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Abstract

In this paper, we address the problem of texture rep-
resentation for 3D shapes for the challenging and under-
explored tasks of texture transfer and synthesis. Previous
works either apply spherical texture maps which may lead
to large distortions, or use continuous texture fields that
yield smooth outputs lacking details. We argue that the tra-
ditional way of representing textures with images and link-
ing them to a 3D mesh via UV mapping is more desirable,
since synthesizing 2D images is a well-studied problem. We
propose AUV-Net which learns to embed 3D surfaces into
a 2D aligned UV space, by mapping the corresponding se-
mantic parts of different 3D shapes to the same location
in the UV space. As a result, textures are aligned across
objects, and can thus be easily synthesized by generative
models of images. Texture alignment is learned in an un-
supervised manner by a simple yet effective texture align-
ment module, taking inspiration from traditional works on
linear subspace learning. The learned UV mapping and
aligned texture representations enable a variety of applica-
tions including texture transfer, texture synthesis, and tex-
tured single view 3D reconstruction. We conduct experi-
ments on multiple datasets to demonstrate the effectiveness
of our method.

1. Introduction
The field of 3D shape reconstruction and synthesis has

witnessed significant advancements in the past few years.
By utilizing the power of deep learning, several works re-
construct 3D shapes from voxels, point clouds, single and
multi-view images, with a variety of output shape repre-
sentations [12, 14, 15, 20, 24, 30, 51]. 3D generative mod-
els have also been proposed to synthesize new shapes
[4, 11, 19, 34, 39], with the aim of democratizing 3D con-
tent creation. However, despite the importance of textures
in bringing 3D shapes to life, very few methods have tackled
semantic-aware texture transfer or synthesis for 3D shapes
[5, 10, 18, 22, 35, 36, 50].

Previous work on texture generation mostly relies on
warping a spherical mesh template to the target shape
[5, 10, 22, 35], therefore obtaining a texture map defined on

Figure 1. AUV-Net learns aligned UV maps for a set of 3D shapes,
enabling us to easily transfer textures between shapes.

the sphere’s surface, which can be re-projected into a square
image for the goal of texture synthesis. NeuTex [47] gen-
erates 3D shapes with a neural implicit representation for
arbitrary surface topology, yet embeds the surface of the
shape onto a sphere, which also results in a spherical tex-
ture map. Spherical texture maps can only support limited
topology, and may introduce severe distortions for thin parts
such as animal limbs [27, 43]. Another line of work uses
implicit texture fields for texture synthesis [32], without re-
lying on explicit texture mapping. Although texture fields
were successfully applied to multi-view image reconstruc-
tion [31], they have primarily been used for fitting a sin-
gle object or scene. Generative models usually suffer from
overly smoothed synthesized textures [37, 48].

In contrast, the traditional UV mapping in computer
graphics handles arbitrary shape topology and avoids heavy
distortions by cutting the surface into pieces and mapping
different pieces to different regions on the 2D UV plane. It
further preserves texture details by storing the texture in a
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high-resolution texture image. However, the UV mappings
are usually created by 3D artists, and thus are inconsistent
across different shapes. Therefore, using such representa-
tion for texture synthesis and transfer would require dense
shape correspondences.

In this paper, we propose to train a neural network to pre-
dict the UV mapping and the texture image jointly, aiming
at high-quality texture transfer and synthesis without need-
ing to conform to a pre-defined shape topology. Specifi-
cally, our network learns to embed 3D coordinates on mesh
surfaces into a 2D aligned UV space, where correspond-
ing parts of different 3D shapes are mapped to the same
locations in the texture image, as shown in Figure 1. Such
alignment is enabled by a simple yet effective texture align-
ment module inspired by traditional linear subspace learn-
ing methods such as Principal Component Analysis (PCA),
as shown in Figure 3. The network generates a basis shared
by all shape textures, and predicts input-specific coefficients
to construct the texture image for each shape as a linear
combination of the basis images. This forces the texture
images to be aligned so that they can be effectively decom-
posed into combinations of basis images, as visualized in
Figure 2. Afterwards, the network reconstructs the colors
of the input shape by learning a UV mapping to index the
aligned texture image. To unwrap 3D shapes of complex
structure or topology, we further introduce a masking net-
work that cuts the shape into multiple pieces to reduce the
distortion in the UV mapping.

Our method effectively aligns textures across all shapes,
allowing us to swap textures between different objects, by
simply replacing the texture image from one object with an-
other. The aligned high-quality texture images produced by
our method make it significantly easier to train generative
models of textures, since they are aligned and disentangled
from geometry. They also enable textured 3D shape recon-
struction from single images. We perform extensive exper-
iments on multiple categories including human heads, hu-
man bodies, mammals, cars, and chairs, to demonstrate the
efficacy of our approach.

2. Related work
We discuss previous work that is most relevant to ours in

the fields of texture transfer and synthesis for 3D shapes.

