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Abstract

Deep networks often make confident, yet, incorrect, pre-
dictions when tested with outlier data that is far removed
from their training distributions. Likelihoods computed by
deep generative models (DGMs) are a candidate metric
for outlier detection with unlabeled data. Yet, previous
studies have shown that DGM likelihoods are unreliable
and can be easily biased by simple transformations to in-
put data. Here, we examine outlier detection with varia-
tional autoencoders (VAEs), among the simplest of DGMs.
We propose novel analytical and algorithmic approaches
to ameliorate key biases with VAE likelihoods. Our bias
corrections are sample-specific, computationally inexpen-
sive, and readily computed for various decoder visible dis-
tributions. Next, we show that a well-known image pre-
processing technique – contrast stretching – extends the
effectiveness of bias correction to further improve outlier
detection. Our approach achieves state-of-the-art accura-
cies with nine grayscale and natural image datasets, and
demonstrates significant advantages – both with speed and
performance – over four recent, competing approaches.
In summary, lightweight remedies suffice to achieve robust
outlier detection with VAEs.1

1. Introduction

Deep neural networks are increasingly deployed in real-
world computer vision applications. A key issue with such
deployments is over-confident predictions: the tendency of
these networks to make confident, yet incorrect, predictions
when tested with images whose statistics are far removed
from the training data distribution [21]. Developing ro-
bust methods for outlier detection is, therefore, an important
challenge with critical real-world implications.

A popular class of approaches for outlier detection, espe-

*Corresponding author
1Code is available at https : / / github . com / google -

research/google-research/tree/master/vae_ood.

Figure 1. Schematic of the proposed approach. Variational au-
toencoders (VAEs) are routinely employed for unsupervised out-
lier detection with real-world images. Yet, variations in low-level
image features, like overall intensity or contrast, can readily bias
VAE likelihoods (p(x)). We analyze these biases, and propose
lightweight analytical and algorithmic remedies (Bias Correction
and Contrast Stretching) for de-biasing VAE likelihoods (pc(x)),
to achieve robust outlier detection.

cially with label-free data, involves computing sample like-
lihoods with deep generative models like variational autoen-
coders (VAEs [8]) or flow-based models (e.g. Glow [7]).
Here, we explore outlier detection with VAEs, arguably
among the simplest of deep generative models. In VAEs,
both the generative model p✓(x|z) and the inference model
q�(z|x) are parameterized by deep neural networks with
parameters ✓ (decoder) and � (encoder) respectively; the
stochastic latent representation z is typically of consider-
ably lower dimensionality than the input data x. VAEs dif-
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fer from other kinds of deep generative models, like flow
models, in that rather than directly optimizing the marginal
likelihood p(x), they seek to optimize the evidence lower
bound (ELBO) as a proxy for maximizing p(x).

Several previous studies have shown that likelihoods
computed by deep generative models, including VAEs, are
unreliable for outlier detection [3, 16, 19, 25]. For example,
these likelihoods are readily biased by differences in low-
level image statistics, like the number of zeros in a sam-
ple [19] or the variance in the distribution of pixel inten-
sities [16]. A few solutions have been proposed to over-
come these challenges. However, these suffer from com-
putational bottlenecks [19, 25] or do not work well in low-
sample regimes [15] (see Section 2, Related Work).

In this context, we propose and test efficient remedies
that achieve or approach state-of-the-art for outlier detec-
tion. Our key contributions are as follows:

• We present a careful analysis of bias in VAE likelihoods
and propose analytical and algorithmic approaches to cor-
rect this bias. These corrections can be computed inex-
pensively, post hoc, during evaluation time.

• We show that a standard image pre-processing step (con-
trast normalization) enables competitive outlier detection.

• We present a comprehensive evaluation of outlier detec-
tion with VAEs, with nine datasets (four grayscale and
five natural image datasets), in all.

• We demonstrate key advantages in terms of both speed
and accuracy over multiple competing, state-of-the-art
approaches [3, 19, 20, 25].

In sum, lightweight and computationally efficient remedies
suffice to achieve robust outlier detection with VAEs.

