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Figure 1. We propose a system for marker-based MoCap using a sparse set (3 in our captures) of commodity RGB-D sensors. Our
system is an adapted version of the DeMoCap model [5], operating in real-time and offering MoCap pre-visualization, as well as real-
time denoising due to its data-driven backend. Compared to traditional marker-based systems, its denoising nature offers robustness to
marker placement, and compared to markerless systems, it offers metric-scale (compared to monocular approaches), and more consistent
(compared to multiview) results.

Abstract

Traditional marker-based motion capture requires exces-
sive and specialized equipment, hindering accessibility and
wider adoption. In this work, we demonstrate such a system
but rely on a very sparse set of low-cost consumer-grade
sensors. Our system exploits a data-driven backend to infer
the captured subject’s joint positions from noisy marker es-
timates in real-time. In addition to reduced costs and porta-
bility, its inherent denoising nature allows for quicker cap-
tures by alleviating the need for precise marker placement
and post-processing, making it suitable for interactive vir-
tual reality applications.

1. Introduction & Prior Art
Motion Capture (MoCap) is realized as the human-

centric technology1 that aims to digitize human motion,
and thus, performances, and is primarily used for analysis

1Even though MoCap technology can be used to capture other subjects
like animals or machines (drones, robotic arms, etc.), our focus in this
manuscript lies solely on human capture.

(i.e. clinical, athletic or artistic) [7, 12, 15, 24] and content
creation (i.e. games, films, simulation) [2, 13, 21, 26]. It
comes in many variants, depending on the equipment and
technology stack used, spanning marker-based and marker-
less optical, or wearable sensor-based, with each one car-
rying its own set of advantages and disadvantages [14, 18].
While currently the marker-based optical MoCap systems
are considered as the most accurate solution, the flexibil-
ity and cost reduction of markerless or inertial alternatives
has increased their use in domains where high accuracy is
not strictly necessary. Additionally, the emergence of vir-
tual/mixed/augmented reality (VR/MR/AR) applications is
expected to further boost the need for affordable, easy-to-
use, portable and flexible MoCap systems.

Interestingly, the technological evolution brought forth
by data-driven technologies has been more impacting on the
markerless [8] and inertial [10] methods than on marker-
based optical ones, where it has mostly been used to re-
pair [16], denoise [25] and clean [3] their captures. Only
a few, recent works approach motion capture data solv-
ing [6, 9], not evaluated on data captured with low-end,
noisy capturing systems though. Still, the use of markers
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comes with a set of advantages and possibilities not avail-
able in markerless or inertial systems, such as the addition
of props, the physical grounding of the captures, the precise
and robust calculation of the joint rotations with the use of
marker positions, and the adaptation to different context or
increased accuracy (e.g. higher quality foot captures). Even
though hybrid systems have been recently introduced [1],
no progress has been reported on lower-cost and/or data-
driven marker-based systems.

Addressing this precise gap, this work presents a work-
ing and demonstratable system for real-time marker-based
MoCap using a sparse set of commercial-grade sensors. In-
strumental to such system that offers an order of magnitude
equipment cost reduction, is the use of data-driven technol-
ogy to develop a neural marker human motion prior model
[5]. This allows our system to infer joint positions from
noisy and low quality marker estimates in a single-shot,
effectively performing clean-up and denoising simultane-
ously, correcting marker artifacts like ghosting and missing
information. The summary of contributions that drive the
demonstration of this system are the following:

• The design and the development of a multi-sensor
multi-view system integrating the aforementioned
data-driven model that is easy-to-use and quick-to-
deploy.

• The adaptation of the data-driven model to a new sen-
sor and the model’s real-time and low-latency perfor-
mance (inference).

