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Figure 1. Given a map built from SfM, our proposed approach leverages GNNs and is able to identifies map points on stable structures (red
points and blue squares), while discarding points that are prone to seasonal change, such as tree foliage (black points and orange squares).

Abstract
We address the problem of map sparsification for long-

term visual localization. For map sparsification, a com-
monly employed assumption is that the pre-build map and
the later captured localization query are consistent. How-
ever, this assumption can be easily violated in the dynamic
world. Additionally, the map size grows as new data ac-
cumulate through time, causing large data overhead in the
long term. In this paper, we aim to overcome the environ-
mental changes and reduce the map size at the same time
by selecting points that are valuable to future localization.
Inspired by the recent progress in Graph Neural Network
(GNN), we propose the first work that models SfM maps
as heterogeneous graphs and predicts 3D point importance
scores with a GNN, which enables us to directly exploit the
rich information in the SfM map graph. Two novel supervi-
sions are proposed: 1) a data-fitting term for selecting valu-
able points to future localization based on training queries;
2) a K-Cover term for selecting sparse points with full-map
coverage. The experiments show that our method selected
map points on stable and widely visible structures and out-
performed baselines in localization performance.

1. Introduction

In long-term visual localization, a common strategy is
to build and accumulate maps from the captured image
streams, and then localize new incoming queries by match-

ing against the accumulated map. In the presence of en-
vironmental changes, the accumulated map contains an in-
creasing number of points and many of which are outdated.
This will affect both the computational cost and the perfor-
mance of localization in the long run. Therefore, the ability
to identify and remove these invalid points is important for
many applications that target dynamic environments, such
as autonomous driving, field robotics, and Augmented Re-
ality. Additionally, for devices with limited on-board mem-
ory, it enables keeping a compact map that only contains the
most valuable information for future localization queries.

Existing works on map sparsification mostly fall into the
category of subset selection, i.e., treating the 3D map as an
over-sampled representation of a static world and aiming to
select the most valuable point subset from them. The se-
lection of point subset is typically formulated as a K-Cover
problem. Assuming the map keyframes cover all the pos-
sible camera positions, the K-Cover algorithm encourages
each keyframe in the map to observe K points under a total
point number constraint [7, 14, 15, 17]. These methods are
purely based on the historical data stored in the map, there-
fore lacking the ability to identify points invalidated due
to environmental changes. When the environment changes,
the map can only be updated by collecting new query data
over the whole mapped area and solve the K-Cover problem
again with the new query data, which is inefficient and ex-
pensive. Apart from sparsifying a 3D map, there are some
works on selecting 2D key points, e.g., by predicting the
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persistency [8] or the repeatability [6] of visual features.
However, the predictors proposed only take instantaneous
measurements (such as local image patches) and not exploit
the full context stored in the accumulated map.

Recently, Graph Neural Networks (GNN) have shown
promising results with data with different structures, such
as citation graphs [29], local feature matching [20] and vis-
ibility graphs [23]. In this work, we exploit this flexibility of
GNNs to formulate map sparsification as a learning problem
and overcome the limitations of previous methods. First, by
modeling the SfM map as a graph, we can directly employ
the context-rich SfM map as the GNN input instead of in-
stantaneous measurements. Second, in contrast to the K-
Cover based methods that requires full-extent new queries
to update the map, we are able to train a GNN with only
partial queries and use it to sparsify the whole map. A main
improvement from previous methods is the ability to incor-
porate the partial new data and select important points from
the whole map according to the partial new data, as there is
no trivial way for the baseline methods to do this without
collecting new data that covers the whole mapped area.

To this end, we propose the first work that extracts fea-
tures from SfM maps with a heterogeneous GNN. We first
represent the SfM map with a heterogeneous graph, where
3D points, 2D key points and images are modeled as graph
nodes, and the context such as the visibility between 2D
and 3D points are modeled as graph edges. Afterwards, we
use a heterogeneous GNN to predict map point importance
scores based on the local appearance and the spatial con-
text in the map graph. In addition, we propose two novel
losses to guide the training: 1) a data-fitting term that se-
lects points based on the appearance and the spatial distri-
bution of the training query data, and 2) a K-Cover loss term
that drives to sparse point selection with full-map cover-
age. When evaluated on an outdoor long-term dataset with
significant environmental changes (Extended CMU Sea-
sons [22]), our approach can select map points on stable
and widely-visible structures (e.g., buildings/utility poles),
while discarding points on changing object (e.g., foliage) or
with highly repetitive texture (e.g., pavement). Compared
with the K-Cover baseline [14], our approach outperforms
in visual localization performance with the same map size.