2. The challenge of outlier detection with VAE

likelihoods

We briefly recapitulate a well-known challenge of outlier
detection with VAE likelihoods, by taking a fresh look at
two previously reported sources of bias [16, 19].

Bias arising from pixel intensity. As a first example, we
train a VAE on grayscale FMNIST images [24] and com-
pute the likelihoods for in-distribution (ID) FMNIST and
out-of-distribution (OOD) MNIST [12] test samples. We
employ the continuous Bernoulli visible distribution [14]
for the VAE decoder (model details, Appendix A. We repli-
cate the well-known issue with VAE likelihoods: FMNIST
VAE likelihoods are higher for OOD (MNIST) samples as
compared to ID (FMNIST) samples (Fig. 2a). The highest
likelihoods are assigned to FMNIST samples with a large
number of black pixels (Fig. 2b, top row), whereas the low-
est likelihoods are assigned to samples with many interme-
diate (gray) pixel values (Fig. 2b, bottom row), consistent
with previous reports [19]. On simulated images with dif-
ferent (constant) pixel intensities, we find a U-shape trend
in likelihood bias (Fig. 3a, gray line).

Bias arising from channel variance or image contrast.
Next, we train a VAE on the CelebA dataset [13], and
compute ID (CelebA) and OOD (GTSRB [22]) likelihoods.
Again, the VAE assigns high likelihoods to OOD samples
(Fig. 2f). Faces with dark backgrounds and high contrast

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Bias correction improves outlier detection. (a) Kernel density estimate of Fashion-MNIST (FMNIST) VAE log likelihoods.
Out-of-distribution (OOD) MNIST samples get higher log likelihoods as compared to in-distribution (ID) FMNIST samples. (b) Top and
bottom rows: FMNIST images assigned highest and lowest log-likelihoods, respectively, by the FMNIST VAE. (c) Same as in panel (a),
but with bias correction (d) Same as in panel (b), but with bias correction. (e) AUROC curves for outlier detection with the FMNIST VAE
likelihoods using MNIST (OOD) test samples without (blue) bias correction and with bias correction (orange) (f-j) Same as in panels (a-e),
but for the CelebA VAE with CelebA (ID) and GTSRB (OOD) samples.
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between the face and background are assigned the highest
likelihoods (Fig. 2g, top row), and vice versa for low con-
trast faces (Fig. 2g, bottom row). With simulated images,
we observe that VAE likelihoods are strongly biased by con-
trast (Fig. 3b, gray line).

In this context, we develop efficient remedies for out-
lier detection with VAE likelihoods. First, we correct for
pixel intensity bias using both analytical and empirical ap-
proaches. Second, we correct for the image contrast bias us-
ing a standard image pre-processing step (contrast stretch-
ing). Finally, we evaluate our remedies with multiple (nine)
grayscale and natural image datasets, to show state-of-the-
art outlier detection.

Related work

Our bias correction is most closely related to the work
of Serra et al. (2019) [20] who proposed a correction for
Glow and PixelCNN++ model likelihoods based on “input
complexity” (IC). Their out-of-distribution score is com-
puted by subtracting a sample-specific complexity estimate
L(x) from the negative log-likelihood. Yet, IC depends on
an ad hoc choice of a compression algorithm (e.g. PNG,
JPEG2000, FLIF), whereas our correction is analytically
derived from the VAE decoder visible distribution. We
also demonstrate superior performance over IC for multi-
ple grayscale and natural image datasets.

Ren et al. (2019) [19] originally highlighted the problem
of bias in deep generative model likelihoods, for samples
with many zero-valued pixels. They proposed correcting
for this bias by training a second generative model with
noise-corrupted samples to capture background statistics;
the “likelihood ratio” between the original and noisy VAEs
provided a sensitive readout of foreground object statistics.
Yet, this approach does not appear to work well with VAEs
(see also [25]). Moreover, our bias correction obviates the
need for training multiple, duplicate models. Similarly, Nal-
isnick et al. (2019) [16] originally identified the problem of
bias in likelihoods arising from sample variance [15]. How-
ever, their solution – a “typicality” test – works best with
batches of samples, and performs relatively poorly with sin-
gle outlier samples.

