
drawings and present results in Section 4. We also provide
analysis of the geometry and semantic information con-
veyed by our drawings, visual comparisons against several
baselines, and an ablation study.

2. Related Work
Line drawings are of particular interest in both art his-

tory and psychology. Although studies suggest that the
human visual system understands line drawings compara-
bly to photographs [5, 32, 36, 37, 42, 82], it is still unclear
why line drawings are effective representations. Several
theories exist for this topic, but this area requires further
study [29, 30, 69].

There has been extensive work on creating line drawings
from 3D geometry. Approaches range from applying image
processing to depth and normal maps [8,68], using geomet-
ric features on top of occluding contours [2, 18, 41, 64], to
ensembling all geometry-based approaches with deep learn-
ing [55]. Although these methods successfully generate
line drawings from 3D models, they cannot be applied to
arbitrary photographs with unavailable 3D geometry. Fur-
thermore, most methods draw lines in only one style, al-
though Neural Strokes [54] addresses this issue. Instead,
our method creates stylized line drawings from 2D pho-
tographs which convey 3D geometry.

Most 2D-based line drawing generation methods rely on
supervised data. This includes using ground truth stroke or
vector graphics data to create drawings [17,23,27,72]. This
stroke-based approach is often supported by differentiable
architectures which can draw lines [3, 21, 35, 51, 61, 71, 74,
78, 85] and paint [35, 57, 62] with supervision from raster
images. Other works focus on conditional line drawing gen-
eration given paired images, which are often collected for
specific tasks [50, 52, 58, 79]. In contrast, our method han-
dles unpaired data and translates between sketches of dif-
ferent domains.

Our method is most similar to Unpaired Portrait Draw-
ing Generation (UPDG) [79], which creates portrait draw-
ings from unpaired data. UPDG also uses an adversarial
image translation setup, but modifies cycle-consistency for
drawings, employs a truncation loss, and uses discrimina-
tors for the eyes, nose, and mouth. In contrast, our method

is built on losses which encourage line drawings to carry
meaningful information about geometry and semantics. Our
objectives allow us to greatly reduce reliance on cycle con-
sistency (or the appearance reconstruction), and to generate
drawings for arbitrary photographs and not just portraits.

Recent work has been successful at text-driven image
editing and synthesis with the extensive shared visual-
text embedding Contrastive Language-Image Pre-training
(CLIP) [16, 65, 66]. CLIPDraw [22] also uses CLIP to cre-
ate drawings, but with text inputs. This method requires
no training, and simply minimizes the CLIP distance be-
tween a rasterized set of Bézier curves [51] and the text
prompt. CLIPDraw demonstrates that the CLIP embedding
can match semantics between text and drawings despite the
domain gap. In contrast, previous methods have adapted
new architectures to specifically examine semantics in line
drawings [4, 83]. Our approach similarly minimizes the
distance between inputs and generated drawings in CLIP
space, but instead conditions on an input photograph and
generates drawings in multiple styles.

Our work also shares similarities to CyCADA [33] in
that the output images are trained to semantically match the
inputs. However, CyCADA applies this constraint with a
pretrained classifier for a translation between source and
target data for domain adaptation. In contrast, our seman-
tic constraint makes use of the CLIP embedding, which can
richly describe complex scenes.

Given two datasets, modern image translation and
style transfer methods can transform images into new do-
mains [24, 31, 38, 40, 86]. Modern approaches can produce
high quality results given paired correspondences [10, 20,
38, 75], however large aligned line drawing datasets are
scarce. Fortunately, many approaches address image trans-
lation for unpaired data, often relying on an adversarial
setup [1,11,43,45,63,70,76,76,81,84,86]. Other methods
translate images between domains by separating style and
content [34,39,56]. Cheng et al. also use depth information
to provide structure for neural style transfer [13]. Although
these approaches are very successful at artistic style transfer
and translating between rich domains with shape changes
(e.g. dogs to cats, anime to selfies), they still generate cre-
ate sparse line drawings which are missing key strokes.