2. Related Works
In this section, we first briefly describe the literature of

robust feature learning, then review the existing map sparsi-
fication works, and finally cover relevant studies on GNNs
that inspired our work.

2.1. Robust Feature Learning

Many previous works have attempted to solve the long-
term visual localization problem by finding robust fea-
ture descriptors against environmental changes [25] (such

as day-night, lighting conditions, and seasonal changes).
Concrete examples include R2D2 [19], SOSNet [24],
PixLoc [21] and [1]. Some methods look into the dynam-
ics of visual features (and the corresponding physical en-
vironment) such as persistency [8] and repeatability [6].
Besides learning robust features, some works also attempt
to overcome the environmental challenges by finding com-
mon information in 2D and 3D, such as semantic informa-
tion [26, 27] and predicting depth from query images [18].
In this work, instead of finding robust features, we focus on
sparsifying the SfM map globally by taking the whole map
graph structure into consideration. We use Kapture [11],
a modern mapping and localization library using R2D2, to
generate data and evaluate the proposed method.

2.2. Map Sparsification

For a map that contains redundant information of a
world, the goal of map sparsification is to select the most
valuable subset. In previous works, it is common to assume
that the map contains all the possible camera positions,
and formulate the map compression as a K-Cover problem,
which encourages each possible camera position (the key
frame location in the map) to observe enough 3D points
for performing robust PnP during localization under a total
point number budget. The K-Cover problem is then solved
using various techniques: a probabilistic approach [5], Inte-
ger Linear Programming (ILP) [7,14] and Integer Quadratic
Programming (IQP) [7, 15, 17]. A hybrid map and hand-
crafted heuristics were also used to determine the impor-
tance of map points [4, 13, 16]. These methods work well
in a static world but suffer from performance degradation in
vastly dynamic environments where many of the visibility
edges in the map are outdated and invalidated.

2.3. Graph Neural Networks

Graph Neural Networks (GNNs) [10] have been applied
to a variety of learning tasks with irregular data structures,
such as citation graphs [29] and image visibility graphs
[23]. An important advantage of Graph Neural Networks
is the ability to handle heterogeneous data [31]. In this
work, we represent the various information in SfM maps
with heterogeneous graphs and extract features with a GNN.
Recently, attention-based networks have shown strong per-
formance in feature extraction from not only sequential
data [28] but also graph structures such as 2D-3D match-
ing [20]. Inspired by these works, we investigate the com-
bination of heterogeneous GNN and attention, and demon-
strated better final performance than the baselines.

3. Approach
Given an SfM map and a set of localization queries

recorded at different times in a large-scale dynamic envi-
ronment, our goal is to select a subset of 3D map points that
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Figure 2. Overall framework. The proposed GNN learns to predict
a score for each 3D point in the map. The predicted scores are used
to sparsify the map. We report the performance of localizing a set
of testing queries to the sparsified map.

are most informative, i.e. result in high localization perfor-
mance. To achieve this, we first turn the input SfM map
into a heterogeneous graph (Sec. 3.1) and train an attention-
based GNN (Sec. 3.2, 3.3) to predict the importance scores
for 3D map points, which are then used to sparsify the map.
Finally, we localize the testing query set against the sparsi-
fied map, and report the localization performance (Sec. 4).
An illustration of our overall system flow is shown in Fig. 2.

3.1. SfM Map as Heterogeneous Graph

A heterogeneous graph by definition is a graph structure
that contains different types of nodes or edges. To repre-
sent an SfM map, three types of nodes are defined: 3D
point nodes Vp, 2D key point nodes Vk, and image nodes
Vm. We also define three types of edges: visibility edges Ev
connecting corresponding Vp and Vk, kNN edges En con-
necting each Vp and its k nearest neighboring Vp, and con-
taining edges Ec connecting each Vk to the corresponding
image Vm. Each Vp might be connected to multiple Evs and
Vks because it is observed by multiple map images. The
SfM map is then represented with a heterogeneous graph
G = {Vp,Vk,Vm, Ev, En, Ec}. An illustration of our map
graph is shown in Fig. 3(a)(b).