Recent work by Yong et al. (2020) [27] proposed em-
ploying bias-free Gaussian likelihoods and their variances
for outlier detection. Yet, Gaussian visible distributions are
not theoretically appropriate to model the finite range of
pixel values (0-255) encountered in images. We develop
bias corrections for Bernoulli, continuous Bernoulli, trun-
cated Gaussian and categorical visible distributions, which
are appropriate for modeling pixel values in images. More-
over, Yong et al.’s approach does not work well with natural
image datasets (their Appendix C). Our results show robust
outlier detection, even with natural image datasets.

Xiao et al. (2020) [25] proposed a “likelihood re-

gret” metric that involves quantifying the improvement in
marginal likelihood by retraining the encoder network to
obtain optimal likelihood for each sample. Such sample-
specific optimizations are computationally expensive, for
example, when millions of samples need to be evaluated on-
the-fly. In contrast, our proposed metrics are readily com-
puted with a single forward pass through pre-trained VAEs,
leading to a 50-100x speedup in evaluation times over like-
lihood regret.

3. De-biasing VAE likelihoods

To improve outlier detection with VAE likelihoods, we
develop remedies for correcting for the two sources of bias
discussed in the previous section.

3.1. Analytical correction for intensity bias

We develop an analytically-derived correction for VAE
likelihoods, based on the recently developed continuous
Bernoulli visible distribution for the decoder [14]. The
procedure for computing the correction for a conventional
Bernoulli visible distribution is presented in Appendix B.

The VAE marginal likelihood can be written as:

log p✓(x) = logEq�(z|x)[p✓(x|z)p(z)/q�(z|x)]

We examine the negative reconstruction error term
p✓(x|z), assuming perfect reconstruction of the input sam-
ples by the VAE. We denote this as pcB(x;�

⇤) where pcB de-
notes the continuous Bernoulli pdf, and �⇤ are optimal pa-
rameters that correspond to perfect reconstruction (x̂ = x).
We plot log pcB(x;�

⇤) for simulated images in Figure 3a
(dashed green). log pcB(x;�

⇤) exhibits a bias that is nearly
identical with the marginal likelihood (Fig. 3a, gray). Thus,
even if two input samples are perfectly reconstructed by the
VAE, these will be assigned different likelihoods, depend-
ing on the average pixel intensity in each sample; a bias that
is largely driven by the reconstruction error term.

We eliminate this bias in the reconstruction error by di-
viding by the error for perfect reconstruction. For the con-
tinuous Bernoulli visible distribution, the negative recon-
struction error is given by:

log p✓(x|z) = log pcB(x;�✓(z))

=
DX

i=1

logC(�i) + xi log �i + (1� xi) log(1� �i)
(1)

Note that the continuous Bernoulli decoder outputs the
shape parameter (�i) for the ith pixel. The decoded pixel
value itself is given by:

x̂i =
�i

2�i � 1
+

1

2 tanh�1(1� 2�i)
if �i 6=

1

2

=
1

2
if �i =

1

2
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(a) (b)

(c) (d)

Figure 3. Correcting for biases arising from pixel intensities

and image contrasts. (a) Negative reconstruction error for sim-
ulated images with uniform pixel intensities, ranging from full-
black to full-white before (blue) and after (orange) analytical bias
correction (BC) (y-axes units are kilonats). (b) Negative recon-
struction error for simulated images with varying contrasts, from
highest to lowest values before (blue) and after (orange) con-
trast stretching (CS) and analytical bias correction. (Both panels)
Dashed green line: negative reconstruction error for perfect recon-
struction with the continuous Bernoulli visible distribution. Gray
line: log-likelihood before bias correction. (c-d) Same as in (a)
and (b) but for VAE trained with categorical visible distribution,
and algorithmic bias correction.

