
MaskGIT: Masked Generative Image Transformer

Huiwen Chang Han Zhang Lu Jiang Ce Liu˚ William T. Freeman
Google Research

(a) Class-conditional Image Generation (b) Image Manipulation (c) Image Extrapolation

 Flamingo

Tram

Input

Input

Figure 1. Example generation by MaskGIT on image synthesis and manipulation tasks. We show that MaskGIT is a flexible model
that can generate high-quality samples on (a) class-conditional synthesis, (b) class-conditional image manipulation, e.g. replacing selected
objects in the bounding box with ones from the given classes, and (c) image extrapolation. Examples shown here have resolutions 512ˆ512,
512ˆ512, and 512ˆ2560 in the three columns, respectively. Zoom in to see the details.

Abstract
Generative transformers have experienced rapid popu-

larity growth in the computer vision community in synthe-
sizing high-fidelity and high-resolution images. The best
generative transformer models so far, however, still treat an
image naively as a sequence of tokens, and decode an image
sequentially following the raster scan ordering (i.e. line-
by-line). We find this strategy neither optimal nor efficient.
This paper proposes a novel image synthesis paradigm us-
ing a bidirectional transformer decoder, which we term
MaskGIT. During training, MaskGIT learns to predict ran-
domly masked tokens by attending to tokens in all direc-
tions. At inference time, the model begins with generating
all tokens of an image simultaneously, and then refines the
image iteratively conditioned on the previous generation.
Our experiments demonstrate that MaskGIT significantly
outperforms the state-of-the-art transformer model on the
ImageNet dataset, and accelerates autoregressive decoding
by up to 48x. Besides, we illustrate that MaskGIT can be
easily extended to various image editing tasks, such as in-
painting, extrapolation, and image manipulation. Project
page: masked-generative-image-transformer.github.io.

1. Introduction

Deep image synthesis as a field has seen a lot of progress
in recent years. Currently holding state-of-the-art results are

˚ Currently affiliated with Microsoft Azure AI.

Generative Adversarial Networks (GANs), which are capa-
ble of synthesizing high-fidelity images at blazing speeds.
They suffer from, however, well known issues include train-
ing instability and mode collapse, which lead to a lack of
sample diversity. Addressing these issues still remains open
research problems.

Inspired by the success of Transformer [46] and GPT [5]
in NLP, generative transformer models have received grow-
ing interests in image synthesis [7, 15, 37]. Generally, these
approaches aim at modeling an image like a sequence and
leveraging the existing autoregressive models to generate
image. Images are generated in two stages; the first stage
is to quantize an image to a sequence of discrete tokens (or
visual words). In the second stage, an autoregressive model
(e.g., transformer) is learned to generate image tokens se-
quentially based on the previously generated result (i.e. au-
toregressive decoding). Unlike the subtle min-max opti-
mization used in GANs, these models are learned by max-
imum likelihood estimation. Because of the design differ-
ences, existing works have demonstrated their advantages
over GANs in offering stabilized training and improved dis-
tribution coverage or diversity.

Existing works on generative transformers mostly focus
on the first stage, i.e. how to quantize images such that in-
formation loss is minimized, and share the same second
stage borrowed from NLP. Consequently, even the state-
of-the-art generative transformers [15, 35] still treat an im-
age naively as a sequence, where an image is flattened into

11315

https://masked-generative-image-transformer.github.io/

����������
���������
�����������������

���	����

...

t = 0 t = 1 t = 2 t = 7

���������
��������
���������
�����������

t = 3 t = 4 t = 5 t = 6

...

t = 0 t = 1 t = 255t = 120 t = 200

...

Figure 2. Comparison between sequential decoding and MaskGIT’s scheduled parallel decoding. Rows 1 and 3 are the input latent
masks at each iteration, and rows 2 and 4 are samples generated by each model at that iteration. Our decoding starts with all unknown
codes (marked in lighter gray), and gradually fills up the latent representation with more and more scattered predictions in parallel (marked
in darker gray), where the number of predicted tokens increases sharply over iterations. MaskGIT finishes its decoding in 8 iterations
compared to the 256 rounds the sequential method takes.

a 1D sequence of tokens following a raster scan order-
ing, i.e. from left to right line-by-line (cf . Figure 2). We
find this representation neither optimal nor efficient for im-
ages. Unlike text, images are not sequential. Imagine how
an artwork is created. A painter starts with a sketch and
then progressively refines it by filling or tweaking the de-
tails, which is in clear contrast to the line-by-line printing
used in previous work [7, 15]. Additionally, treating image
as a flat sequence means that the autoregressive sequence
length grows quadratically, easily forming an extremely
long sequence–longer than any natural language sentence.
This poses challenges for not only modeling long-term cor-
relation but also renders the decoding intractable. For exam-
ple, it takes a considerable 30 seconds to generate a single
image on a GPU autoregressively with 32x32 tokens.

