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Figure 1. We show three groups of shape reconstruction results generated by NDF [10] (in cyan) and our proposed 3PSDF (in gold)

respectively. Our method is able to faithfully reconstruct high-fidelity, intricate geometric details including both the closed and open

surfaces, while NDF suffers from the meshing problems. Each NDF result is reconstructed from a dense point cloud containing 1 million

points while ours are reconstructed using an equivalent resolution.

Abstract

Recent advances in learning 3D shapes using neural im-

plicit functions have achieved impressive results by break-

ing the previous barrier of resolution and diversity for

varying topologies. However, most of such approaches

are limited to closed surfaces as they require the space

to be divided into inside and outside. More recent works

based on unsigned distance function have been proposed

to handle complex geometry containing both the open and

closed surfaces. Nonetheless, as their direct outputs are

point clouds, robustly obtaining high-quality meshing re-

sults from discrete points remains an open question. We

present a novel learnable implicit representation, called

three-pole signed distance function (3PSDF), that can rep-

resent non-watertight 3D shapes with arbitrary topologies

while supporting easy field-to-mesh conversion using the

classic Marching Cubes algorithm. The key to our method is

the introduction of a new sign, the NULL sign, in addition to

the conventional in and out labels. The existence of the null

sign could stop the formation of a closed isosurface derived

from the bisector of the in/out regions. Further, we propose

a dedicated learning framework to effectively learn 3PSDF

without worrying about the vanishing gradient due to the

null labels. Experimental results show that our approach

outperforms the previous state-of-the-art methods in a wide

range of benchmarks both quantitatively and qualitatively.

1. Introduction

The choice of representation for 3D shapes and surfaces

has been a central topic for effective 3D learning. Various

3D representations, including mesh [18,41], voxels [36,42],

and point cloud [31,32], have been extensively studied over

the past years. Recently, the advent of neural implicit func-

tions (NIF) [6, 20, 26, 29] has brought impressive advances

to the state-of-the-art of learning-based 3D reconstruction

and modeling.

Classic NIF approaches are built upon the signed dis-

tance function (SDF); they train a deep neural network to

classify continuous 3D locations as inside or outside the sur-

face via occupancy prediction or regressing the SDF. How-

ever, they can only model closed surfaces that support the

in/out test for level surface extraction. Recent advances that

leverage unsigned distance function (UDF) [10,39,40] have

made it possible to learn open surfaces from point clouds.

But instantiating this field into an explicit mesh remains

cumbersome and is prone to artifacts. It requires the gen-
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eration of dense point cloud and leveraging UDF’s gradient

field to iteratively push the points onto the target surface.

Such process is vulnerable to complex gradient landscape,

e.g., parts with many details, and could easily get stuck at

a local minima. In addition, reconstruction of mesh from

UDF has to use the Ball Pivoting (BP) algorithm which has

several drawbacks. 1) It is very sensitive to the input ball

radius. A slightly larger or smaller radius would lead to

an incomplete meshing result. 2) It is prone to generate

self-intersections and disconnected face patches with incon-

sistent normals even with surfaces of moderate complexity

(see the clothing result in Figure 3). 3) The BP algorithm

is very time-consuming especially dealing with dense point

clouds. Finally, learning UDF becomes a regression task

instead of classification like for SDF, making the training

more difficult. We show in the closeups of Figure 1 that

NDF [8] cannot reconstruct the face details of the first char-

acter even with 1 million sampling points.

We overcome the above limitations by presenting a new

learnable implicit representation, called Three-Pole Signed

Distance Function (3PSDF), which is capable of represent-

ing highly intricate geometries containing both closed and

open surfaces with high fidelity (see Figure 1). In addi-

tion, 3PSDF makes the learning an easy-to-train classifica-

tion task, and is compatible with classic and efficient iso-

surface extraction techniques, e.g. the Marching Cubes al-

gorithm. The key idea of our approach is the introduction of

a direction-less sign, the NULL sign, into the conventional

binary-sided signed distance function. Points with null sign

will be assigned with nan value, preventing the decision

boundary to be formed between them and their neighbors.

Therefore, by properly distributing the null signs over the

space, we are able to cast surfaces with arbitrary topolo-

gies (see Figure 2). Similar to previous works based on

occupancy prediction [6, 26], we train a neural network to

classify continuous points into 3 categories: inside, outside,

and null. The resulting labels can be converted back to the

3PSDF using a simple mapping function to obtain meshing

result.