2. System
In this section we present details about our system’s de-

sign and functionality, spanning both hardware and soft-
ware. Our core motion capture technology is derived from
a recent work for data-driven marker-based motion capture
[5]. The first steps towards an operational real-time Mo-
Cap system are: the development of efficient data acquisi-
tion components (discussed in Sec. 2.1 along with the main
goals and overall system design); the robust estimation of
the marker positions (described in Sec. 2.2); and the spatio-
temporal alignment of such multiple sensors, described in
Sec. 2.3. A critical step follows, namely the adaptation of
a staged markers-to-joints model [5] (Sec. 2.4), comprising
multiple CNN stacks to low-latency and real-time rate per-
formances. Finally, considering that the training data are
fixed, and the system is built around a new sensor type, the
model training regime also needs to be adapted to overcome
any domain biases (Sec. 2.5).

2.1. System Design

The design of the presented marker-based MoCap sys-
tem is dictated by a set of requirements: i) the detection of

Figure 2. The proposed MoCap system comprises hardware (HW)
and software (SW) components. From a HW perspective, a mini-
mal set of tripod-mounted commodity sensors are required (3 Mi-
crosoft K4A shown), connected with a workstation that handles
the processing (cyan links). Typical outwards-in placement re-
quires them to be equidistantly placed from an angular perspective
around a pre-determined radius (r = 2m in this case). Addition-
ally, HW synchronization cables inter-connect the sensors (orange
links). Finally, 53 retro-reflective markers are also required to be
placed onto the subject to be captured.

retro-reflective markers (sensing), ii) the operation in real-
time rates (processing latency minimization), and iii) the
usability (easy-to-deploy/setup/use effectively). For the lat-
ter, we opt to use commodity sensing hardware and min-
imize the amount of deployed sensors. To enable image-
based retro-reflective marker detection, the selected sen-
sors should be capable of projecting infrared (IR) light into
the scene, and then capturing it back. The efficient mini-
mization of sensors (and thus, viewpoints), will be driven
by the acquisition of 3D information straight from the sen-
sors, which is another important design choice. Addition-
ally, given the nature of motion capture, it is necessary to be
able to precisely synchronize the deployed sensors’ acquisi-
tion, without requiring excessive hardware. Taking all these
into account, and given the discontinuation of the Intel Re-
alSense (RS2) series, and the pending availability of active
IR capable OAK-D sensors, we present our system using
the Microsoft Kinect Azure (K4A) sensor. In particular, we
use a small, sparse set of these sensors deployed, spanning
the range of 3− 6. A schematic representation of the actual
capturing setting used for this demo is depicted in Fig. 2.

2.2. Marker Acquisition

Each sensor s ∈ {1, ..., S} acquires time- and pixel-
aligned infrared Is(p) ∈ R and depth Ds(p) ∈ R frames,
both carrying 16-bit information, with p := (u, v) ∈ Ω, and
Ω being the image domain grid defined with an image reso-
lution of W width and H height. Given that retro-reflective
markers bounce light back directly to the source, and that
K4A is a time-of-flight sensor that projects infrared light
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Figure 3. Two examples of marker detection results using the K4A
sensor. On the top row, the IR images are depicted where the retro-
reflective markers are clearly identified. On the bottom row, the IR
detections (green stars) are overlayed on top of the depth maps, in-
side the empty/invalid depth measurement regions that correspond
to the retro-reflective ”blind” spots for the K4A sensor.

into the scene and captures the bounced back light from its
infrared camera, retro-reflective markers appear as exces-
sively bright in Is as the corresponding areas’ signal am-
plitude is maximal (see Fig. 3 top). Consequently, they are
very easy to be detected via straightforward thresholding of
the IR image, with a high-level of robustness with respect
to the choice of the threshold.