This paper introduces a new bidirectional transformer
for image synthesis called Masked Generative Image Trans-
former (MaskGIT). During training, MaskGIT is trained on
a similar proxy task to the mask prediction in BERT [11]. At
inference time, MaskGIT adopts a novel non-autoregressive
decoding method to synthesize an image in constant number
of steps. Specifically, at each iteration, the model predicts
all tokens simultaneously in parallel but only keeps the most
confident ones. The remaining tokens are masked out and
will be re-predicted in the next iteration. The mask ratio
is decreased until all tokens are generated with a few itera-
tions of refinement. As illustrated in Figure 2, MaskGIT’s
decoding is an order-of-magnitude faster than the autoregre-
sive decoding as it only takes 8 steps, instead of 256 steps,
to generate an image and the predictions within each step
are parallelizable. Moreover, instead of conditioning only

on previous tokens in the order of raster scan, bidirectional
self-attention allows the model to generate new tokens from
generated tokens in all directions. We find that the mask
scheduling (i.e. fraction of the image masked each iteration)
significantly affects generation quality. We propose to use
the cosine schedule and substantiate its efficacy in the abla-
tion study.

On the ImageNet benchmark, we empirically demon-
strate that MaskGIT is both significantly faster (by up
to 48x) and capable of generating higher quality samples
than the state-of-the-art autoregressive transformer, i.e. VQ-
GAN, on class-conditional generation with 256ˆ256 and
512ˆ512 resolution. Even compared with the leading GAN
model, i.e. BigGAN, and diffusion model, i.e. ADM [12],
MaskGIT offers comparable sample quality while yield-
ing more favourable diversity. Notably, our model estab-
lishes new state-of-the-arts on classification accuracy scores
(CAS) [36] for synthesizing 256ˆ256 and 512ˆ512 im-
ages. To our knowledge, this paper provides the first ev-
idence demonstrating the efficacy of the masked modeling
for image generation on the common ImageNet benchmark.

Furthermore, MaskGIT’s multidirectional nature makes
it readily extendable to image manipulation tasks that are
otherwise difficult for autoregressive models. Fig. 1 shows
a new application of class-conditional image editing in
which MaskGIT re-generates content inside the bounding
box based on the given class while keeping the context (out-
side of the box) unchanged. This task, which is either infea-
sible for autoregressive model or difficult for GAN models,
is trivial for our model. Quantitatively, we demonstrate this
flexibility by applying MaskGIT to image inpainting, and

11316

image extrapolation in arbitrary directions. Even though our
model is not designed for such tasks, it obtains comparable
performance to the dedicated models on each task.

2. Related Work
2.1. Image Synthesis

Deep generative models [12, 17, 29, 34, 40, 43, 44, 51]
have achieved lots of successes in image synthesis tasks.
GAN based methods demonstrate amazing capability in
yielding high-fidelity samples [4, 17, 27, 42, 51]. In con-
trast, likelihood-based methods, such as Variational Au-
toencoders (VAEs) [29, 43], Diffusion Models [12, 24, 40]
and Autoregressive Models [34, 44], offer distribution cov-
erage and hence can generate more diverse samples [40,43,
44].

However, maximizing likelihood directly in pixel space
can be challenging. So instead, VQVAE [37, 45] proposes
to generate images in latent space in two stages. In the first
stage, which is known as tokenization, it tries to compress
images into discrete latent space, and primarily consists of
three components:

• an encoder E that learns to tokenize images x P

RHˆWˆ3 into latent embedding Epxq,
• a codebook ek P RD, k P 1, 2, ¨ ¨ ¨ ,K which serves

for a nearest neighbor look up used to quantize the em-
bedding into visual tokens, and

• a decoder G which predicts the reconstructed image x̂
from the visual tokens e.

In the second stage, it first predicts the latent priors of the
visual tokens using deep autoregressive models, and then
uses the decoder from the first stage to map the token se-
quences into image pixels. Several approaches have fol-
lowed this paradigm due to the efficacy of the two-stage
approach. DALL-E [35] uses Transformers [46] to improve
token prediction in the second stage. VQGAN [15] adds ad-
versarial loss and perceptual loss [26,52] in the first stage to
improve the image fidelity. A contemporary work to ours,
VIM [49], proposes to use a VIT backbone [13] to further
improve the tokenization stage. Since these approaches still
employ an auto-regressive model, the decoding time in the
second stage scales with the token sequence length.

2.2. Masked Modeling with Bi-directional Trans-
formers

The transformer architecture [46], was first proposed in
NLP, and has recently extended its reach to computer vi-
sion [6, 13]. Transformer consists of multiple self-attention
layers, allowing interactions between all pairs of elements
in the sequence to be captured. In particular, BERT [11]
introduces the masked language modeling (MLM) task for
language representation learning. The bi-directional self-
attention used in BERT [11] allows the masked tokens in

Input

En
co

de
r

VQ

Bidirectional
Transformer

Reconstruction

D
ec

od
er

��������������������
���������������

Masked Tokens Predicted Tokens

�����������

Visual Tokens

Figure 3. Pipeline Overview. MaskGIT follows a two-stage de-
sign, with 1) a tokenizer that tokenizes images into visual tokens,
and 2) a bidirectional tranformer model that performs MVTM, i.e.
learns to predict visual tokens masked at random.

MLM to be predicted utilizing context from both directions.
In vision, the masked modeling in BERT [11] has been ex-
tended to image representation learning [2,21] with images
quantized to discrete tokens. However, few works have suc-
cessfully applied the same masked modeling to image gen-
eration [53] because of the difficulty in performing autore-
gressive decoding using bi-directional attentions. To our
knowledge, this paper provides the first evidence demon-
strating the efficacy of masked modeling for image gener-
ation on the common ImageNet benchmark. Our work is
inspired by bi-directional machine translation [16, 19, 20]
in NLP, and our novelty lies in the proposed new masking
strategy and decoding algorithm which, as substantiated by
our experiments, are essential for image generation.