We evaluate 3PSDF on three different tasks with gradu-

ally increased difficulty: shape reconstruction, point cloud

completion and single-view reconstruction. 3PSDF can

consistently outperform the state-of-the-art methods over

a wide range of benchmarks, including ShapeNet [5],

MGN [4], Maximo [1], and 3D-Front [16], both quantita-

tively and qualitatively. We also conduct comparisons of

field-to-mesh conversion time with NDF and analyze the

impact of different resolutions and sampling strategies on

our approach. Our contributions can be summarized as:

• We present a new learnable 3D representation, 3PSDF,

that can represent highly intricate shapes with both

closed and open surfaces while being compatible with

existing level surface extraction techniques.

• We propose a simple yet effective learning paradigm

for 3PSDF that enables it to handle challenging task

like single-view reconstruction.

• We obtain SOTA results on three applications across a

wide range of benchmarks using 3PSDF.

2. Related Work

Learning with explicit representations. Explicit repre-

sentations of 3D shapes are often well regularized and struc-

tured. Voxel based methods [11, 17, 19] are compatible

with convolutional neural networks for learning; to reduce

the high memory cost, octree-based partitions are adopted

[23, 36, 42]. However, inner parts of objects usually occupy

a large portion of the voxels, leading to compromised 3D

accuracy due to memory limitation. Mesh-based methods

mostly deform a pre-defined mesh to approximate a given

3D shape [14, 18, 28, 41]. One key limitation of such meth-

ods is the difficulty of changing mesh topologies, confining

its 3D representation capability. Point clouds have achieved

much attention recently [32,33,38,44] due to its simplicity.

Although such methods are convenient for shape analysis,

generating 3D shapes with high precision remains difficult.

Implicit function learning. With the development of

deep learning, implicit representation of 3D shapes has

achieved great progress in recent years [6, 8, 15, 24, 27, 35].

A good example is signed distance field (SDF), which cre-

ates a continuous implicit field in 3D space [29, 30] where

outside and inside points are denoted by positive and neg-

ative SDFs. Zero-isosurface, i.e., the object’s surface, can

be efficiently extracted by Marching Cubes [25]. Such rep-

resentation supports infinite resolution and can simplify the

SDF learning as a binary classification process [26]. How-

ever, SDF is only applicable to objects with closed surfaces.

To deal with open surfaces, unsigned distance field

(UDF) [10] and deep unsigned distance embeddings [40]

are proposed. These methods use absolute distance to de-

scribe point position, and the zero-isosurface is extracted

by Ball-Pivoting algorithm [3]. However they have several

major limitations: 1) learning UDF is a regression problem,

harder than that in SDF; 2) ball pivoting [3] is more com-

putational expensive and less stable than Marching Cubes

[25]; 3) gradient vanishes on the surface, resulting in arti-

facts. Venkatesh et al [39] proposed Closest Surface-Point

(CSP) representation to prevent gradient vanishing and im-

prove the speed. Zhao et al. [45] proposed Anchor UDF

to improve reconstruction accuracy. However, the first two

limitations of UDF-type methods still remain.
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Figure 2. 2D illustration of 3PSDF. (a) Conventional signed distance function (SDF) can only represent closed surface. (b) By introducing

the null sign into SDF, 3PSDF can disable specified decision boundaries to cast arbitrary topologies that contain open surfaces. We propose

practical framework for computing 3PSDF based on local cells ((c) and (d)). While 3PSDF may introduce approximation error (the yellow

dash line in (d)) for open surface enclosed within a cell, the approximation error can be significantly reduced with finer space decomposition.

We propose octree-based subdivision approach (e) to improve approximation performance with high computation efficiency.

3. Three-Pole Signed Distance Function

3.1. Definition

A watertight 3D shape can be implicitly represented by

a signed distance function. Given a 3D query point p ∈ R
3,

previous works apply deep neural networks to either predict

the occupancy of p as f(p) : R3 7→ [0, 1] [20] or directly

regress SDF as f(p) : R3 7→ R [29, 43]. Our key obser-

vation is that the formation of closed surface is inevitable

as long as both the positive and negative signs exist in the

space (note that we do not consider space clipping where

SDF is only computed in a limited bounding area). To re-

solve this issue, we introduce the third direction-less pole –

the NULL sign into the field such that the “curse” of close-

ness can be lifted: no iso-surfaces can be formed at the bi-

sector of either positive/null or negative/null pairs. There-

fore, the null sign acts as a surface eliminator that cancels

out unwanted surfaces and thus can flexibly cast arbitrary

topologies including those with open surfaces.