For perfect reconstruction we set x̂i = xi. To find
the optimal �⇤

i corresponding to perfect reconstruction, we
used SciPy’s implementation of Nelder-Mead simplex algo-
rithm to iteratively maximize log pcB(xi;�i); the correction
is then calculated by setting �i = �⇤

i in equation (1) above.
Thus, the “bias-corrected” marginal likelihood (BC)

evaluates to:

log pc✓(x) = logEq�(z|x)


p✓(x|z)

pcB(x;�
⇤)

p(z)

q�(z|x)

�
(2)

= log p✓(x)� log pcB(x;�
⇤) (3)

Following this analytical bias correction, the bias in the
negative reconstruction error is eliminated (Fig. 3a, orange).
We note that this correction can be computed during evalu-
ation time and does not require retraining the VAE.

3.2. Algorithmic correction for intensity bias

Next, we demonstrate an algorithmic approach for cor-
recting biases with VAE likelihoods. Such an approach
is relevant for decoder visible distributions for which the
analytical correction is not tractable, or for which biases
must be evaluated empirically. We illustrate this latter sce-
nario with the “categorical” visible distribution” – a popular
choice of visible distribution for various generative models,

including VAEs [19,25] and autoregressive models like Pix-
elCNN [23].

In theory, the categorical distribution does not suffer
from an analytical bias. As a result, perfectly reconstructed
images should not suffer from any bias in the reconstruc-
tion error term, p✓(x|z). Yet, in practice, we find such a
bias arises in a VAE trained with the categorical visible dis-
tribution for the decoder.

To illustrate this, we compute the empirical bias in the
log likelihood for a CelebA VAE for images with various
uniform pixel intensities (0-255) (Fig. 3c, gray). We ob-
serve a U-shaped profile, similar to that observed for VAEs
trained with the continuous Bernoulli visible distribution
(Fig. 3a). This bias can be explained as follows: For tar-
get pixel values close to full black or full white, the VAE
decoder concentrates probability mass (PMF) at the target
pixel value. On the other hand, for target values close to the
middle of the gray range, the PMF is more dispersed around
the target pixel value, resulting in lower PMF at the target
pixel itself (Appendix F.1, for details).

We correct for this empirical bias with the following al-
gorithmic approach. We compute the average categorical
distribution output for every target pixel value (0-255) em-
ploying all of the training (inlier) samples for that VAE.
Then, for each test sample, we compute the correction term
for the negative reconstruction error as its average value
across pixels, under the categorical visible distribution. The
procedure is described in detail in Algorithm 1.

Again, following this algorithmic bias correction, the
empirical bias with the categorical distribution is eliminated
(Fig. 3c, orange). Such an algorithmic correction general-
izes to other types of visible distributions as well: results
for VAEs trained with the truncated Gaussian visible distri-
bution are presented in Appendix F.2.

3.3. Correction for contrast bias: Normalization

Variation in image contrasts produces systematic biases
in the likelihood and negative reconstruction error, both
with the continuous Bernoulli visible distribution (Fig. 3b,
blue), as well as with the categorical visible distribution
(Fig. 3d, blue). This is particularly surprising because the
categorical distribution is, in theory, bias-free. Nonetheless
this bias arises, in practice, due to practical limitations with
achieving perfect reconstructions with VAEs. Specifically,
the VAE achieves systematically worse reconstructions – as
measured by the categorical negative reconstruction error
– for high-contrast, as compared to low-contrast, images
(Fig. 3d, blue line). As a consequence, the contrast-related
bias in the categorical distribution is in a direction opposite
to that observed with the continuous Bernoulli distribution
(compare Fig. 3d with Fig. 3b).