3. Method
Our goal is to design a new image synthesis paradigm

utilizing parallel decoding and bi-directional generation.
We follow the two-stage recipe discussed in 2.1, as illus-

trated in Figure 3. Since our goal is to improve the second
stage, we employ the same setup for the first stage as in the
VQGAN model [15], and leave potential improvements to
the tokenization step to future work.

For the second stage, we propose to learn a bidirectional
transformer by Masked Visual Token Modeling (MVTM).
We introduce MVTM training in 3.1 and the sampling pro-
cedure in 3.2. We then discuss the key technique of masking
design in 3.3.

3.1. MVTM in Training

Let Y “ ryis
N
i“1 denote the latent tokens obtained by in-

putting the image to the VQ-encoder, where N is the length
of the reshaped token matrix, and M “ rmis

N
i“1 the corre-

sponding binary mask. During training, we sample a subset
of tokens and replace them with a special [MASK] token.
The token yi is replaced with [MASK] if mi “ 1, other-
wise, when mi “ 0, yi will be left intact.

The sampling procedure is parameterized by a mask
scheduling function γprq P p0, 1s, and executes as follows:

11317

we first sample a ratio from 0 to 1, then uniformly select
rγprq ¨ N s tokens in Y to place masks, where N is the
length. The mask scheduling significantly affects the qual-
ity of image generation and will be discussed in 3.3.

Denote YM the result after applying mask M to Y. The
training objective is to minimize the negative log-likelihood
of the masked tokens:

Lmask “ ´ E
YPD

”

ÿ

@iPr1,Ns,mi“1

log ppyi|YMq

ı

, (1)

Concretely, we feed the masked YM into a multi-layer bidi-
rectional transformer to predict the probabilities P pyi|YMq

for each masked token, where the negative log-likelihood
is computed as the cross-entropy between the ground-truth
one-hot token and predicted token. Notice the key differ-
ence to autoregressive modeling: the conditional depen-
dency in MVTM has two directions, which allows image
generation to utilize richer contexts by attending to all to-
kens in the image.

3.2. Iterative Decoding

In autoregressive decoding, tokens are generated sequen-
tially based on previously generated output. This process
is not parallelizable and thus very slow for image because
the image token length, e.g. 256 or 1024, is typically much
larger than that of language. We introduce a novel decoding
method where all tokens in the image are generated simulta-
neously in parallel. This is feasible due to the bi-directional
self-attention of MTVM.

In theory, our model is able to infer all tokens and gen-
erate the entire image in a single pass. We find this chal-
lenging due to inconsistency with the training task. Below,
the proposed iterative decoding is introduced. To generate
an image at inference time, we start from a blank canvas
with all the tokens masked out, i.e. Y p0q

M . For iteration t, our
algorithm runs as follows:

1. Predict. Given the masked tokens Y
ptq
M at the current

iteration, our model predicts the probabilities, denoted
as pptq P RNˆK , for all the masked locations in paral-
lel.

2. Sample. At each masked location i, we sample a to-
ken y

ptq
i based on its prediction probabilities pptq

i P RK

over all possible tokens in the codebook. After a to-
ken y

ptq
i is sampled, its corresponding prediction score

is used as a “confidence” score indicating the model’s
belief of this prediction. For the unmasked position in
Y

ptq
M , we simply set its confidence score to 1.0.

3. Mask Schedule. We compute the number of tokens to
mask according to the mask scheduling function γ by
n “ rγp t

T qN s, where N is the input length and T is
the total number of iterations.

4. Mask. We obtain Y
pt`1q

M by masking n tokens in Y
ptq
M .

The mask Mpt`1q for iteration t`1 is calculated from:

m
pt`1q

i “

"

1, if ci ă sortedjpcjqrns.
0, otherwise.

,

where ci is the confidence score for the i-th token.

The decoding algorithm synthesizes an image in T steps.
At each iteration, the model predicts all tokens simultane-
ously but only keeps the most confident ones. The remain-
ing tokens are masked out and re-predicted in the next it-
eration. The mask ratio is made decreasing until all tokens
are generated within T iterations. In practice, the masking
tokens are randomly sampled with temperature annealing to
encourage more diversity, and we will discuss its effect in
4.4. Figure 2 illustrates an example of our decoding process.
It generates an image in T “ 8 iterations, where the un-
masked tokens at each iteration are highlighted in the grid,
e.g. when t “ 1 we only keep 1 token and mask out the rest.

3.3. Masking Design

We find that the quality of image generation is signif-
icantly affected by the masking design. We model the
masking procedure by a mask scheduling function γp¨q

that computes the mask ratio for the given latent tokens.
As discussed, the function γ is used in both training and
inference. During inference time, it takes the input of
0{T, 1{T, ¨ ¨ ¨ , pT ´ 1q{T indicating the progress in decod-
ing. In training, we randomly sample a ratio r in r0, 1q to
simulate the various decoding scenarios.