Formally, for a 3D point p ∈ R
3, we propose that in

addition to a continuous signed distance, it can be also be

mapped to null value: Ψ(p) : R
3 7→ {R, nan}. Hence,

given an input surface S , we aim to learn such a mapping

function Ψ so that

argmin
Ψ

||S −M(Ψ(p))||, (1)

where M is the meshing operator that converts the resulting

field into an explicit surface and || · || returns the surface to

surface distance. Next, we will introduce how to compute

the corresponding 3PSDF for a given shape.

3.2. Field Computation

For non-watertight surface without closed boundaries,

it is not possible to perform in/out test for a query point.

Hence, we leverage the surface normal to determine the sign

of the distance. In particular, we decompose the 3D space

into grid of local cells. As shown in Figure 2, for each cell

Ci, if it does not contain any surface of interest, we set its

enclosed space as null region and any sample point pi that

lies inside Ci has nan distance to the target surface S:

Ψ(pi,S) = nan, if pi ∈ Ci and Ci ∩ S = Ø (2)

For a local cell Ci that encloses a surface patch Si, given

a query point pi ∈ Ci, we find pi’s closest point qi on

Si. We set the surface normal at qi as n(qi). If vector −−→qipi

aligns with n(qi), i.e. n(qi)·
−−→
qipi ≥ 0, we set pi’s distance

to the input surface S as positive; otherwise, it is negative.

The computation can be summarized as:

Ψ(pi,Si) =

{

d(pi,Si) if n(qi) ·
−−→
qipi ≥ 0,

−d(pi,Si) otherwise,
(3)

where d(p,Si) returns the absolute distance between pi

and Si. With finer decomposition of 3D space, cells con-

taining geometry would only distribute around the surface

of interest while the null cells would occupy the majority of

the space. This differs a lot from the conventional signed

distance field, where the entirety of the space is filled with

distances of either positive or negative sign. Our proposed

3PSDF better reflects the nature of 3D surface of any topol-

ogy – the high sparsity of surface occupancy.

Surface approximation ability. If an enclosed surface

subdivides its hosting cell into several closed sub-regions,

our implicit representation can faithfully approximate the

original shape without loss of accuracy (Figure 2(c)). If a

local cell contains protruding open surface(s), our approach

is prone to generate elongated surface patch (Figure 2(d)).

However, such approximation error only happen locally and

is limited to the size of the local cell. Hence, with a denser

3D decomposition, we can significantly reduce the approx-

imation error. We provide additional experiments in Sec-
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tion 4.5 showing different reconstruction performance with

respect to varying sampling resolutions.

3.3. Learning Framework

Though the introduction of the null sign provides the

flexibility of eliminating unwanted surface, the nan value

prohibits computing meaningful gradient required for up-

dating a deep neural network. To resolve this issue, a

straightforward way is to combine binary classification (nan

v.s. non-nan) and regression, where the former gener-

ates a mask of the valid narrow band around the surface

and the later regresses the surface within this narrow band.

While we experimentally validate that it is possible to learn

3PSDF via this approach, additional challenges would arise

in aligning the narrow-band mask from binary classification

and the regressed decision boundary from the regression

branch. A misalignment of the two branches’ results would

lead to discontinuity in the final reconstruction. Hence, we

propose an alternative learning framework that formulates

the learning of 3PSDF as a 3-way classification problem as

elaborated below. While we provide the method and results

of the 3-way classification framework in the main paper,

we provide detailed comparisons between the two learning

methods in the supplemental materials.

Similar to the previous works on occupancy predic-

tion [6,26], the 3-way classification method proposes to ap-

proximate the target function (Equation 2 and 3) with a neu-

ral network that infers per-point label: {in, out, null}. We

represent the label semantics using discrete numbers with-

out loss of generality. Formally, we aim to learn a mapping

function o : R3 7→ {0, 1, 2}, where the labels {0, 1, 2} rep-

resent inside, outside, and null respectively.