The per-point importance score is predicted based on
local appearance and spatial context. We design our map
graph to provide the information: first, the local appearance
data are stored in Vk by embedding the key point descriptors
extracted at the map building stage. Second, the spatial con-
text is captured in kNN edges En, which are derived from
the 3D point positions stored in Vp. The image nodes Vm
do not carry features, but are used to trace connected Vk
and Vp for ensuring the GNN selects enough number of Vp
in the field-of-view of each Vm, as shown in Fig. 3(c).

In practice, we store two sets of Vk, Vm, Ev , and Ec in
the map graph: one set is from the map and the other set
is from localizing the query set on the map before sparsifi-
cation. The first set is fed to the proposed GNN to provide

information for score prediction. The second set is only
available in the training area, and was only used to generate
the point selection labels Lgt stored in Vp (Sec. 3.4).

Note that all the graph edges described above are direc-
tional. To be specific, Ejin represents a kNN edge from
a neighbor Vj

p to the Vi
p, and Ewi

v shows a visibility edge
from key point Vw

k to map point Vi
p, where i, j, w are node

indices. The directionality of edges is useful in retrieving
local subgraphs during network training (Sec. 3.3).

3.2. Graph Attention Network

To extract the spatial context from the map, we propose
to aggregate the features from locally connected 3D point
nodes with a Graph Attention Network (GATConv) [29,30].
For a 3D point node Vi

p, a GATConv layer is applied to fuse
the input node features and predict an output node feature.
Formally, the GATConv operation is:

αh
ij = softmaxj(a(W

hhi,W
hhj))

h+
i =

H∑
h=1

∑
j∈{1,...,k+1}

αh
ijW

hhj ,
(1)

where hj ∈ RF is an input feature from Vj
p to node Vi

p with
feature dimension F . The input features are from the Vi

p it-
self and the kNN nodes, where j ∈ {1, 2, . . . , k, i} and k is
the number of kNN nodes. The Wh ∈ RF+×F is a shared
weight matrix, αh

ij is the normalized attention coefficient,
H is the number of attention heads, a(.) : RF+×RF+ → R
computes the attention coefficients. We aggregate the multi-
head GATConv outputs by simple summation. The output
h+
i ∈ RF+

is the output feature with dimension F+ stored
on Vi

p. Empirically, we found this GATConv outperformed
GraphConv [12] and SAGEConv [10] for our application.

3.3. Heterogeneous Graph Neural Network

We design a heterogeneous GNN to extract features
and perform score prediction from the aforementioned map
graph. The motivation is that the key point descriptors, al-
though not raw pixel values, still contain valuable appear-
ance information, enabling us to infer the 3D point scores
from the connected 2D key point descriptors. The hetero-
geneity here enables us to define different operations ac-
cording to the node and edge types.

Our GNN comprises three stages: 1) a descriptor gather-
ing layer g1, 2) a local feature extraction layer g2, and 3) a
final Multilayer Perceptron (MLP) layer g3. In g1, we trace
the connected Ev for each Vp to collect the connected key
point descriptors stored in Vk. The collected descriptors are
sent to a Graph Convolutional layer (GraphConv) [12] with
LeakyReLU activation and summation aggregation func-
tions. The output of g1 is an aggregated point feature fdesc
carrying the local appearance information. In g2, we use
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(a) (b) (c) (d)

Figure 3. An SfM map as a heterogeneous graph and the network structure. a) A simplified graph: dark blue circles are image nodes
Vm, light blue circles are key point nodes Vk, and green circles are 3D point nodes Vp. The edges Ec, Ev , and En are containing edges,
visibility edges, and kNN edges, represented by black, light blue, and green colors. (b) A real snapshot of the Extended CMU Seasons
dataset. Image nodes Vm and visibility edges Ev are as blue dots and lines. The key point nodes Vk are not shown. The color on the 3D
points Vp encodes the distance to the current query image with green being low values and yellow high values. Three image node positions
corresponding to the images in (a) are labeled with with dark blue circles. (c) In each training iteration, we sample an image node and
trace the corresponding edges to extract a subgraph to run our GNN. The Ev used to extract this subgraph are shown as red lines. (d) Our
network takes the key point descriptors fkpt and predicts a score s for each map point. We define three network layers: g1 that aggregates
descriptors to 3D points, g2 that collects 3D local information, and g3 as the final per-point MLP (pink blocks). A dark pink block is an
MLP layer, which contains a linear layer and a LeakyReLU activation. The numbers above the arrows are feature dimensions.