BERT uses a fixed mask ratio of 15% [11], i.e., it always
masks 15% of the tokens, which is unsuitable for our task
since our decoder needs to generate images from scratch.
New masking scheduling is thus needed. Before discussing
specific schemes, we first examine the property of the mask
scheduling function. First, γprq needs to be a continuous
function bounded between 0 and 1 for r P r0, 1s. Second,
γprq should be (monotonically) decreasing with respect to
r, and it holds that γp0q Ñ 1 and γp1q Ñ 0. The sec-
ond property ensures the convergence of our decoding al-
gorithm.

This paper considers common functions and makes sim-
ple transformations so that they satisfy the properties. Fig-
ure 8 visualizes these functions which are divided into three
groups:

• Linear function is a straightforward solution, which
masks an equal amount of tokens each time.

• Concave function captures the intuition that image
generation follows a less-to-more information flow. In
the beginning, most tokens are masked so the model
only needs to make a few correct predictions for which
the model feel confident. Towards the end, the mask
ratio sharply drops, forcing the model to make a lot

11318

more correct predictions. The effective information
is increasing in this process. The concave family in-
cludes cosine, square, cubic, and exponential.

• Convex function, conversely, implements a more-to-
less process. The model needs to finalize a vast major-
ity of tokens within the first couple of iterations. This
family includes square root and logarithmic.

We empirically compare the above mask scheduling
functions in 4.4 and find the cosine function works the best
in all of our experiments.

4. Experiments
In this section, we empirically evaluate MaskGIT on

image generation in terms of quality, efficiency and flex-
ibility. In 4.2, we evaluate MaskGIT on the standard
class-conditional image generation tasks on ImageNet [10]
256ˆ256 and 512ˆ512. In 4.3, we show MaskGIT’s versa-
tility by demonstrating its performance on three image edit-
ing tasks, image inpainting, outpainting, and editing. In 4.4,
we verify the necessity of our design of mask scheduling.
We will release the code and model for reproducible re-
search.

4.1. Experimental Setup

For each dataset, we only train a single autoencoder, de-
coder, and codebook with 1024 tokens on cropped 256x256
images for all the experiments. The image is always com-
pressed by a fixed factor of 16, i.e. from H ˆW to a grid of
tokens in the size of h ˆ w, where h=H{16 and w=W {16.
We find that this autoencoder, together with the codebook,
can be reused to synthesize 512ˆ512 images.

All models in this work have the same configuration: 24
layers, 8 attention heads, 768 embedding dimensions and
3072 hidden dimensions. Our models use learnable posi-
tional embedding [46], LayerNorm [1], and truncated nor-
mal initialization (stddev=0.02). We employ the following
training hyperparameters: label smoothing=0.1, dropout
rate=0.1, Adam optimizer [28] with β1=0.9 and β2=0.96.
We use RandomResizeAndCrop for data augmentation and
temperature=4.5 for decoding. All models are trained on
4x4 TPU devices with a batch size of 256. ImageNet mod-
els are trained for 300 epochs while the Places2 model is
trained for 200 epochs.

4.2. Class-conditional Image Synthesis

We evaluate the performance of our model on class-
conditional image synthesis on ImageNet 256ˆ256 and
512ˆ512. Our main results are summarized in Table 1.
Quality. On ImageNet 256ˆ256, without any special sam-
pling strategies such as beam-search, top-k or nucleus sam-
pling heuristics [25] or classifier guidance [37], we signif-
icantly outperform VQGAN [15] in both Fréchet Inception

�

��

��

��

��� ��� ��� ����

���������������
��������	���

�����������

��������������

��
��
��
��
��
�

����

�����

�����

�����

���� ���� ���� ����

�����
������� ������� 	������������������

Figure 4. Transformer wall-clock runtime comparison between
VQGAN [15] and ours. All results are run on a single GPU.

Distance (FID) [23] (6.18 vs 15.78) and Inception Score
(IS) (182.1 vs 78.3). We also train a VQGAN baseline
with the same tokenizer and hyperparameters as MaskGIT’s
in order to further highlight the difference between bi-
directional and uni-directional transformers, and find that
on both resolutions, MaskGIT still outperforms our imple-
mented baseline by a significant margin.

Furthermore, we report the results with classifier-
based rejection sampling, following prior transformer-
based methods [15, 37]. Specifically, we use a pre-trained
ResNet classifier [22] to score output samples based on the
predicted probability and keep samples with an acceptance
rate of 0.05, as in VQGAN [15]. MaskGIT demonstrates
consistent improvement over VQGAN, and is comparable
with ADM with classifier guidance [12].
Speed. We evaluate model speed by assessing the number
of steps, i.e. forward passes, each model requires to gen-
erate a sample. As shown in Table 1, MaskGIT requires
the fewest steps among all non-GAN-based models on both
resolutions.

To further substantiate the speed difference between
MaskGIT and autoregressive models, we perform a run-
time comparison between MaskGIT and VQGAN’s decod-
ing processes. As illustrated in Figure 4, MaskGIT signifi-
cantly accelerates VQGAN by 30-48x, with a speedup that
gets more pronounced as the image resolution (and thus the
input token length) grows.
Diversity. We consider Classification Accuracy Score
(CAS) [36] and Precision/Recall [30] as two metrics for
evaluating sample diversity, in addition to sample quality.