For eliminating this additional source of bias arising
from image contrasts, we propose a standard image pre-

9884



Algorithm 1: Algorithmic Bias correction
Data: Training Set X = {x1,x2, ...xn} with xp of

shape 32⇥ 32⇥ nc (no. of channels),
Encoder Parameters �, and Decoder
Parameters ✓

Result: Log Correction Factor C : (v, k)! Float
for v = 0, 1, . . . 255 and k = 1, 2, . . . nc

Init: Map A : (v, k)! EmptyList for
v = 0, 1, . . . 255 and k = 1, 2, . . . nc

for xp 2 X do

Init: Map B : (v, k)! EmptyList for
v = 0, 1, . . . 255 and k = 1, 2, . . . nc

z ⇠ q�(z|xp)
for i 1 to 32, j  1 to 32, k  1 to nc do

Append pijk✓ (xijk
p |z̄) to B(xijk

p , k)
end

for v  0 to 255, k  1 to nc do

Append Mean(B(v, k)) to A(v, k)
end

end

Init: Map C : (v, k)! 0 for v = 0, 1, . . . 255 and
k = 1, 2, . . . nc

for v  0 to 255, k  1 to nc do

C(v, k) Log(Mean(A(v, k)))
end

processing step – “contrast stretching” – which is known
to improve the robustness of deep classifier models [5]. For
our case, each image sample, both from the training and
testing datasets, is contrast normalized with the following
transformation: xi = min(max(0, [xi�a]/r), 1), where xi

refers to the ith pixel of image x, r = P95(x) � P5(x),
a = P5(x), Pj refers to the jth percentile and x refers
to the vectorized input sample tensor. Following contrast
stretching, we observe more homogeneous distributions of
per-channel variance across datasets (see Appendix E.4).

Contrast stretching and bias correction ameliorate this
bias for both types of visible distributions (Fig. 3b, orange,
Fig. 3d, orange).

4. Experiments

We trained and tested VAEs with multiple grayscale and
natural image datasets. These included four grayscale im-
age datasets – MNIST, Fashion-MNIST, EMNIST (hand-
written English letters [4]) and Sign Language-MNIST
(hand gesture thumbnails [1]) – and tested them against
four outlier datasets each. These outlier datasets com-
prised each of the other three datasets (the ones that the
VAE was not trained on) and a grayscale, uniform noise
dataset. Similarly, we trained VAEs with five natural im-

age datasets – SVHN (Street View House Numbers [17]),
CelebA, ComprehensiveCars (traffic surveillance camera
views of cars [26]), GTSRB (German Traffic Sign Recog-
nition Benchmark) and CIFAR-10 [10] – and tested them
against five outlier datasets each. Again, the outlier datasets
comprised each of the other four datasets, and a colored,
uniform noise dataset. Data sources and pre-processing de-
tails are provided in Appendix C. Each VAE was trained 6
times, with 3 different random initializations of the network
weights across 2 train-validation splits; we report average
performance measures across all 6 runs (e.g. Figs. 4, 5).

4.1. De-biased likelihoods improve outlier detection

We compared the outlier detection performance of the
vanilla (uncorrected) VAE likelihood (LL) against the bias
corrected likelihood (BC-LL). Both train and test im-
ages were contrast stretched prior to computing BC-LL
scores. The results are shown as a grid (4⇥5 or 5⇥6)
of area under the ROC curve (AUROC) values, separately
for the grayscale (1 channel) and natural image (3 chan-
nel) datasets. Corresponding results for area under the
precision-recall curve (AUPRC) and false-positive rate at
80% true-positive rate (FPR@80%TPR) are provided in
Appendices E.2-E.3, and details regarding each measure are
provided in Appendix D.

We evaluated the effectiveness of the analytical bias
correction, first, with VAEs trained with the continuous
Bernoulli visible distribution.

First, we evaluated our remedies for outlier detection
with VAEs trained on grayscale image datasets. In nearly
every case, we found that bias-corrected likelihoods (BC-
LL, Fig. 4, unfilled orange squares) outperformed uncor-
rected likelihoods (LL, Fig. 4, unfilled blue circles); AU-
ROC values for outlier detection approached ceiling levels,
in many cases. For example, bias correction resolved the
problematic case of the Fashion-MNIST VAE such that in-
distribution Fashion-MNIST samples were assigned higher
bias-corrected likelihoods than out-of-distribution MNIST
samples (Fig. 2c), resulting in a perfect AUROC (Fig. 2e).
Moreover, samples that were assigned the highest and low-
est bias-corrected likelihoods were visually more typical
and atypical, respectively (Fig. 2d), as compared to those
based on uncorrected likelihoods (Fig. 2b). Across all out-
lier datasets tested with the Fashion-MNIST VAE, AUROC
was typically at or near ceiling with the bias-corrected like-
lihoods (Fig. 4, second column). On average, we found ac-
curacy improvements of up to⇠70% following bias correc-
tion, across all grayscale VAEs (Fig. 4, last row).