3. Method
Our goal is to train a model to automatically gener-

ate line drawings of arbitrary photographs given a dataset
of photographs and an unpaired dataset of line drawings.
We formulate this problem as unpaired image translation
between domain A which contains photographs, and do-
main B which represents line drawings of a particular style.
Most previous approaches solely consider preserving pho-
tographic appearance in the line drawing through cycle con-
sistency. Instead, our method further directs this translation
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Figure 2. Given a photograph a, our model trains network GA to
synthesize line drawing GA(a) via four main losses. Adversarial
style loss with discriminator DB encourages generated line draw-
ings to match the style of the training set. The CLIP, appearance,
and geometry losses enforce that the line drawing communicates
effective semantic, appearance, and geometry respectively.

through objectives which assess the geometry and semantic
information communicated by line drawings. This setup is
shown in Figure 2. We show in Section 4 that these new
losses are essential for creating meaningful drawings.

We use an adversarial training setup with generator net-
works GA, GB and discriminators DA, DB for domains A
and B respectively. The geometry objective is implemented
through a pretrained depth network which predicts depth
maps from line drawings, and imposes a supervised loss on
the depth outputs. This loss encourages our model to draw
lines in geometrically important locations (e.g. occluding
contours). Secondly, we introduce a CLIP [66] loss to add
semantic meaning into the generated line drawings. Be-
cause arbitrary photographs often display complex scenes,
we use the visual CLIP embedding which captures semantic
details quite well. We then impose that the CLIP embedding
of the line drawing is similar to the CLIP embedding of the
original photograph. We also use a weakly weighted cycle
consistency loss to preserve appearance information.

3.1. Losses

The adversarial loss encourages generated images to be-
long to their respective domains [25]. The loss for each
domain using the LSGAN setup [59] is formulated below.

LGAN = Ea∼A[DA(a)
2] + Eb∼B [

(
1−DA(GB(b))

)2
]

+ Eb∼B [DB(b)
2] + Ea∼A[

(
1−DB(GA(a))

)2
]

(1)

The geometry objective maximizes depth information in
generated line drawings during training. We observe that

line drawings are often effective conveyors of 3D shape,
and apply this property during training. Given a substan-
tial dataset of line drawings, a model may learn this trait
without any explicit supervision. However, current meth-
ods without such geometric constraints fail to place lines in
meaningful places (see Section 4). Domain gaps between
the dataset of photographs and line drawings are also ob-
stacles. Instead, we propose a geometric constraint which
supervises depth predictions from line drawings.

To supervise depth predictions from line drawings, it is
necessary to obtain depth maps for the photographic inputs.
Unfortunately, ground truth depth information is usually un-
available for most datasets. However, recent methods are
very successful at producing high resolution depth maps
for photographs. This advance allows us to use pseudo-
ground truth depth maps obtained from a state of the art
depth prediction network F ; in practice we use the net-
work from [60], which is based on MiDaS [67]. We note
that pseudo-ground truth maps for photographs are only re-
quired for training, and not at test time.

A simple way to supervise geometry predictions would
be to introduce network GGeom to predict depth maps from
line drawings during training. However, this approach has
several issues. Training GGeom to learn depth from syn-
thetic line drawings may encourage line drawing generator
GA to instill depth information in an unwanted form, such
as an imperceptible signal [14]. We want to avoid acciden-
tally embedding invisible information into our line draw-
ings. Using pretrained depth network F on line drawings is
not an option because of the domain gap.

We propose instead to learn to infer depth from image
features which are commonly shared between photographs
and line drawings. Specifically, we pretrain a network
GGeom to predict depth given ImageNet [19] features. Such
features, especially in early layers, are useful for transfer
learning [47]. This scenario hopes to avoid the invisible
signal issue by first encoding line drawings into a shared
representation with photographs, and then applying a net-
work which has learned depth from photographic features.

To obtain image features, we input photographs into pre-
trained Inception v3 [73] network and extract features from
the Mixed 6b node (see supplemental). We denote the ex-
tracted features at this layer for input a as I(a). After pre-
training, network GGeom provides depth map predictions
for line drawings. In practice, we finetune GGeom while
training line drawing generation.