When applying such a network for downstream tasks

(e.g. 3D reconstruction) based on observation of the object

(e.g. point cloud, image, etc.), the network must be condi-

tioned on the input. Therefore, in addition to the coordinate

of points p ∈ R
3, the network also consumes the observa-

tion of object x ∈ X as input. Specifically, such a mapping

function can be parameterized by a neural network Φθ that

takes a pair (p,x) as input and outputs its 3-class label:

Φθ(p,x) : R
3 ×X 7→ {0, 1, 2}. (4)

Training. To learn the parameters θ of the neural network

Φθ(p,x), we train the network using batches of point sam-

ples. For the i-th sample in a training batch, we sample N

points pij ∈ R
3, j = 1, . . . , N . The mini-batch loss LB is:

LB =
1

|B|N

|B|
∑

i=1

N
∑

j=1

L(Φθ(pij , xi), yij), (5)

where L(·, ·) computes the cross-entropy loss, xi is the i-th

observation of batch B, yij denotes the ground-truth label

for point pij .

Octree-based subdivision. Since the computation of

3PSDF is done locally, to ensure a high reconstruction accu-

racy, it would be preferable not to include too many intricate

geometric details and open surfaces in one cell. We propose

an octree-based subdivision [37, 42] method as shown in

Figure 2(e). We only subdivide a local cell if it intersects

with the input shape. As the subdivision depth increases,

the complexity of surface patch contained by each local cell

decreases, leading to better approximation accuracy. In ad-

dition, since regions containing no shapes will not be fur-

ther divided, we are able to accomplish a balanced trade-off

between the computational complexity and reconstruction

accuracy. In all of our experiments, we use the octree-based

subdivision for ground truth computation unless otherwise

stated. Our experiments in Section 4.5 validate the benefits

of performance from octree-based sampling.

3.4. Surface Extraction

Once the network is learned, we are able to label each

query point with our predictions. To extract the iso-surface,

we first convert the inferred discrete labels back to the orig-

inal 3PSDF representation. Points with labels 0, 1, and

2 are assigned with sdf values as -1, 1, and nan, respec-

tively. The reconstructed surface can then be extracted as

zero-level surface. Note that the iso-surface represented by

3PSDF can be directly extracted using the classic Marching

Cubes (MC) algorithm. The existence of null value would

naturally prevent MC from extracting valid iso-surfaces at

locations that contain no shapes. In the meantime, in the

vicinity of target surface, the iso-surface extraction can be

performed normally just as the conventional signed distance

field. After MC computation, we only need to remove all

the nan vertices and faces generated by the null cubes. The

remaining vertices and faces serve as the meshing result.

4. Experiments

4.1. Experimental Setup

Tasks and datasets. We validate the proposed 3PSDF us-

ing three types of experiments. First, we analyze the rep-

resentation power of 3PSDF by examining how the 3PSDF

can reconstruct complex 3D shapes from a learned latent

embedding. This gives us an upper bound on the results we

can achieve when conditioned on other inputs. Second, we

condition the learning of 3PSDF on sparse point cloud and

test its performance by feeding 3D features. Finally, we use

image features as input and provide validation on the chal-

lenging task of singe-view reconstruction. All experiments

are compared with the SOTA methods for better verifica-

tion. The experiments are conducted on a wide range of 3D

datasets including ShapeNet [5], MGN [4], 3D-Front [16],

and Maximo [1]. The specific settings are detailed in the

following experiments.
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NDF [10] DeepSDF [29] Ours GT

Figure 3. Visual comparisons of shape reconstruction result using different neural implicit representations.

Metric Method
ShapeNet

MGN Mixamo
car plane boat lamp chair

CD (×10−5) ↓
NDF 0.63 0.25 0.33 0.34 0.45 0.08 0.52

DeepSDF 2.71 0.58 0.61 1.99 0.91 0.09 1.82

Ours 0.44 0.21 0.24 0.30 0.35 0.07 0.32

EMD (×102) ↓
NDF 2.39 2.46 2.11 2.05 1.47 0.33 2.81

DeepSDF 4.23 2.56 2.29 2.78 1.66 0.62 4.56

Ours 2.10 2.23 2.04 1.92 1.38 0.21 2.55

Table 1. Quantitative comparisons of shape reconstruction using different neural implicit representations.