Second, we tested these remedies with VAEs trained on
natural image datasets. Again, in nearly every case the BC-
LL score (Fig. 5, unfilled orange squares) outperformed
uncorrected likelihoods (Fig. 5, unfilled blue circles). For
example, for the CelebA VAE, AUROC values ranged be-
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Figure 4. Outlier detection with bias-corrected likelihoods, and comparison with competing approaches: Grayscale datasets. Outlier
detection AUROC values for VAEs trained with grayscale image datasets and tested with other grayscale datasets (or noise). Each column
represents a training dataset, and each row represents a test dataset. Last row: average AUROC across all test datasets for each VAE.
Unfilled blue and orange symbols: AUROC with uncorrected log likelihoods (LL), and bias-corrected log likelihoods (BC-LL) respectively
for VAE trained with continuous Bernoulli visible distribution. Filled blue and orange symbols: Same as the unfilled symbols but for
VAE trained categorical visible distribution. Green, red, purple, and brown symbols show AUROC scores of competing outlier detection
approaches: Input Complexity (IC), Likelihood Ratio (LRat), Likelihood Regret (LReg), and Watanabe Akaike Information Criterion
(WAIC), respectively. Higher values indicate better outlier detection performance. Numbers in bold indicate highest AUROC values across
all scores for each train-test combination. Gray shading in the last row: range of AUROC values for each score across all test datasets.

tween 47-79 with the uncorrected likelihoods (across all
out-of-distribution datasets, except Noise), whereas these
values improved to 85-88 with bias correction (Fig. 5, sec-
ond column, Fig. 2h, and Fig. 2j). As with the Fashion-
MNIST dataset, CelebA samples assigned the highest bias-
corrected likelihoods were visually more typical; contain-
ing face images on typical plain backgrounds, whereas the
lowest likelihood samples comprised of face images with
extraneous objects, such headgear, unconventional attire or
unusual backgrounds (Fig. 2i). On average, we observed
accuracy improvements of ⇠10-40% following bias correc-
tion, across all natural image VAEs (Fig. 5, last row).

Ablation experiments revealed the relative contributions
of contrast stretching and bias correction; the results are
presented in Appendix E.4. First, contrast stretching was
essential to achieving high accuracies, particularly with the
natural image datasets. Moreover, contrast stretching, even
at test time, sufficed to achieve robust outlier detection:
With a VAE trained on the original images (without contrast
stretching), outlier detection accuracies improved if contrast
stretching was applied at test time alone. Lastly, contrast
normalization with techniques other than contrast stretch-
ing (e.g. histogram equalization) also yielded comparable

outlier detection accuracies (see Appendix E.4).
Contrast stretching and bias correction generally im-

proved outlier detection even with milder perturbations to
the data, such as with adding various kinds of noise (Gaus-
sian, impulse etc; see Appendix E.5). On the other hand,
training the VAE by introducing intensity and contrast vari-
ations in the training samples was not as effective as contrast
stretching and bias correction (Appendix E.6). Similarly, an
alternative approach for normalizing per channel variance
using image whitening (Zero-phase Component Analysis or
ZCA) was also comparatively unsuccessful, especially with
natural image datasets (Appendix E.7).

Finally, we replicated these results with the algorithmic
bias correction with VAEs trained with the categorical vis-
ible distribution. Again, in nearly every case we observed
significant improvements in outlier detection performance
following bias correction (Fig. 4 and Fig. 5, filled blue cir-
cles/LL versus filled orange squares/BC-LL).

4.2. Comparison with competing approaches

We compared accuracies with the bias-corrected like-
lihood (BC-LL) scores against four competing, state-of-
the-art approaches: i) input complexity (IC), ii) likelihood

9886



Figure 5. Outlier detection with bias-corrected likelihoods, and comparison with competing approaches: Natural image datasets.