the GATConv layer (Sec. 3.2) to gather the nearby point
features from the kNN Vp, generating a local feature fknn
that captures spatial context. Finally, a 3-layer MLP g3 is
used to convert the point feature dimension to 1 and a sig-
moid layer is used to constrain the predicted score value s
to [0, 1]. The network structure is shown in Fig. 3(d).

Let i, j ∈ {1, 2, . . . , Np} denote the map point indices
and w ∈ {1, 2, . . . , Nk} be a key point index, where Np

and Nk are the total number of map points and key points.
Let G denote the map graph, the score prediction steps are:

f idesc = g1({Vw
k |Ewi

v ∈ G})
f iknn = g2({f jdesc|E

ji
n ∈ G})

si = Sigmoid(g3(f
i
knn)),

(2)

where hi = f idesc and h+
i = f iknn in Eq. 1.

To facilitate GNN training on large-scale graphs, we
sample a Vm to extract a local subgraph for each training
batch and only run our GNN on the local subgraph. Given a
Vm, we first extract the connected Vk by tracing Ec. After-
wards we trace Ev and En to extract the corresponding Vi

p

and its neighbors. Finally, we trace the Ev connecting to the
neighboring Vj

p for computing the neighboring f jdesc.

3.4. Training Losses

Our losses promote high scores on points with two prop-
erties: first, the descriptor distribution of the selected points
should align with the descriptors that are useful for train-
ing query localization. Second, the selected points should
cover all the possible viewing poses, so that all the queries
would observe a sufficient amount of points within the field-
of-view. We propose a training loss with two terms:

Data Fitting Term. Since the ILP baseline performs well
in a static environment [14], we use it as an oracle to gen-
erate point selection labels. We first localize the training
queries on the map, collecting the 2D-3D matches between
the training queries and the map, and run the ILP base-
line [14] to obtain the point selection results, which is a
binary vector Lgt. The ILP baseline in this setting, denoted
as ILP (query), factors out the environmental changes and
performs well (Fig. 6(a)), but cannot be achieved in the real
world unless the training queries cover the whole mapped
area. The data fitting term is then computed by comparing
the predicted scores S and Lgt with a Binary Cross Entropy
(BCE) loss LBCE :

LBCE = BCE(Lgt,S). (3)

For the maps we evaluated with, we found the compu-
tation of ILP formulation is tractable to process the whole
map. It is also possible to use IQP [17] for label genera-
tion, but in practice IQP is computationally intractable to
run on large-scale maps without additional graph partition
steps. The potential effect of graph partition on localization
performance is beyond the focus of this paper.
K-Cover Term. Training the network with LBCE alone
would only encourage point selection that aligns with Lgt in
the training set, but it does not guarantee map point cover-
age across the whole map. To compensate this, we leverage
transductive learning and additionally encourage the sum of
the scores of all the Vp connected to each Vm to be close to
a predefined positive integer K, which indicates the number
of 3D points each image should observe to support robust
localization. Empirically, we observed that this setup con-
verges faster during training than the case not penalizing the
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samples larger than K. Upon satisfying the K-Cover con-
straint, we also encourage the score sparsity to select fewer
points with an L1 norm loss. Letting l be the index of image
node Vm, we define ϕl as the set of map point indices that
selects the set of Vp whose connected Vk is within V l

m (as
the red edges in Fig. 3(c)). The score prediction of Vi

p is
denoted as si. The final K-Cover loss is:

ϕl = {i|E lwc ∈ G ∩ Ewi
v ∈ G},

LKC =
∑
l

|K −
∑
i∈ϕl

si|+ λ||S||1. (4)

By adding both terms, we propose the final loss as:

L = LBCE + LKC . (5)

The data split and usage is summarized in Tab. 1. Note
that the training and testing queries are spatially non-
overlapping and the pre-built map covers both the train and
test areas. The role of the training queries is to provide
up-to-date appearance information that cannot be obtained
from the outdated map data, as we focus on the temporal
appearance difference. In this case, the training and testing
data should not overlap spatially but can overlap temporally.