The geometry loss is formulated below. Given photo-
graph a, we first input a into state of the art depth network
F and obtain pseudo-ground truth depth map F (a). We
then generate line drawing GA(a) and extract its ImageNet
features I(GA(a)). These features are then passed to pre-
trained depth network GGeom to produce depth map predic-
tion GGeom(I(GA(a))). This depth prediction is then com-
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pared to the pseudo-ground truth depth map F (a). Further
details and depth reconstructions are in the supplementary.

Lgeom = ∥GGeom(I(GA(a)))− F (a)∥ (2)

The semantics loss is implemented by minimizing the
distance between the CLIP embeddings of the input photo-
graph and the generated line drawing. The goal of this ob-
jective is to convey semantic information from the original
photograph into its corresponding synthesized line drawing.
In computer vision, semantics are often learned in the form
of labels and segmentation maps. However, these represen-
tations are limited in capacity to specific domains or ob-
jects. To encode semantic information from entire scenes,
we use the shared visual-text embedding CLIP [66], which
captures rich semantic information in both photographs and
art [16, 22]. We then penalize the distance in CLIP space
between the generated line drawing and the original photo-
graph. The objective is formulated below.

LCLIP = ∥CLIP(GA(a))− CLIP(a)∥ (3)

The appearance loss (or cycle consistency) has been
used to encode input appearance through image transla-
tion [45, 86]. The appearance loss for each direction of the
mapping is below.

Lcycle = ∥GB(GA(a))− a∥+ ∥GA(GB(b))− b∥ (4)

3.2. Full Objective

Our full objective is:

L = λCLIPLCLIP + λgeomLgeom

+λGANLGAN + λcycleLcycle (5)

In practice we set λCLIP = 10, λgeom = 10, λGAN = 1,
λcycle = 0.1.
Implementation We use an encoder-decoder generator
architecture with Res-Net blocks in the middle [28, 40, 86],
and a patch-based discriminator [38]. The architecture for
pretrained depth network GGeom is based on the Global
Generator from pix2pixHD [75] and further detailed in the
supplemental material. We use MSE error for the CLIP loss
and L1 distance for the appearance and geometry losses.
We use Adam [46] to optimize with a learning rate of
0.0002 and train for at least 30 epochs with batch size 6.

4. Experiments
We evaluate our described approach and provide qual-

itative and quantitative comparisons for both general pho-
tographs and portraits in multiple styles.

4.1. Line Drawings from Photographs

Our first evaluation task is to generate line drawings from
photographs of arbitrary scenes. Below we describe the
datasets for training and evaluation.

Datasets For training, our method requires a dataset of
photographs and a separate dataset of line drawings. We
train on a randomly selected 10, 000 image subset of the
Common Objects in Context (COCO) [53] dataset which
contains a variety of scenes. For evaluation, we create
line drawings from photographs in the MIT-Adobe FiveK
dataset [7]. This dataset contains high quality images of
many subjects (landscapes, buildings, people, etc).

We train multiple models with different styles of line
drawings. Examples for each style are shown in Figure 3.
Quantitative evaluations are performed for two styles of line
drawings: 1) The Contour Drawings dataset [50] contains
5, 000 drawings for various scenes (often with humans or
dogs). 2) The Anime Colorization dataset [44] consists
of 14, 224 sketches of various anime characters. Qualitative
results in the style of OpenSketch [26] and artist drawings
from Cole et al. [15] are shown in Figure 3.

Comparison methods We compare our approach to
state-of-the-art unpaired image-to-image translation meth-
ods for the photograph to line drawing task. These meth-
ods include: 1) CycleGAN [86] uses an appearance loss
and a patch-based discriminator [38]. 2) TSIT [39] creates
images by combining features from separate content and
style streams. 3) U-GAT-IT [43] uses an attention mod-
ule and auxiliary classifier and cycle consistency. 4) ACL-
GAN [84] relaxes strict pixel cycle consistency into distri-
butional level consistency 5) Unpaired Portrait Drawing
Generation (UPDG) [80] creates line drawings in multiple
styles for portrait drawings. This method builds upon Cy-
cleGAN with discriminators for facial features, a truncation
loss, and a modified cycle loss using HED images [77]. For
the photograph task, we do not include the face discrimina-
tors as they do not apply to arbitrary photographs without
human subjects. We also provide qualitative comparisons
with SPatchGAN [70] and Council-GAN [63] in Figure 4.