Implementation details. For the task of reconstruction

from point cloud, we use the same point encoder (IF-Net)

and hyper-parameters with NDF [10]. For single-view re-

construction, we use VGG16 [34] with batch normalization

as the image encoder. Similar to DISN [43], we use both

multi-scale local and global features to predict the 3PSDF

value. We re-orient the normals of the ground-truth surfaces

based on visibility [13] to make them consistent. We re-

fine the results by filling small holes and smoothing the sur-

faces. The ground-truth 3PSDF values are generated with

resolution 1283 and the results are evaluated using resolu-

tion 2563. We use octree-based importance sampling for

all experiments. To ease the learning of 3PSDF, we ensure

the size of the minimum leaf octree cell to be consistent

across different objects by using a unified bounding box for

all samples.

4.2. Shape Reconstruction

To evaluate the capability of 3PSDF of modeling com-

plex geometry, we perform the shape reconstruction experi-

ment comparing with other SOTA neural implicit represen-

tations: DeepSDF [29] and NDF [10]. Similar to the auto-

encoding method in [29], we embed each training sample

with a 512 dimensional latent code and train neural net-

works to reconstruct the 3D shape from the embedding.

We perform evaluations on five representative categories of

ShapeNet that contain the most intricate geometry, and two

datasets with open surfaces: MGN [4] and Mixamo [1].

Since we are only interested in reconstructing the train-

ing data, we do not use validation and test set for this ex-

periment. As DeepSDF cannot handle open surfaces, we

generate its ground-truth SDF value using [21] which con-

verts complex open surfaces into closed ones using winding

number. For training and evaluation, we use 10 as the depth

for octree-based sampling for our method and the equivalent

resolution of 1024 for DeepSDF. To ensure similar density

of sampling, we generate 1 million surface points for the

NDF. All the NDF results (including the following exper-

iments) are generated using the post-processing scripts re-

leased by the authors to ensure fair comparison. We show

the visual comparisons in Figure 1 and 3 and the quanti-

tative comparisons in Table 1. While DeepSDF is able to

reconstruct fine details, it cannot handle open surfaces like

hair, clothing, and the windshield. NDF can deal with all

topologies, but suffers from meshing problems – lots of self-

intersections and flipped faces are introduced. Our method

can faithfully reconstruct all the intricate geometries while

achieving the best performance in quantitative comparisons.

4.3. Reconstruction from Point Cloud

We further validate 3PSDF on the task of shape recon-

struction from sparse point clouds. Following NDF [10],
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Input OccNet [26] IF-Net [9] NDF [10] Ours GT

Figure 4. Comparisons of point cloud completion trained on watertight shapes (with inner structure removed).

Input SAL [2] NDF [10] Ours GT

Figure 5. Comparisons of point cloud completion trained on non-watertight shapes (with inner structure and open surface). The first row

shows the inner structure of the reconstructed results in the second row.

Chamfer-L2

3K 300

DMC 1.255 2.417

OccNet 0.938 1.009

IF-Net 0.326 1.147

NDF 0.127 0.626

Ours 0.112 0.595

Chamfer-L2

10K 3K

SAL 6.39 7.39

NDF 0.074 0.275

Ours 0.071 0.258

Table 2. Left: results of point cloud completion for closed water-

tight cars from 3000 and 300 points. Right: results of point cloud

completion for unprocessed cars from 10000 and 3000 points.

Chamfer distance is reported in ×10
−4.

we first evaluate 3PSDF on reconstructing closed surfaces,

and then demonstrate that 3PSDF can represent complex

surfaces with inner structures and open surfaces.

Reconstruction of closed shapes. To compare with the

SOTA methods: OccNet [26], IF-Net [9], and DMC [22],

we train on the ShapeNet car category pre-processed by [43]

with all open surfaces closed and inner structures removed.

We show the reconstruction results using 300 and 3000

points as input both qualitatively and quantitatively in Fig-

ure 4 and Table 2 respectively. Compared to the other meth-

ods, our approach can better reconstruct the sharp geome-

try details while outperforming all baselines in quantitative

measurement.