Same as in Figure 4 but for VAEs trained with natural image datasets and tested with other natural image datasets (or noise). Other
conventions are the same in Figure 4.

ratio (LRat), iii) likelihood regret (LReg) and iv) WAIC
(Watanabe-Akaike Information Criterion). Briefly, IC em-
ploys a subtractive bias correction for each sample; the
correction is computed based on sample complexity es-
timated with one of many compression algorithms (e.g.
PNG) [20]. The likelihood ratio score computes the ra-
tio between the sample likelihood obtained with a VAE
trained with the original data, and one trained with noise-
corrupted images [19]. Likelihood regret computes the
improvement in the log-likelihood for a particular sample
that can be achieved with a sample-specific optimization of
the posterior q�(z|x) [25]. Finally, WAIC is computed as
E✓[log p✓(x)]�Var✓[log p✓(x)], from an ensemble of deep
generative models [3] (Appendix D, for details).

First, we performed an exhaustive (4⇥5) comparison of
approaches with grayscale VAEs and datasets. For illustra-
tion, we discuss results for the problematic Fashion-MNIST
VAE (Fig. 4, second column). The BC-LL score outper-
formed, or performed comparably with, other state-of-the-
art methods for detecting outliers with the Fashion-MNIST
VAE. Interestingly, IC performed relatively poorly for this
VAE (Fig. 4, green symbols). Similar results were observed
with the other grayscale VAEs: on average, BC-LL AU-
ROC values were comparable with these state-of-the-art ap-
proaches (Fig. 4, bottom row, Average).

Next, we performed an exhaustive (5⇥6) comparison
of all approaches with natural image VAEs and datasets.
Again, we illustrate the results with the CelebA VAE

(Fig. 5, second column). As before, we noticed superla-
tive outlier detection performance with the BC-LL score.
Although, other methods (e.g. IC or LReg) performed bet-
ter at detecting outliers belonging to specific datasets (e.g.
SVHN, Fig. 5, top row, second column), BC-LL yielded the
highest average AUROC values across all outlier datasets
tested with the CelebA VAE (Fig. 5, bottom row, second
column). Overall, across all combinations of VAEs and
outlier datasets tested, BC-LL performed more consistently
and yielded AUROC values on par with, or exceeding, state-
of-the-art (Fig. 5, bottom row, Average).

Interestingly, outlier detection with BC-LL was rela-
tively poor for the CIFAR-10 dataset, a failure shared by
other approaches as well. Even IC that achieved high AU-
ROC values for the challenging case of the CIFAR-10/ID
versus SVHN/OOD case, performed sub-par when tested
with the opposite pairing (SVHN/ID vs CIFAR-10/OOD)
(Fig. 5, compare first row, last column with fifth row, first
column). Moreover, IC’s performance significantly deteri-
orated when tested against Noise OOD images for multi-
ple ID datasets (e.g. SVHN, CelebA, CIFAR-10; Fig. 5,
penultimate row, first, third and fifth columns). Sim-
ilarly, the likelihood ratio metric that achieved superla-
tive AUROCs for the SVHN/ID versus CelebA/OOD case
failed when tested with the opposite pairing (CelebA/ID vs
SVHN/OOD). The results indicate an important caveat with
claiming superlative outlier detection by evaluating spe-
cific, challenging ID/OOD pairs (e.g. CIFAR-10/ID versus
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Figure 6. Bias correction is significantly faster than competing

approaches. (a) (Top row) Compute times (ms) averaged across
500 test samples with each approach, for a grayscale image VAE
(lower is better). (Bottom row) Speedup factor computed as the
ratio of the compute time for each approach to the compute time
for the BC-LL score (higher is better) (b) Same as in panel (a),
but showing compute times (top row) and speedups (bottom row)
using a natural image VAE. Other conventions are the same in Fig-
ures 4 and 5.

SVHN/OOD). It is possible that high outlier detection ac-
curacies may occur for such specific pairings due to “over-
correction” of the OOD likelihood by the respective meth-
ods. We discuss this case in the Limitations section and, in
further detail, in Appendix G.