4. Evaluation
In this section, we describe the data preparation process,

implementation details and experimental results.
Data Preparation We evaluated our approach on Extended
CMU Seasons dataset [2,22], which consists of 12 sessions
recorded by two cameras across months in multiple loca-
tions. To simulate the natural accumulation of map data,
we used sessions 0-5 to build a multi-session map, and used
sessions 6-11 as the query set to localize. The mapping and
query sets have significantly different appearance. The map
was built with Kapture [11]. The localization performance
was measured by registering the query sets on the multi-
session maps built from session 0-5 . We used 13 slices
(scenes) for evaluation, including the Urban and Suburban
slices (3-4, 6-16), and discarded the Park slices and slice
2, 5 due to poor localization performance on the raw multi-
session map before sparsification. The 13 slices for eval-
uation contained various objects such as vegetation, build-
ings, and moving objects, and multiple weathers like sunny,
cloudy, and snowy. An example of seasonal appearance
changes is shown in Fig. 4(a)(b).

We further split the query set by the two cameras (cam-
era 0, camera 1), and used camera 0 of all the 13 slices for
training, the camera 1 of slice 3 for validation, and the cam-
era 1 of the other 12 slices for testing. The number of map-
ping/query images in each data set split are 17837/16077
for training, 1333/1428 for validation, and 16498/15627 for
testing. Note that the camera 0 and camera 1 point towards
two sides of the road and have no overlap as Fig. 4(c)(d).

Table 1. The data splits by type and usage. There are two cameras
in the Extended CMU Seasons dataset, noted by c0 and c1. We
separated the 12 sessions temporally and used the old sessions (0-
5) for mapping, the new sessions as queries (6-11).

Data Type Spatial Temporal Used fortrain test old new

map (G) ✓(c0) ✓(c1) ✓ LKC , LBCE

query (train) ✓(c0) ✓ LBCE

query (test) ✓(c1) ✓ not used

Implementation Details The proposed GNN is imple-
mented with PyTorch and Deep Graph Library (DGL) [30].
During the training process, we loop through the map im-
age nodes Vm in the training set to extract subgraphs to run
GNN on. A four-layer DGL node sampler (Vm ← Vk ←
Vp ← knn Vp ← Vk of knn Vp) was used to extract
the subgraph in each training iteration to provide necessary
information. It took about 3.97s to process a map graph
(with average 4.12× 105 map points) on an Nvidia Quadro
RTX 3000 GPU and an i7-10850H CPU @ 2.70GHz. More
graph statistics are in supplementary material.

As for parameters, we used k = 9 to build kNN edges
among 3D points, K = 30 and λ = 0.01 in the K-Cover
loss. The ILPs [14] were implemented using Gurobi [9],
and is configured with b = 30. We used ndesired =
500 [14] to generate Lgt. The network was trained with
an AdamW optimizer with learning rate 0.001 and βs
(0.9, 0.999) for 20 epochs. For each case, we selected the
epoch with the best validation performance for testing.

Final evaluation is conducted with the Kapture localiza-
tion pipeline [11]. Given a query image, it first retrieves
the map images with similar global features, and then per-
forms 2D-2D key point descriptor matching between the
query image and the retrieved map images. The 3D points
corresponding to the matched map key points are used to
perform PnP with the matched query key points. The Kap-
ture default R2D2 [19] descriptor is used in map building,
localization, and as our network input fkpt.

4.1. Localization Performance on Sparsified Maps

For each map sparsification method, we first obtained its
point selection result, and reconstructed the multi-session
map in Kapture format with only the the key points and de-
scriptors that correspond to the selected points. We used the
number of point descriptors remaining in the map (#kpts)
as map size proxy, since these high-dimension descriptors
(e.g., 128 for R2D2) occupied most of the map storage
space. Three baselines were compared:

• Random : randomly select a subset of map points up
to the allowed budget.