Qualitative comparison Figure 4 shows compares our
method to previous work in two styles. Other methods com-
monly fail to place lines in meaningful locations, whereas
our drawings have recognizable features and boundaries.
Some methods such as SPatchGAN, Council-GAN, and
ACL-GAN attempt to strictly stay close to the training set
domain. This is most noticeable for the Anime style, as
these approaches often produce drawings which resemble
anime characters over the input photographs.

User Study We conduct a user study to perceptually com-
pare our approach with other methods. In this study, par-
ticipants were shown a reference photograph, and two line
drawings of the same photograph made by different meth-
ods. Users were then asked to select the line drawing that
best depicts the input photograph. For this study we showed
users up to 100 images and there were 184 unique partici-
pants. 1000 judgments were made for each comparison. Ta-
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Figure 3. Results of our method in four different styles.

Contour Drawings Anime Total

CycleGAN [86] 98.7% 87.3% 93 %
TSIT [39] 99.6% 95.3% 97.5%

U-GAT-IT [43] 99.5% 97.3% 98.4%
ACL-GAN [84] 100% 97.5% 98.8%

UPDG [80] 98.9% 96.7% 97.8%

Table 1. User study results comparing to different unpaired trans-
lation methods. We report the percentage of times users preferred
our approach over the other methods.

ble 1 reports the percentage users chose line drawings from
our method over various baselines. Users overwhelmingly
preferred line drawings created by our method in all cases.

Ablation Study We perform an ablation study to verify
the inclusion of each loss. Three versions of our model are
trained: without the geometry loss, without the CLIP loss,
and without the appearance or cycle loss. We compare each
ablation to our full method. We use the perceptual study
setup described above and report the percentages users se-
lected our full method over each ablation in Table 2. The
CLIP loss was essential for all styles, while the Contour
Drawings style relies on the depth loss much more than the
Anime style. The appearance loss improves results slightly.

Figure 5 shows qualitative examples from all ablations.
The CLIP loss adds the most lines. In some cases, styles
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Figure 4. Comparison with other methods. Left to right: Input photograph, CycleGAN, TSIT, U-GAT-IT, SPatchGAN, Council-GAN,
ACL-GAN, UPDG, and Our approach. All methods are trained using the same data on two styles of line drawings. Our method produces
the most detailed drawings capturing important aspects of the original photograph.

Contour Drawings Anime Total

Without depth 92.2% 48.3% 70.3%
Without CLIP 98.9% 84.9% 92%

Without Cycle Consistency 87.0% 64.9% 76%

Table 2. User study results for the ablation study. We report the
percentage users chose the full method over the ablations.

Contour Drawings Anime Total

CycleGAN 58.0% 65.1% 62.0%
Ours 68.4% 66.8% 67.6%

Photograph − − 70.3%

Table 3. User study results for relative depth prediction. We report
the percentage of times users chose the closer point correctly for
each baseline. For both styles, users correctly inferred relative
depth more often in drawings from our method over CycleGAN.

with a high density of lines may totally rely on the CLIP
loss. We find this situation to be the case for the Anime
style, whose ‘without depth’ ablation is comparable to the
full method. The depth loss is most useful for sparse styles
such as the Contour Drawings style, where it adds occlud-
ing contours and textures. We note that the semantic loss
improves geometry, and depth information can help seman-
tics as well. The cycle loss improves result quality by pre-
serving appearance aspects such as textures and outlines.
However, removing the cycle loss does not qualitatively af-
fect results significantly.