Using connected components analysis on the thresh-
olded images, we extract the N detected markers and rep-
resent them via their centroids µs

n ∈ Ω, n ∈ {1, ..., N}.
While these are 2D detections, the availability of depth in-
formation allows us to lift them to 3D marker estimates.
Even though the centroid corresponding depth information
is missing as the maximal signal amplitude does not allow
for estimating it, the spherical nature of the markers allows
for some light to scatter into the scene at the areas where
the marker’s surface is close to perpendicular to the cam-
era. This creates a depth “ring” around the marker, whose
depth values approximate that of the marker’s detected cen-
troid. We extract the median of the one-ring neighbourhood
of depth values around the detected marker blob, ensuring
an unbiased and denoised estimate, which is then lifted to
a 3D marker detection ms

n ∈ R3 using the camera param-
eters comprising the intrinsics matrix Ks and the distortion
coefficients ds ∈ R5. The result of the marker detection is
depicted in Fig. 3 (bottom).

2.3. Multi-sensor Spatio-temporal Alignment

The 3D marker estimates ms
n acquired by each sensor s

are defined on the sensor’s local coordinate system and suf-
fer from occlusions as each viewpoint partially observes the
captured performance. To effectively fuse these marker es-
timates from all viewpoints, we need to ensure their spatial
and temporal alignment. For the latter, we resort to the se-
lected sensor’s hardware synchronization and additionally
apply a small offset on the order of microseconds2. This is
to overcome the multi-path interference of multiple IR pro-
jectors illuminating the same scene simultaneously, but still
benefit from the high-quality temporal synchronization of
all sensors, a necessity for capturing moving subjects.

To recover the 6DOF pose Ts :=
[
Rs ts
0 1

]
of all sen-

sors in a common, global coordinate system, we employ a
quick and effortless approach. Using a moving wand with
a single marker attached on its tip, we extract multiple 2D
and 3D correspondences of a single marker detection, µs

k

and ms
k, respectively. Our approach is greedy and consid-

ers only cases where a single marker is detected across all
viewpoints. Since we also extract the local 3D marker es-
timates ms

n in addition to the projections µs
n, we first per-

form a pairwise alignment with respect to a chosen refer-
ence viewpoint sref = 1 using the unscaled Umeyama al-
gorithm [17] and the 3D correspondences ms

k. This pro-
vides us with an adequate initial estimation for each sen-
sor’s pose Ts

init, s ∈ {2, ..., S}. We then use the projection
constraints µs

k to perform graph-based sparse bundle adjust-
ment [11] for the sensor poses, except the one sref used as
a reference, keeping it fixed as the identity pose, as well as
fixing the 3D marker estimates originating from this refer-
ence viewpoint. This step quickly refines the pairwise esti-

2Specifically, 160µs as explained in the K4A documentation.

Figure 4. A visualization of the simple multi-sensor extrinsics cal-
ibration process. Using a single-marker wand (bottom right), the
user only needs to freely move the wand creating a trajectory of
correspondences (color-coded based on elapsed time).
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mates, to the final globally optimized Ts. Using these, we
fuse all local marker estimates from each sensor s, resulting
into a 3D marker cloud m̂ =

⋃S,N
s=1,n=1 T

sms
n, which is

the input to our model. A sample aligned wand trajectory
as captured from all viewpoints is illustrated in Fig. 4.

2.4. Real-time Inference

We adapt the staged DeMoCap model [5] to achieve real-
time run-time rates and minimize processing latency. The
original model uses a staged markers-to-joints approach,
where 2× HRNet [20] models are used in a cascade, with
the first one predicting markers using a 4 branch/stage HR-
Net, and then encodes the predicted markers into joints us-
ing the second model, again via 4 branches/stages of high-
resolution modules. While one approach to reduce the com-
putational complexity would be to reduce the number of
stacks, or retrain a single HRNet model to predict joints
from noisy markers, these approaches would sacrifice repre-
sentation power and accuracy for run-time at a sub-optimal
trade-off. Instead, we leverage the recently presented Lite-
HRNet [22] network that offers a more balanced trade-off
between model performance and run-time. Since the staged
markers-to-joints approach improves the quality of the re-
sults, we retrain the original model using Lite-HRNets in-
stead of traditional HRNets it was presented with. The re-
sulting “DeMoCap-Lite” model is capable of real-time in-
ference at the sensor acquisition rate, with evidence pre-
sented in our supplementary video3.