Reconstruction of complex surfaces. To validate the

ability of 3PSDF of handling raw, unprocessed data, we

train 3PSDF to reconstruct complex shapes from sparse

point clouds on three datasets: unprocessed cars from

ShapeNet [5], garments with open surfaces from MGN [4],

and the living room scenes from 3D-Front [16]. We use

NDF [10] and SAL [2] as the baselines for reconstructing

unprocessed cars. Since SAL is built upon traditional SDF,

we use the closed shapes as ground truth. We provide vi-

sual comparisons of the reconstructed results in Figure 5

and 6. SAL struggles to model the open surfaces, e.g. the

windshield and the thin outer structure of car. NDF can gen-

erate dense point clouds close to the target surface. How-

ever, the output points are prone to be clustered (as shown

in the closeups of Figure 6) which prevent the BP algorithm

from generating high-quality meshing results. In contrast,

3PSDF is able to faithfully reconstruct the interior struc-

tures as well as the open surfaces. The quantitative compar-

isons in Table 2 and Figure 6 also validates our advantage

over the baselines.

4.4. Singleview 3D Reconstruction

In this experiment, we apply 3PSDF to single-view 3D

reconstruction (SVR) tasks to further demonstrate its rep-

resentational ability. We evaluate on the MGN dataset [4]

and ShapeNet [5]. We use Chamfer-L2 distance and F-score

(τ = 1% volume diagonal length) as the evaluation metrics.

We compare against the representative SVR methods us-

ing implicit fields, including IMNet [7], OccNet [26] and
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Input NDF [10] Ours GT

Figure 6. Comparisons of point cloud completion performance on MGN and 3D-Front. Chamfer-L2 (×10
−4) comparison: MGN: NDF -

0.035; ours - 0.033; 3D-Front: NDF - 1.452; ours - 1.378.

Input OccNet DISN Ours GT

Figure 7. Qualitative comparison on MGN dataset with state-of-

the-art single-view reconstruction methods based on implicit func-

tions. The quantitative evaluation results in terms of CD (×10
−3)

and F-score (×10
−2 ) metrics on the testing set of MGN are: 1.03

and 69.8 (DISN); 1.01 and 71.0 (OccNet); 0.98 and 71.2 (Ours).

DISN [43]. We further implement an image-based NDF

[10] estimator but find reasonable results cannot be gener-

ated by solely using image features. Since the models in

these two datasets usually contain non-watertight surfaces

which cannot be directly handled by the baseline methods,

we first convert these models to watertight ones. Note that

our representation is directly trained on the original shapes

without this extremely time-consuming process.

Single-view reconstruction on MGN. The models in the

MGN dataset [4] are represented as open freeform sur-

faces with single sheets, which is challenging to the exist-

ing single-view reconstruction methods with implicit func-

tions. We render an RGB image using the textured mesh for

each garment model, and train a network conditioned on im-

ages to predict the shape representations. As shown in Fig-

ure 7, our results capture the original open-surface structure

as well as more high frequency geometric features such as

the wrinkles. The 3PSDF representation also achieves the

best quantitative results on the testing set.

Single-view reconstruction on ShapeNet. We use a sub-

set of ShapeNet [5] for evaluation, from which we choose

5 categories (airplane, car, lamp, chair, boat) resulting in

Input IMNet OccNet DISN Ours GT

Figure 8. Qualitative comparison results with SOTA single-view

reconstruction methods based on implicit functions.

17803 shapes. We use the same image renderings (24 views

per shape) and train/test split as Choy et al. [12]. Figure 8

shows a set of qualitative comparisons. Despite being de-

signed for handling open surfaces, 3PSDF is still a versatile

representation for reconstructing various 3D shapes in the

ShapeNet with either closed or open surfaces. We not only

faithfully preserve the original structure of the target shape,

but also captures more detailed geometries. Instead, the ex-

isting implicit functions always rely on watertight shapes,

which substantially limits their representational ability and

usually leads to over-smoothed geometries, lack of details,

as well as inconsistent typologies. As shown in Table 3,

3PSDF achieves state-of-the-art performance compared to
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Method
ShapeNet

car plane boat lamp chair

CD ↓
IMNet 3.48 5.07 4.17 9.51 1.81

OccNet 1.74 1.74 3.48 14.55 2.22

DISN 1.23 1.71 4.84 6.11 1.54

Ours 0.76 1.66 3.27 7.67 3.29

FS ↑
IMNet 31.8 33.7 39.8 34.3 61.1

OccNet 54.4 59.7 44.9 50.6 59.6

DISN 65.8 77.2 57.8 50.4 63.8

Ours 77.0 72.8 66.6 49.3 58.5

Table 3. Quantitative comparisons of single-view reconstruction.