Evaluating Geometry and Semantics in Drawings We
design two experiments to evaluate the depth and semantic

Contour Drawings Anime Total Unrecognizable

CycleGAN 0.7436 0.8074 0.7799 26.7%
Ours 0.8160 0.8371 0.8274 13.7%

Photograph − − 0.8804 0.02%

Table 4. Mean cosine similarity between captions describing line
drawings and captions describing the input photographs. The last
column reports the percentage of images that users could not iden-
tify. Our line drawings are more easily described and recognizable.

information conveyed in the generated line drawings. To
examine depth information, we conduct a user study to as-
sess if humans can correctly infer relative depth from our
drawings. Participants viewed an image with two randomly
placed points and were asked to identify the point closest
to the camera, similarly to [12]. We perform this evalu-
ation on drawings from our method, CycleGAN, and on
photographs. Table 3 reports the percentage each baseline
agreed with the pseudo-ground truth depth predictions. In
general, users inferred the correct relative depth more often
in our drawings, especially for the Contour Drawings style.
For the Anime style, relative depth predictions were better
for our results by a slim margin. This result complements
the ablation study, where the depth loss was not as effective
for the Anime style. If relative depth can already be inferred
from CycleGAN (despite lower drawing quality), then the
geometry objective may not have much impact. In contrast,
the depth loss greatly improves both relative depth predic-
tions and drawing quality for the Contour Drawing style.

To assess semantic meaning, we show users a photo-
graph and ask them to write a one sentence caption for the
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Figure 5. Ablations of our method, and our full result. For each ablations, we show the lines added to get the full result by including each
loss. These lines are in blue for CLIP, red for depth, and green for appearance. The CLIP loss adds the most lines, while the depth loss
adds more information and occluding contours in the second row. The appearance loss adds small strokes and shading for the Anime style.

image. Participants were also given the option to designate
images as unrecognizable. Users viewed results from our
method, CycleGAN, and photographs. Each caption is en-
coded in CLIP space and then compared to the mean CLIP
embedded photograph caption using cosine similarity. Ta-
ble 4 reports the mean cosine similarities and the percentage
of unrecognizable images. In all cases our method produces
more accurate descriptions and recognizable drawings.

4.2. Line Drawings from Portraits

While our method was not designed specifically for por-
traits, we compare to methods specialized for this task.
We use two main settings for comparison. Firstly, we
compare to other methods directly on styles they present.
Then we provide a second comparison where we train our
model on unpaired portraits from the Helen Facial Feature
Dataset [48] in the style of the APDrawings dataset [79].
Details for each dataset are provided in the supplemental.

Comparisons 1) APDrawingGAN [79] uses supervised
adversarial training to create line drawings in the style of
the paired APDrawings. In one comparison, we train our
model on APDrawings directly. This setting disadvantages
our method because we do not use paired supervision. How-
ever, our method can use unpaired data and we exploit
this property in the next case. We then use portraits from
the Helen dataset to train a separate model, while keeping
the drawing style of APDrawings. Our second comparison
evaluates our method trained on the Helen dataset against
supervised APDrawingGAN results.

2) Unpaired Portrait Drawing Generation
(UPDG) [80] is described in Section 4.1. In the first
setting, we compare to a pretrained UPDG model in the

style of illustrators Charles Burns [6] and Yann Legen-
dre [49] (style 1 from [80]). We train our model from
scratch on an approximation of these datasets (see supple-
mental), and evaluate on the Helen test set. Secondly, we
train both our approach and UPDG from scratch to create
portraits from the Helen dataset in the style of APDrawings.
We then compare on test portraits from APDrawings.

Qualitative comparison Figure 6 shows portrait draw-
ings created with APDrawings from all methods. APDraw-
ingGAN produces reasonable results, while UPDG strug-
gles with the line art style. We achieve decent results train-
ing on APDrawings, but quality drastically improves by
training on the Helen dataset. Both our method and UPDG
create high quality drawings in style 1 (see supplemental).

User Study We perform a user study for all portrait com-
parisons. Participants were shown a portrait and two line
drawings from different methods and asked to select the
drawing which best depicts the subject in the portrait. Ta-
ble 5 reports the percentage of times users chose our ap-
proach over the baselines. In case 1, users preferred the su-
pervised APDrawingGAN over our method (trained on AP-
Drawings), but found our method (trained on Helen) prefer-
able or comparable in case 2. In general, UPDG struggles
with the APDrawings style, and overall users slightly pre-
ferred our method for style 1.