• ILP (map) : the conventional ILP [14], which assem-
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(a) Example images from slice 3 (b) Example images from slice 11

(c) Training set map example (camera 0 of slice 4) (d) Test set map example (camera 1 of slice 4)

Figure 4. Example images from Extended CMU Seasons dataset. We observed large seasonal changes across the whole dataset. In (a)(b),
on the left are the map image examples and on the right are query image examples recorded at similar locations. In addition, the Extended
CMU Seasons dataset was recorded by two cameras. We used camera 0 (c) for training and camera 1 (d) for validation/testing. The training
and test sets capture two sides of the road with no spatial overlap. The red dots at the bottom are the map image locations.

bles the K-Cover problem with 1) the visibility edges
stored in the map, and 2) the per-point weight based on
number of observations in the map.

• ILP (query) : the ideal ILP [14] that has access to
test queries. The K-Cover problem is constructed us-
ing visibility edges from localizing the test queries on
the map before sparsification, and points are weighted
according to the number of observations during the test
query localization. This approach indicates the ideal
performance of ILP approach without environmental
changes and cannot be achieved in the real world.

We obtained data points by sweeping the desired total
point number ndesired [14]. For our method, we randomly
selected points with predicted scores larger than 0.1. If there
were not enough points with scores larger than 0.1 to satisfy
ndesired, we randomly selected from the rest of the points.
We observed that predicted score distribution is close to bi-
nary (due to the L1 norm sparsity loss) and the point selec-
tion result is not sensitive to the score threshold.

Overall, our proposed approach outperformed the ILP
(map) baseline in all the testing slices by achieving higher
localization recall (success rate) under the same map sizes,
as shown in Tab. 2 and Fig. 6. Qualitatively, we observed
that compared with the ILP (map) baseline, the proposed
method selects map points on static structures that are more
useful for query set localization, as in Fig. 7 and Fig. 8.

Network structures. We also compared the following
configurations for the g2 GNN layer: GraphConv [12],
SAGEConv (with mean aggregation function) [10], and
GATConv (with H = 4) [29]. The compared networks
had the same feature dimensions and the LeakyReLU
(slope = 0.1) activations. Our results showed GATConv

Figure 5. The density histogram of 2D-3D matching number for
each testing query image during localization. After applying LKC

we observed less images with extreme number of matches, which
is preferred for consistent localization performance under a map
size budget. Both histograms are generated under the same map
size budget (total #kpt is ∼ 6.3× 105).

outperformed GraphConv and SAGEConv significantly in
terms of not only localization recall (Tab. 2) under the same
map sizes, but also classification performance with respect
to ILP (query) as shown in Fig. 6(b).

Training losses. Finally, the network trained without
either LBCE or LKC performed worse than the one with
combined loss, as shown in Tab. 2 and Fig. 6(b). The LBCE

was only trained in the training area, since no labels are
available in the testing area. The LKC were trained with
the whole input map graph (which covers both the training
and testing areas). Interestingly, although the LBCE-only
configuration got the lowest training LBCE , adding LKC

improved the classification performance in the test set. We
further observed that when localizing testing queries, the
map sparsified with LKC obtained less extreme numbers
of matched key points (Fig. 5). This is favorable because
each query obtained enough matches, but not too many that
caused a waste in map storage.
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Table 2. Average recall under different map sizes. For each slice (a sequence in The Extended CMU Seasons dataset), we linearly
interpolated the recall curves to obtain the recall numbers under the same number of key point descriptors, and computed the average
recalls with respect to the number of images. Three recall thresholds were compared. The recall number represents the ratio of image
samples with localization pose errors less than the corresponding recall threshold. As a reference, the average key point number before
sparsification is ∼ 2.8× 106. The detailed map graph statistics and the full recall curves are in the supplementary material.

Recall threshold 0.25m, 2.0◦ 0.5m, 5.0◦ 5.0m, 10.0◦

Avg. map size (104 #kpts) 3 5 10 20 3 5 10 20 3 5 10 20

Random 0.07 0.18 0.41 0.59 0.07 0.20 0.44 0.63 0.09 0.23 0.49 0.70
ILP (map) 0.15 0.31 0.53 0.64 0.19 0.36 0.59 0.69 0.25 0.43 0.66 0.76

GraphConv 0.31 0.48 0.64 0.73 0.34 0.52 0.69 0.77 0.39 0.58 0.76 0.85
SAGEConv 0.27 0.42 0.58 0.68 0.30 0.46 0.62 0.72 0.34 0.51 0.68 0.79