2.5. Sensor Adaptation

The original DeMoCap model [5] was trained with
marker data obtained from the RS2 IR and depth streams
and supervised with the Vicon MoCap marker and joint
data [4]. Developing a system on top of the K4A sensors
means that the model input data distribution will be shifted
compared to that which the model was trained on. This data
discrepancy manifests in two ways, first on the 2D marker
detection level and, second, on the depth estimates used to
lift the 2D marker detections to the fused 3D marker cloud
input of the model. RS2 estimates depth through active
stereo, projecting a dotted IR pattern into the scene which is
sparser than the K4A IR projector. As seen in Fig. 5, this re-
sults into non-continuous high amplitude blobs that depict a
single marker, which alters the post-thresholding output as
well as the 2D marker centroid detection robustness. Addi-
tionally, RS2 depth is far more noisy than K4A depth, even
when using stricter stereo matching thresholds and at closer
distances, as also indicated in Fig. 5. Overall, the original
model was trained on far noisier data than what is captured
by the K4A sensors. Still, the K4A data are noisier than the
high-quality Vicon data from a systematic error noise per-
spective, but they also suffer from occlusions and ghosting,

3https://www.codewheel.eu/cvpr2022/video

Figure 5. An illustration of the domain gap between the K4A sen-
sor (top) and the RS2 sensor (bottom). On the left, the input IR
images are depicted, with the K4A blobs being of higher-quality,
while on the right, the input depth images are visualized, with the
K4A depth map exhibiting the invalid values at the markers’ posi-
tions. On the contrary, RS2 misses markers due to its sparser pro-
jected dot pattern, hindering their robust detection (e.g. thighs),
and offers much more noisy depth, especially at the high ampli-
tude marker regions that contain no informative features for stereo-
matching. Further, the one-ring effect is also observed, where the
measurements next to the invalid area preserve the surface’s depth.

an information type of noise which exists in the RS2 data,
but not in the Vicon ground-truth. To overcome these issues
and increase the model’s performance on the new sensor
without capturing new data, we employ a curriculum learn-
ing training approach that seeks to control the level of noise
that the model is trained on. During the initial phases of
training (first 30 epochs), our DeMoCap variant is trained
only with Vicon marker data as input, essentially learn-
ing to autoencode high-quality marker input, and infer the
body structure from them. Then, for the next training phase
(epochs 31 → 80), we add systematic and information noise
to the Vicon data, steering the model towards learning to
denoise the inputs. For the systematic noise we use Gaus-
sian noise N (0,σ) on the marker 3D positions, with a ran-
domly uniform sampled deviation σ = (σx, σy, σz), where
σ = U(0.5cm, 1.5cm). Additionally, for the information
noise, we randomly remove up to 8 markers, and addition-

4



Figure 6. A representative example of a captured motion sequence: (top) the physical scene and the actress as perceived by an observer;
(bottom) the real-time output of our system rendered as 3D skeleton along with markers frames.

ally randomly generate up to 8 new markers around existing
markers, with their position’s offset drawn from a Gaussian
distribution N = (0,U(1.5cm, 5.0cm)). Essentially, these
add synthetic ghosting and occlusion artifacts on the input.
Finally, for the last training stage (last 40 epochs), we in-
clude the RS2 data to supplement the noisy Vicon data, cre-
ating a mix of input noise that prevents the model from fo-
cusing on a specific distribution, and aligning it better with
the higher quality K4A input distribution.

The total average processing time per frame, spanning
from the per-sensor capturing (3 viewpoints) up to the hu-
man motion rendering, is 30ms when running on a Laptop
with an RTX 2080 Ti GPU and an Intel i7 CPU, resulting in
low-latency motion capture at 30 FPS, equal to the sensor
acquisition frame rate.