CAS involves first training a ResNet-50 classifier [22]
solely on the samples generated by the candidate model,
and then measuring the classifier’s classification accuracy
on the ImageNet validation set. The last two columns in Ta-
ble 1 present the CAS results, where the scores of the clas-
sifier trained on real ImageNet training data are included for
reference (76.6% and 93.1% for the top-1 and top-5 accu-
racy). For image resolution 256ˆ256, we follow the com-
mon practice of using data augmentation RandAugment [9],
and report the scores trained without augmentation in the

11319

Model FID Ó IS Ò Prec Ò Rec Ò # params # steps CAS ˆ100 Ò

Top-1 (76.6) Top-5 (93.1)ImageNet 256ˆ256
DCTransformer [32] ˝ 36.51 n/a 0.36 0.67 738M ą1024
BigGAN-deep [4] 6.95 198.2 0.87 0.28 160M 1 43.99 67.89
Improved DDPM [33]˝ 12.26 n/a 0.70 0.62 280M 250
ADM [12]˝ 10.94 101.0 0.69 0.63 554M 250
VQVAE-2 [37]˝ 31.11 „45 0.36 0.57 13.5B: 5120 54.83 77.59
VQGAN [15]˝ 15.78 78.3 n/a n/a 1.4B 256
VQGAN˚ 18.65 80.4 0.78 0.26 227M 256 53.10 76.18
MaskGIT 6.18 182.1 0.80 0.51 227M 8 63.14 84.45

ADM, 1.0 guidance [12]˝ 4.59 186.70 0.82 0.52
VQGAN, 0.05 acceptance [15]˝ 5.88 304.8 n/a n/a
MaskGIT, 0.05 acceptance 4.02 355.6 0.83 0.50

ImageNet 512ˆ512
BigGAN-deep [4] 8.43 232.5 0.88 0.29 160M 1 44.02 68.22
ADM [12]˝ 23.24 58.06 0.73 0.60 559M 250
VQGAN˚ 26.52 66.8 0.73 0.31 227M 1024 51.29 74.24
MaskGIT 7.32 156.0 0.78 0.50 227M 12 63.43 84.79

ADM, 1.0 guidance [12]˝ 7.72 172.71 0.87 0.42
MaskGIT, 0.05 acceptance 4.46 342.0 0.83 0.44

Table 1. Quantitative comparison with state-of-the-art generative models on ImageNet 256ˆ256 and 512ˆ512. “# steps” refers to the number
of neural network runs needed to generate a sample. ˚ denotes the model we train with the same architecture and setup with ours; ˝ denotes values taken
from prior publications; : estimated based on the pytorch implementation [39].

B
ig

G
A

N
-d

ee
p

(F
ID

=6
.9
5

)
M

as
kG

IT
(F

ID
=6

.1
8)

Figure 5. Sample Diversity Comparison between our proposed method MaskGIT and BigGAN-deep [4] on ImageNet 256ˆ256. The class
ids of the samples from left to right are 980, 009 and 993 respectively. Please refer to the supplementary for more comparisons.

supplementary. We find that MaskGIT significantly outper-
forms prior work VQVAE-2 and VQGAN, establishing a
new state-of-the-art of CAS on the ImageNet benchmark
on both resolutions.

The Precision/Recall results in Table 1 show that
MaskGIT achieves better coverage (Recall) compared to
BigGAN, and better sample quality (Precision) compared
to likelihood-based models such as VQVAE-2 and diffusion

models. Compared to our baseline VQGAN, we improve
the diversity as measured by recall while slightly boosting
its precision.

In contrast to BigGAN’s samples, MaskGIT’s samples
are more diverse with more varied lighting, poses, scales
and context as shown in Figure 5. More comparisons are
available in the supplementary.

11320

Figure 6. Class-conditional image editing. Given input images
on the left of each pair, and a target class ”tiger cat”, MaskGIT
replaces the bounding boxed regions with tiger cats, suggesting
the composition ability of our model.

Input —— MaskGIT (Our Samples) ——

Figure 7. Inpainting and outpainting. Given a single input im-
age, MaskGIT synthesizes diverse results for inpainting (first row)
and outpainting in different directions (last two rows).

Task Model Resolution FID Ó IS Ò

Outpainting Boundless [41]˝ 256 35.02 6.15
Right 50% In&Out [8]˝ 256 23.57 7.18

InfinityGAN [31] 256 10.60 5.57
Boundless [41] TF ˛ 256 7.80 5.99
MaskGIT (Ours) 512 6.78 11.69

Inpainting DeepFill [50] 256 11.51 22.55
Center 50%ˆ50% ICT [47] 256 9.27 20.29

HiFill [48] 512 16.60 19.93
CoModGAN [54] 512 7.13 21.82
MaskGIT (Ours) 512 7.92 22.95

Table 2. Quantitative Comparisons for Inpainting and Out-
painting on Places2. The models are evaluated on samples with
resolution consistent with their training. ˝ taken from the prior
work; ˛ evaluated using the TFHub model [18].