GATConv (ours) 0.35 0.52 0.67 0.73 0.40 0.57 0.72 0.78 0.46 0.64 0.80 0.86

GATConv (LBCE only) 0.25 0.38 0.53 0.65 0.28 0.42 0.57 0.70 0.32 0.47 0.64 0.77
GATConv (LKC only) 0.09 0.23 0.42 0.60 0.10 0.25 0.45 0.64 0.12 0.29 0.52 0.71

ILP (query) 0.24 0.46 0.69 0.80 0.30 0.53 0.75 0.85 0.38 0.60 0.83 0.92

(a) The recall vs. map size curves for each slice in the test set (b) Classification performance

Figure 6. Localization and classification recall comparisons. (a) Our approach outperformed the ILP (map) and the random baselines in all
test slices, achieving higher recalls (success rate) under the same map size budgets. On the other hand, the ILP (query) also significantly
outperformed ILP (map), showing the impact of environmental changes on baselines. The recall error thresholds here are 0.25m and 2.0◦.
(b) Compared with ILP (query), the GATConv trained with the full proposed loss achieved the highest classification recall (ratio of selected
positive labels) under the same coverage (ratio of the number of selected points against total number of points).

5. Discussion and Limitations
The heterogeneous graph used in this work is so flexi-

ble that it is easy to include more information as additional
node or edge features. This implies a great potential for
future works. Choices of additional information include
timestamps (for capturing periodic environmental change)
or the data from other sensors. It is also easy to apply other
training losses to sparsify the map for different tasks other
than conventional localization. Furthermore, we observed
that certain objects, such as buildings and utility poles. are
more likely to get higher scores. This implies the possibility
of using semantic labels to assist point score prediction. It is
also worth mentioning that the heterogeneous GNN frame-
work can potentially be applied to other practical graphs,
such as the factor graph for in SLAM. Comparing the GNN-
based method with the existing factor graph sparsification

works [3] is another interesting future direction. On the
other hand, one important factor affecting the result is the
point sampling strategy. Given the same set of predicted
scores, different point selection strategies would lead to dif-
ferent performance. In our system, we used simple ran-
dom down-sampling and a score threshold that achieved
outstanding performance, but exploring different point sam-
pling strategies can be an interesting future work.

As for limitations, typically the key in map sparsifica-
tion is to compress a map of a given scene, thus the gen-
eralization to an unseen scene has not been our focus. For
the K-Cover setup to work, the camera trajectories at query
time should be a subset of the camera trajectories in the
map. This applies to ours and the related works. Besides,
we only focused on removing points from an existing map,
so the result is limited by the localization performance on
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(a) slice 3 (b) slice 11
Figure 7. Large-scale point selection results. The upper row is the results from ILP (map) and the lower row is ours with a 0.1 score
threshold. The black points are the map 3D points before sparsification and the red points are the selected points. Our method selects
points on static structures, such as building walls, utility poles, and tree stems and avoids foliage that changes across seasons.

(a) images (b) ILP (map) (c) GATConv (ours) (d) ILP (query)

Figure 8. Qualitative visualizations. The camera positions are at the bottoms of the point cloud visualizations (b)(c)(d). The corresponding
parts in each row are labels by red boxes. Overall, we observe that the point selection of ILP (map) is less discriminative in selecting static
points than ILP (query) and ours. We compared the cases with similar numbers of key points so the total 3D point number varies.

the raw map. How to add/merge new information to the
map is also worth exploring in the future. Finally, naive
data splits (by camera and by slice) is used in our experi-
ments, but in practice it is better to minimize the training
set size to reduce the map update workload.

6. Conclusion
In conclusion, we proposed a heterogeneous GNN for vi-

sual map sparsification and proved its effectiveness in real-
world environment. This work opens a new avenue for ap-

plying the abundant GNN related techniques to SfM appli-
cations. Our future work would be map sparsification for
multi-sensor maps and more map graph representations.
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Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph At-

2414



tention Networks. In Int. Conf. Learn. Represent., 2018. 2,
3, 6

[30] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li,
Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai,
Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and
Zheng Zhang. Deep Graph Library: A Graph-Centric,
Highly-Performant Package for Graph Neural Networks.
arXiv:1909.01315 [cs, stat], 2020. 3, 5

[31] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, P.
Yu, and Yanfang Ye. Heterogeneous Graph Attention Net-
work. In The World Wide Web Conf., 2021. 2

2415