Finally, we compared compute times for our scores with
previous outlier detection approaches, based on the infer-
ence time averaged across 500 randomly selected samples
from each test dataset. Compute times for BC-LL scores
outperformed competing approaches by a factor of up to
100x (Fig. 6), for both grayscale and natural image datasets.
In summary, the bias corrected likelihood provides a sim-
ple, and computationally inexpensive approach for achiev-
ing state-of-the-art outlier detection.

5. Limitations and Conclusions

We have proposed, and extensively tested, a simple and
efficient remedy to achieve robust outlier detection by de-
biasing VAE likelihoods. We demonstrate the effectiveness
of this remedy for outlier detection with multiple grayscale
and natural image datasets (total of 9 datasets), using four
different, popular VAE visible distributions (continuous
Bernoulli, Bernoulli, categorical and truncated Gaussian),
and comparing performance with four competing state-of-
the-art, approaches [3, 19, 20, 25]. In nearly all cases, our
correction approached or achieved state-of-the-art outlier
detection performance. We also show that outlier detection
is robust to the number of latent dimensions in the VAE
(Appendix E.1). In addition, our remedy is computationally
inexpensive and significantly outperforms all competing ap-
proaches in terms of evaluation times. In sum, lightweight
remedies suffice to ameliorate biases arising from low-level
image statistics (e.g. intensity or contrast variations), to

achieve robust outlier detection with VAE likelihoods.
Yet, we note that certain kinds of datasets pose a chal-

lenge for outlier detection with VAE likelihoods. For ex-
ample, even with bias correction VAE likelihoods failed
to achieve superlative outlier detection with the CIFAR-10
dataset (Fig. 5, last column). In fact, nearly all of the other
competing approaches under-performed when tested with
this dataset. These results suggest that the failure may be
due to the unique nature of the CIFAR-10 dataset. Should
we, or should we not, then discount VAE likelihoods as a
generally applicable metric for outlier detection?

To answer this question we ask what, specifically, the
VAE ELBO objective seeks to optimize. On the one hand,
the VAE must learn a sparse representation of features in
a low-dimensional latent space (the KL-divergence term).
On the other hand, the VAE must also faithfully reconstruct
the image, pixel-for-pixel (negative reconstruction error). In
fact, minimizing the reconstruction error is key to achieving
high VAE likelihoods. To achieve this latter objective, the
VAE must also learn spatial relationships among its input
features in a coordinate frame locked to the bounding frame
(edges) of the image. Consequently, VAE likelihoods can-
not (and do not) reflect solely high-level, semantic features
of the image.

We propose that VAE likelihoods are ideally suited for
outlier detection for datasets with relatively homogeneous
images, in which features of the foreground objects (e.g.
faces, cars) appear at consistent spatial locations in a coor-
dinate frame locked to the edge of the image (e.g. Comp-
Cars, GTSRB, CelebA, SVHN). In all of these cases, our
bias correction sufficed to achieve excellent, and state-of-
the-art outlier detection. Yet, when image features asso-
ciated with the foreground object are heterogeneously and
inconsistently distributed relative to edge coordinates (e.g.
CIFAR-10), bias corrected likelihoods were not as effective.
This reasoning also explains why conventional deep net-
work models [11], or approaches based on optimizing VAE
latent feature representations [25], or approaches that train
models on deep classifier-based semantic feature represen-
tations [9] may outperform conventional VAE likelihood-
based approaches for outlier detection, especially with het-
erogeneous datasets like CIFAR-10. We explore this hy-
pothesis further in Appendix G.

Nonetheless, the bias correction we propose for VAEs
will be relevant for outlier detection in key real-world ap-
plications. For example, medical imaging data such as reti-
nal scans or MRI images are typically acquired in highly
stereotyped spatial coordinates. In these cases, VAEs can be
deployed as expert deep learning systems that are sensitive
to fine-grained spatial relationships among image features
(e.g. the morphology of pathological tissues) for accurate
outlier detection. Future work will explore these applica-
tions.
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