4.3. Image Editing Applications

In this subsection, we present direct applications of
MaskGIT on three image editing tasks: class-conditional
image editing, image inpainting, and outpainting. All
three tasks can be almost trivially translated to ones that
MaskGIT can handle if we consider the task as just a con-
straint on the initial binary mask M MaskGIT uses in its it-
erative decoding, as discussed in 3.2. We show that without
modifications to the architecture or any task-specific train-
ing, MaskGIT is capable of generating very compelling re-
sults on all three applications. Furthermore, MaskGIT ob-
tains comparable performance to dedicated models on both
inpainting and outpainiting, even though it is not designed
specifically for either task.
Class-conditional Image Editing. We define a new class-
conditional image editing task to showcase MaskGIT’s flex-
ibility. In this task, the model regenerates content specified
inside a bounding box on the given class while preserving
the context, i.e. content outside of the box. It is infeasible
for autoregressive methods due to the violation to their pre-
diction orders.

For MaskGIT, however, it is a trivial task if we consider
the bounding box region as the input of initial mask to the
iterative decoding algorithm. Figure 6 shows a few example
results. More can be found in the supplementary.

In these examples, we observe that MaskGIT can reason-
ably replace the selected object while preserving, or to some
extend even completing, the context in the background. Fur-
thermore, we find that MaskGIT seems to be capable of
synthesizing unnatural yet plausible combinations unseen
in the ImageNet training set, e.g. a flying cat, cat in a soup
bowl, and cat in a flower. This suggests that MaskGIT has
incidentally learned useful representations for composition,
which may be further exploited in related tasks in future
works.

Image Inpainting. Image inpainting is a fundamental
image editing task to synthesize contents in missing re-
gions so that the completion looks visually realistic. Tra-
ditional patch-based methods [3] work well on texture re-
gions, while deep learning based methods [14,38,48,50,54]
have been demonstrated to synthesize images requiring bet-
ter semantic coherence. Both approaches have been are ex-
tensively studied in computer vision.

We extend MaskGIT to this problem by tokenizing the
masked image and interpreting the inpainting mask, dilated
in latent space, as the initial mask in our iterative decoding.
We then composite the output image by linearly blending it
with the input based on the masking boundary following [8].
To match the training of our baselines, we train MaskGIT
on the 512ˆ512 center-cropped images from the Places2
[55] dataset. All hyperparameters are kept the same as the
MaskGIT model trained on ImageNet.

11321

γ T FID Ó IS Ò NLL

Exponential 8 7.89 156.3 4.83
Cubic 9 7.26 165.2 4.63
Square 10 6.35 179.9 4.38
Cosine 12 6.07 211.6 4.22
Linear 16 7.51 113.2 3.75
Square Root 32 12.33 99.0 3.34
Logarithmic 60 29.17 47.9 3.08

Table 3. Ablation results on the mask scheduling functions. We
report the best FID, IS, and Negative Log-Likelihood loss for each
candidate scheduling function.

We compare MaskGIT against common GAN-based
baselines, including DeepFillv2 [50] and HiFill [48], on in-
painting with a central 50% ˆ 50% mask, which are eval-
uated on the Places2 validation set. Table 2 summarizes
the quantitative comparisons. MaskGIT beats both Deep-
Fill and HiFill in FID and IS by a significant margin, while
achieving scores close to the state-of-the-art inpainting ap-
proaches such as CoModGAN [54] and ICT [47]. We show
more qualitative comparisons in the supplementary.

Image Outpainting. Outpainting, or image extrapolation,
is an image editing task that has received increased attention
recently. Our adaptation of the problem and the model used
in the following evaluation is the same as in inpainting.

We compare against common GAN-based baselines, in-
cluding Boundless [41], In&Out [8], InfinityGAN [31], and
CoModGAN [54] on extrapolating rightward with a 50%
ratio. We evaluate on the image set generously provided by
the authors of InfinityGAN [31] and In&Out [8].

Table 2 summarizes the quantitative comparisons.
MaskGIT beats all baselines and achieves state-of-the-
art FID and IS. As the examples in Figure 7 illustrate,
MaskGIT is also capable of synthesizing diverse results
given the same input with different seeds. We observe that
MaskGIT completes objects and global structures particu-
larly well, and hypothesize that this is thanks to the model
learning useful representations with the global attentions in
the transformer.

4.4. Ablation Studies

We conduct ablation experiments using the default set-
ting on ImageNet 256ˆ256.
Mask scheduling. A key design of MaskGIT is the mask
scheduling function used in both training and iterative de-
coding. We compare the functions discussed in 3.3, visual-
ize them in Figure 8, and summarize the results in Table 3.

We observe that concave functions generally obtain bet-
ter FID and IS than linear, followed by the convex func-
tions. While cosine and square perform similarly relative
to other functions, cosine slightly edges out square in all
scores, making cosine the default in our model.

We hypothesize that concave functions perform favor-

T
5 10 15 20 25 305 10 15 20 25 30

0

20

40

60

��
�

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

1.0

0.8

0.6 �����������

������

�����������

�����������

������

����
������

 �
��
��
��
��
��
���
��
��
��
��
��

 γ

t / T

Figure 8. Choices of Mask Scheduling Functions γp t
T

q, and
number of iterations T. On the left, we visualize seven functions
we consider for γ. On the right, we show line graphs of models’
FID scores against the number of decoding iterations T . Among
the candidates, we find that cosine achieves the best FID.