3. Results & Discussion

The presented system allows for the motion cap-
ture of single subject performances using affordable and
lightweight equipment. It operates in real-time, enabling
pre-visualization and live inspection of the performance re-
sults. Compared to monocular markerless approaches, our
system can obtain more robust, metric-scale captures with
a minimal equipment/costs overhead. Fig. 6 shows the in-
puts, accompanying with color information, and the cap-
tured motion of the actor’s performance in time. More re-
sults are available in the supplementary video3, with an ex-
tensive quantitative analysis for the original model avail-
able in [5]. Further, the system has been tested with var-
ious performances, proving its generalization to motions
outside the training dataset, including dancing, sports, and
casual/social ones. It should be noted that for all qualita-
tive results, the system performs per-frame inference with-
out using any temporal information or other constraints.
Furthermore, another notable trait is its sensor agnostic na-
ture, which is evident when considering that the training
data have not been captured by K4A sensors. Finally, its
data-driven backend offers high level of robustness with re-
spect to the markers’ placement on each subject, speeding

up capturing workflows and reducing repeat captures due to
sub-optimal marker placements.

Therefore, future work will focus on integrating tempo-
ral constraints/tracking, similar to [23], as well as a body
structure calibration step to enforce the consistency of the
estimated bone lengths in an explicit way. Additionally, we
plan to scale up our system for covering larger capturing
areas and/or supporting multiple subjects, yet the current
system design is already able to facilitate these changes.

Nonetheless, there is a set of limitations which will re-
quire deeper modifications. Reliance on markers is one of
the aforementioned limitation, which is partially the rea-
son why markerless methods are recently surfacing. Still,
exploiting available data, a possible direction would be to
reduce the number of markers, similar to how inertial Mo-
Cap systems are starting to reduce the number of deployed
IMUs [19]. Likewise, a fusion of color and infrared infor-
mation may enable the development of hybrid, i.e. marker-
based and markerless, systems targeting the reduction of the
markers attached on the subjects, while preserving accu-
racy and estimating metric-scale outputs. Such systems are
commercially available nowadays, but, to the best of our
knowledge, none of them exploits extensively the advances
of data-driven techniques.

4. Acknowledgements
A. Chatzitofis and S. Thermos would like to acknowl-

edge financial support by the RIF through the KinesisVision
project under contract PRE-SEED/0719/0119 and HUB-
CAP H2020 EU project under contract 2021/1578786.

References
[1] Markerless software from Theia in Vicon Nexus: Motion

capture software, 2021.
[2] Tanine Allison. More than a man in a monkey suit: Andy

serkis, motion capture, and digital realism. Quarterly Review
of Film and Video, 28(4):325–341, 2011.

[3] Andreas Aristidou, Daniel Cohen-Or, Jessica K Hodgins,
and Ariel Shamir. Self-similarity analysis for motion capture
cleaning. Computer graphics forum, 37(2):297–309, 2018.

5



[4] Anargyros Chatzitofis, Leonidas Saroglou, Prodromos
Boutis, Petros Drakoulis, Nikolaos Zioulis, Shishir Subra-
manyam, Bart Kevelham, Caecilia Charbonnier, Pablo Ce-
sar, Dimitrios Zarpalas, et al. HUMAN4D: A human-centric
multimodal dataset for motions and immersive media. IEEE
Access, 8:176241–176262, 2020.

[5] Anargyros Chatzitofis, Dimitrios Zarpalas, Petros Daras, and
Stefanos Kollias. DeMoCap: Low-cost marker-based mo-
tion capture. International Journal of Computer Vision,
129(12):3338–3366, 2021.

[6] Kang Chen, Yupan Wang, Song-Hai Zhang, Sen-Zhe Xu,
Weidong Zhang, and Shi-Min Hu. MoCap-Solver: A neural
solver for optical motion capture data. ACM Transactions on
Graphics (TOG), 40(4):1–11, 2021.

[7] Henrique Galvan Debarba, Marcelo Elias de Oliveira,
Alexandre Lädermann, Sylvain Chagué, and Caecilia Char-
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