Chamfer-L2 and F-score are reported in ×10
−3 and ×10

−2 re-

spectively.

the existing methods, where it has 5 metrics ranking the first

and comparable results for the remaining metrics.

4.5. Further Discussions

Reconstruction accuracy/appearance with different res-

olutions. Since 3PSDF is continuously defined in the 3D

space, it can represent a shape using arbitrary resolution.

Figure 9 gives a coarse-to-fine shape approximation results,

where we discretize the volumetric space and use different

grid resolutions to represent a 3D shape. The experimental

results show that the approximation quality of 3PSDF in-

creases as the resolution grows, leading to smoother shape

boundaries and higher reconstruction accuracies.

64
3

128
3

256
3

512
3

Figure 9. Reconstruction results of a shape using different reso-

lutions. From the left to right, the CD (×10
−5) values for these

shapes are: 14.49, 2.52, 2.21 and 2.12; the EMD (×10
2) values

are: 3.42, 0.336, 0.267 and 0.227 .

Timing cost for field-to-mesh conversion. We quantita-

tively evaluate the timing cost for field-to-mesh conversion

in different output sampling densities. For the octree depth

of 6 (643), 7 (1283), 8 (2563) and 9 (5123), the average

field-to-mesh conversion times of 3PSDF for a single shape

are 0.006s, 0.11s, 0.54s, and 3.72s respectively. In contrast,

the conversion times for NDF [10] given the comparable

number of sampling points are: 2.1s, 15mins, 3hrs, 34hrs,

using the provided post-processing setting (radius=0.005)

by NDF. The experiments are conducted on a machine with

a 48-Core AMD EPYC CPU and 64GB memory.

Different sampling strategies. We further study the im-

pact of different sampling strategies on the performance of

Random Uniform Octree

CD (×10−4) ↓ 7.43 2.16 1.08

EMD (×103) ↓ 3.28 1.55 1.12

Table 4. Reconstruction accuracy using different sampling strate-

gies.

3PSDF; we evaluate on the task of shape reconstruction

from point cloud on the unprocessed car data. Three strate-

gies are used to generate sampling points: 1) randomly draw

samples in the space; 2) uniform sampling which generates

adjacent points in equal distance; 3) octree-based sampling

that uses the corner points of leaf octree cells as training

samples. We use around 18 million sampling points for

all strategies. Table 4 shows that the octree-based sam-

pling yields the best result. Compared to the other methods,

octree-based sampling is able to densely sample points with

inside/outside labels, generating a more balanced training

set containing all the 3 labels. We use octree-based sam-

pling for all of our experiments unless otherwise stated.

Limitation. 3PSDF has difficulty in reconstructing multi-

layer surfaces that are very close to each other, especially

when the resolution is low. This is because 3PSDF requires

denser sampling rate compared to SDF in order to insert a

null layer in between to prevent artifact surface. Besides,

given the enhanced representational ability of 3PSDF, it re-

quires more informative features to learn and longer time to

train; for example, the network converges much faster and

achieves better geometry given point clouds as input, com-

pared to single images.

5. Conclusions and Discussions

We introduce 3PSDF, a learnable implicit distance func-

tion to represent 3D shapes with arbitrary topologies. Dif-

ferent from the widely used implicit representations like

SDF that can only encode watertight shapes, 3PSDF can

faithfully represent various shapes with both open and close

surfaces. The key insight of the 3PSDF is the introduction

of the NULL sign to additionally indicate the inexistence of

surface. We further formulate a classification-based learn-

ing paradigm to effectively learn this representation. As a

result, the representational power of the distance function is

significantly enhanced. Extensive evaluations demonstrate

that 3PSDF is a versatile implicit representation that accom-

modates various 3D reconstruction tasks.

Future work. We have shown in the supplemental that

3PSDF can be learned via an alternative method that com-

bines binary classification and regression. Compared to 3-

way classification, such a method has the potential to gener-

ate smoother surface with fewer sampling points at training

time. However, it is not as robust as the 3-way counterpart

as it requires the results of the two branches align well in or-

der to prevent holes and artifacts. It would be an interesting

future avenue to investigate how to resolve this issue.
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