ably because they 1) challenge training with more difficult
cases (i.e. encouraging larger mask ratios), and 2) appropri-
ately prioritize the less-to-more prediction throughout the
decoding. That said, over-prioritization seems to be costly
as well, as shown by the cubic function being worse than
square, and exponential being much worse than all other
concave functions.
Iteration number. We study the effect of the number of it-
erations (T) on our model by running all candidate masking
functions with different T s. As shown in Figure 8, under
the same setting, more iterations are not necessarily better:
as T increases, aside from the logarithmic function which
performs poorly throughout, all other functions hit a “sweet
spot” where the model’s performance peaks before it wors-
ens again. The sweet spot also gets “delayed” as functions
get less concave. Among functions that achieve strong FIDs
(i.e. cosine, square, and linear), cosine not only has the
strongest overall score, but also the earliest sweet spot at
a total of 8 to 12 iterations. We hypothesize that such sweet
spots exist because too many iterations may discourage the
model from keeping less confident predictions, which wors-
ens the token diversity. We think further study on the mask-
ing design would be interesting for future work.

5. Conclusion
In this paper, we propose MaskGIT, a novel image syn-

thesis paradigm using a bidirectional transformer decoder.
Trained on Masked Visual Token Modeling, MaskGIT
learns to generate samples using an iterative decoding pro-
cess within a constant number of iterations. Experimen-
tal results show that MaskGIT significantly outperforms
the state-of-the-art transformer model on conditional image
generation, and our model is readily extendable to various
image manipulation tasks. As MaskGIT achieves competi-
tive performance with GANs, applying it to other synthesis
tasks is a promising direction for future work. Please see
the supplementary for the limitations and more discussion.
Acknowledgement The authors would like to thank Xiang
Kong for inspiring related works and anonymous reviewers
for helpful comments.

11322

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. Layer normalization, 2016. 5
[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei.

BEit: BERT pre-training of image transformers. In In-
ternational Conference on Learning Representations,
2022. 3

[3] Connelly Barnes, Eli Shechtman, Adam Finkelstein,
and Dan B Goldman. PatchMatch: A randomized
correspondence algorithm for structural image editing.
ACM Transactions on Graphics (Proc. SIGGRAPH),
28(3), Aug. 2009. 7

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan.
Large scale gan training for high fidelity natural image
synthesis. In ICLR, 2019. 3, 6

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In NeurIPS, 2020. 1

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé
Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vi-
sion transformers. In Proceedings of the International
Conference on Computer Vision (ICCV), 2021. 3

[7] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu,
Heewoo Jun, David Luan, and Ilya Sutskever. Gener-
ative pretraining from pixels. In International Confer-
ence on Machine Learning, pages 1691–1703. PMLR,
2020. 1, 2

[8] Yen-Chi Cheng, Chieh Hubert Lin, Hsin-Ying Lee,
Jian Ren, Sergey Tulyakov, and Ming-Hsuan Yang.
In&out: Diverse image outpainting via gan inversion.
arXiv preprint arXiv:2104.00675, 2021. 7, 8

[9] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V. Le. Randaugment: Practical automated data
augmentation with a reduced search space, 2019. 5

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierarchi-
cal image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee, 2009. 5

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In

Jill Burstein, Christy Doran, and Thamar Solorio, edi-
tors, NAACL-HLT, 2019. 2, 3, 4

[12] Prafulla Dhariwal and Alexander Quinn Nichol. Dif-
fusion models beat GANs on image synthesis. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Informa-
tion Processing Systems, 2021. 2, 3, 5, 6

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 3

[14] Patrick Esser, Robin Rombach, Andreas Blattmann,
and Björn Ommer. Imagebart: Bidirectional context
with multinomial diffusion for autoregressive image
synthesis, 2021. 7

[15] Patrick Esser, Robin Rombach, and Björn Ommer.
Taming transformers for high-resolution image syn-
thesis. In CVPR, 2021. 1, 2, 3, 5, 6

[16] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. Mask-predict: Parallel decoding of
conditional masked language models, 2019. 3

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. In NeurIPS, 2014. 3

[18] Google. Tfhub model of boundless. https:
//tfhub.dev/google/boundless/half/1,
2021. 7

[19] Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. Non-autoregressive
neural machine translation. In ICLR, 2018. 3

[20] Jiatao Gu and Xiang Kong. Fully non-autoregressive
neural machine translation: Tricks of the trade, 2020.
3

[21] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners, 2021. 3

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016. 5

[23] Martin Heusel, Hubert Ramsauer, Thomas Un-
terthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge
to a local nash equilibrium. In NeurIPS, 2017. 5

[24] Jonathan Ho, Chitwan Saharia, William Chan, David J
Fleet, Mohammad Norouzi, and Tim Salimans. Cas-
caded diffusion models for high fidelity image gener-
ation. arXiv preprint arXiv:2106.15282, 2021. 3

11323

https://tfhub.dev/google/boundless/half/1
https://tfhub.dev/google/boundless/half/1

[25] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. The curious case of neural text degenera-
tion, 2019. 5

[26] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Per-
ceptual losses for real-time style transfer and super-
resolution. In European conference on computer vi-
sion, pages 694–711. Springer, 2016. 3

[27] Tero Karras, Samuli Laine, Miika Aittala, Janne Hell-
sten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of StyleGAN. In CVPR,
2020. 3

[28] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 5

[29] Diederik P. Kingma and Max Welling. Auto-encoding
variational bayes. In ICLR, 2014. 3

[30] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Improved precision
and recall metric for assessing generative models. In
NeurIPS, 2019. 5