5. Discussion

Loss Formulations We explored several variants of the
geometry and semantic losses in initial experiments. This
includes using normal maps and multi-view consistency.
We found the normal maps helpful for 3D shapes, however
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Figure 6. Results for several methods on APDrawings test data. Left to right: Portrait photograph, artist’s drawing, APDrawingGAN,
UPDG (trained on Helen), Our result (trained on APDrawings), our result (trained on Helen). All methods were trained with the APDraw-
ings line art style. Our approach produces accurate and well formed drawings.

Case 1 Case 2

APDrawingGAN [79] 36.7% 60.1%
UPDG [80] 64.2% 94.8%

Table 5. Perceptual study results for portrait comparisons. We
report the percentage users chose our approach over each baseline.
Case 1 compares both baselines on their datasets and styles. In
case 2, we train our model on Helen in the style of APDrawings
and compare to baselines trained on the same style.

normal estimates are often noisy for photographs. Novel
view prediction and using other 3D approaches are direc-
tions we hope to explore in future work. We selected depth
prediction [60] due to its robustness on photographs, and
because we can reliably obtain depth predictions from im-
age features that also can be extracted from line drawings.
For the semantic loss, we explored finetuning image classi-
fiers and segmentation networks on drawings and compar-
ing intermediate features from these networks [9,19]. For a
visual comparison, see the supplemental material.

Limitations Our method is built on some limiting as-
sumptions. We rely on pseudo-ground truth depth maps
from a pretrained network for geometry supervision. Be-
cause we essentially distill this pretrained depth prediction
network, our model has similar failure cases and biases.

Our model produces meaningful line drawings for many
styles, but has failure cases shown in the supplemental. Our

method is based on the hypothesis that a good line draw-
ing accurately conveys depth and semantics, however some
styles focus on the essence of the scene and not precision.
We also struggle with certain lighting conditions and tex-
tures. Overall, the CLIP loss drives results to look more
‘photographic,’ which may or may not be desirable. In some
cases, this causes results to converge to grayscale photos.

Negative Impacts As with most data-driven techniques,
our approach can learn bias in training. For instance, the
Anime sketch dataset in Section 4 contains drawings of
mostly feminine subjects. In addition, artistic datasets (such
as the full Anime dataset used for creating line drawings)
may contain sensitive content (e.g. nudity, weapons) whose
influence could be visible in the output.

Conclusion Our approach creates compelling line draw-
ings given unpaired data. This paper views line drawings
as encodings of geometry, semantics, and appearance from
real scenes. We built these ideas into a method which ex-
plicitly evaluates these properties through depth prediction,
CLIP features, and image reconstruction to create line draw-
ings from photographs.

Acknowledgements We would like to thank Hyojin
Bahng for proofreading the paper. This work was partially
supported by a Packard Fellowship to PI, and the National
Science Foundation under Grant No. 2105819.

7922



References
[1] Asha Anoosheh, Eirikur Agustsson, Radu Timofte, and Luc

Van Gool. Combogan: Unrestrained scalability for image
domain translation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops,
pages 783–790, 2018. 2

[2] Pierre Bénard and Aaron Hertzmann. Line drawings from
3d models: a tutorial. Foundations and Trends in Computer
Graphics and Vision, 11(1-2):159, 2019. 2

[3] Mikhail Bessmeltsev and Justin Solomon. Vectorization of
line drawings via polyvector fields. ACM Transactions on
Graphics (TOG), 38(1):1–12, 2019. 2

[4] Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad,
Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia
Gryaditskaya, and Yi-Zhe Song. Pixelor: A competitive
sketching ai agent. so you think you can sketch? ACM Trans.
Graph., 39(6), 2020. 2

[5] Irving Biederman and Ginny Ju. Surface versus edge-based
determinants of visual recognition. Cognitive psychology,
20(1):38–64, 1988. 2

[6] Charles Burns. Cover portraits for the believer, 2003-2013.
Adam Baumgold Gallery, 2013. 7

[7] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo
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