[31] Chieh Hubert Lin, Hsin-Ying Lee, Yen-Chi Cheng,
Sergey Tulyakov, and Ming-Hsuan Yang. Infinitygan:
Towards infinite-resolution image synthesis. arXiv
preprint arXiv:2104.03963, 2021. 7, 8

[32] Charlie Nash, Jacob Menick, Sander Dieleman, and
Peter W. Battaglia. Generating images with sparse
representations, 2021. 6

[33] Alex Nichol and Prafulla Dhariwal. Improved de-
noising diffusion probabilistic models. arXiv preprint
arXiv:2102.09672, 2021. 6

[34] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit,
Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In Jennifer G. Dy
and Andreas Krause, editors, ICML, 2018. 3

[35] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In
Marina Meila and Tong Zhang, editors, ICML, 2021.
1, 3

[36] Suman V. Ravuri and Oriol Vinyals. Classification
accuracy score for conditional generative models. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché Buc, Emily B. Fox, and Ro-
man Garnett, editors, NeurIPS, pages 12247–12258,
2019. 2, 5

[37] Ali Razavi, Aäron van den Oord, and Oriol Vinyals.
Generating diverse high-fidelity images with VQ-
VAE-2. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, editors, NeurIPS, 2019. 1, 3, 5, 6

[38] Chitwan Saharia, William Chan, Huiwen Chang,
Chris A. Lee, Jonathan Ho, Tim Salimans, David J.
Fleet, and Mohammad Norouzi. Palette: Image-to-
image diffusion models, 2021. 7

[39] Kim Seonghyeon. Implementation of generating
diverse high-fidelity images with vq-vae-2 in py-
torch. https://github.com/rosinality/
vq-vae-2-pytorch, 2020. 6

[40] Yang Song and Stefano Ermon. Generative model-
ing by estimating gradients of the data distribution. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett, editors, NeurIPS, 2019. 3

[41] Piotr Teterwak, Aaron Sarna, Dilip Krishnan, Aaron
Maschinot, David Belanger, Ce Liu, and William T
Freeman. Boundless: Generative adversarial networks
for image extension. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
10521–10530, 2019. 7, 8

[42] Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang,
and Weilong Yang. Regularizing generative adversar-
ial networks under limited data. In CVPR, 2021. 3

[43] Arash Vahdat and Jan Kautz. NVAE: A deep hierar-
chical variational autoencoder. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, NeurIPS, 2020.
3

[44] Aäron van den Oord, Nal Kalchbrenner, Lasse Es-
peholt, Koray Kavukcuoglu, Oriol Vinyals, and Alex
Graves. Conditional image generation with pixelcnn
decoders. In Daniel D. Lee, Masashi Sugiyama, Ul-
rike von Luxburg, Isabelle Guyon, and Roman Gar-
nett, editors, NeurIPS, 2016. 3

[45] Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learn-
ing. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, NeurIPS,
2017. 3

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In NeurIPS, 2017. 1, 3, 5

[47] Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing
Liao. High-fidelity pluralistic image completion with
transformers. arXiv preprint arXiv:2103.14031, 2021.
7, 8

[48] Zili Yi, Qiang Tang, Shekoofeh Azizi, Daesik Jang,
and Zhan Xu. Contextual residual aggregation for ul-
tra high-resolution image inpainting. In Proceedings

11324

https://github.com/rosinality/vq-vae-2-pytorch
https://github.com/rosinality/vq-vae-2-pytorch

of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7508–7517, 2020. 7, 8

[49] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming
Pang, James Qin, Alexander Ku, Yuanzhong Xu, Ja-
son Baldridge, and Yonghui Wu. Vector-quantized im-
age modeling with improved VQGAN. arXiv preprint
arXiv:2110.04627, 2021. 3

[50] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin
Lu, and Thomas S Huang. Free-form image inpaint-
ing with gated convolution. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 4471–4480, 2019. 7, 8

[51] Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas,
and Augustus Odena. Self-attention generative adver-
sarial networks. In ICML, 2019. 3

[52] Richard Zhang, Phillip Isola, Alexei A Efros, Eli
Shechtman, and Oliver Wang. The unreasonable ef-
fectiveness of deep features as a perceptual metric. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 586–595, 2018. 3

[53] Zhu Zhang, Jianxin Ma, Chang Zhou, Rui Men,
Zhikang Li, Ming Ding, Jie Tang, Jingren Zhou,
and Hongxia Yang. UFC-BERT: Unifying multi-
modal controls for conditional image synthesis. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Informa-
tion Processing Systems, 2021. 3

[54] Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong,
Xiao Liang, Eric I Chang, and Yan Xu. Large scale im-
age completion via co-modulated generative adversar-
ial networks. In International Conference on Learning
Representations (ICLR), 2021. 7, 8

[55] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude
Oliva, and Antonio Torralba. Places: A 10 million im-
age database for scene recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017. 7

11325

	. Introduction
	. Related Work
	. Image Synthesis
	. Masked Modeling with Bi-directional Transformers

	. Method
	. MVTM in Training
	. Iterative Decoding
	. Masking Design

	. Experiments
	. Experimental Setup
	. Class-conditional Image Synthesis
	. Image Editing Applications
	. Ablation Studies

	. Conclusion