Template-based methods assume that all target shapes
can be represented by deforming a template mesh, usually
a sphere [5, 10, 22, 27, 35, 43] or a plane [33, 46]. The UV
mapping of the template mesh is given and transferred to
the target shape after deformation. However, by imposing a
mesh template, these methods often cannot capture details,
especially when the topology or the structure of the target
shape is complex. For example, when deforming a sphere
into a human body, it is hard to accurately reconstruct the
fingers. Even if the deformation is successful, the texture of

the fingers, when projected from the human body to a sphere
and then to its texture image, is typically heavily distorted.
UV map from artists. Another line of work [8, 50] does
not assume template meshes are given, but instead assumes
that the UV maps are provided with the 3D shapes. The UV
maps and textures are typically modeled by artists and can
be in arbitrary layouts. To address this issue, these methods
usually require ground-truth semantic segmentation of the
texture image or the 3D shape for semantic-aware texture
synthesis. In our work, we aim to perform texture synthesis
without such supervision. Automatic UV mapping has also
been extensively studied in computer graphics, though for
single shapes. It includes mesh parameterization with cer-
tain constraints, and surface cutting to generate charts with
disk topology. We refer to [38] for a survey of related tech-
niques. Different from these traditional methods, we learn
aligned UV maps for a set of shapes.
Discretization and colorization. Instead of adopting UV
maps to reduce the dimensionality of textures from 3D to
2D, some methods discretize the 3D shapes into “atoms”
and then colorize each “atom”. When a shape is repre-
sented as a voxel grid, the shape can be textured by predict-
ing the color of each voxel [9, 41]. For triangle meshes, the
color of each vertex can be predicted [17]. However, since
discretization is in 3D rather than in 2D (pixels), these ap-
proaches either cannot scale up, or cannot predict the color
efficiently due to the irregularity of the representation.
Texture fields [32] predict the color for each 3D point in
a continuous 3D space. The NeRF family [31] also adopts
this approach, by using the viewing direction as an addi-
tional condition for predicting the color of each point. Since
the NeRF family does not directly generate textures for 3D
shapes, we mainly discuss and compare with Texture Fields
in this paper. One major issue of Texture Fields is that it is
unable to represent high-frequency details, which is a prop-
erty of the MLPs that it uses. Positional encoding [31]
and SIREN [40] are proposed to alleviate this issue, which
works well on overfitting of single shapes. However, per-
formance degrades significantly in generative tasks. The
results of implicit methods tend to be smooth and lack high-
frequency details [6, 40].
Shape correspondences. There is a large body of work
that finds dense correspondences among shapes [16, 28],
which can also enable texture transfer. However, these
methods do not take color into account when finding cor-
respondences, which may hinder their performance.

3. Our Approach
In this section, we first introduce our core alignment

module in 2D and verify it with a 2D-to-2D image align-
ment experiment in Sec 3.1. We then explain our network
architecture for learning aligned UV maps for 3D shapes in
Sec 3.2. Finally, in Sec 3.3 we show applications enabled by
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Figure 2. Results of the 2D toy experiment on the face dataset. Our network reconstructs input images (a) by learning a set of basis images
(d) and linearly combining them into aligned texture images (c), and then deforming the texture images (c) into the outputs (b) via learned
UV mapping. The learned UV mapping can be used to deform the input images (a) into aligned high-quality texture images (e).

Figure 3. Network architecture of the 2D toy experiment on the
face dataset, to demonstrate the concept of our alignment module.

our approach, including texture transfer, texture synthesis,
and texture prediction from single images.

3.1. Texture alignment module
Learning aligned textures for a set of shapes is a complex

task. However, we show that a simple alignment module
performs surprisingly well. Before we introduce our net-
work for 3D shapes, we will use a toy 2D experiment to
demonstrate how the alignment module works.
Task. Given a set of face images in random poses, as
shown in Fig. 2(a), we aim to align them into a canonical
pose, as shown in Fig. 2(e). We take 1,000 face images
from CelebA-HQ [25,29] and perform random perspective
transformations to obtain 128x128 training images, such as
those in Fig. 2(a). To link this task with texture mapping,
one could consider training images in Fig. 2(a) as square
shapes in 2D, and Fig. 2(e) are their aligned texture images.
The color of each pixel in the square shape must be retrieved
from the shape’s texture image, by mapping the pixel’s co-
ordinates into the UV space to get the UV coordinates, and
then indexing the texture image with those UV coordinates.
Insight. We take inspiration from classic linear subspace
learning methods such as eigenfaces [44], where a basis is
computed via PCA for a set of face images, so that each face
is decomposed into a weighted sum of the eigenfaces. Note
that PCA works best when the images are aligned. There-
fore, if a network is designed to decompose the input im-

ages into weighted sums of basis images, and is allowed to
deform the input images before the decomposition, the net-
work should learn to align the input images into a canonical
pose, and decompose the aligned images so as to minimize
the reconstruction error.

Framework. Fig. 3 illustrates our alignment module op-
erating for 2D images. It is composed of three neural net-
works: a basis generator to predict a set of basis images;
an encoder to predict the coefficients to weigh the basis im-
ages; and a UV mapper to predict the UV coordinates for
each query point. The encoder also predicts a shape code to
condition the UV mapper.

Basis generator. Our basis generator is a Multilayer Per-
ceptron (MLP) that takes a 2D point (x, y) as input and out-
puts the color of this point. For N basis images, the network
outputs N values (N gray-scale colors). In this toy 2D ex-
periment, we use N = 128. We adopt an MLP for generat-
ing the basis because it is fully differentiable with respect to
both the colors of the basis and the input point coordinates.
In contrast, if a Convolutional Neural Network (CNN) or a
grid of learnable weights is applied to generate the basis,
one would need to index the output grid with query points,
limiting the gradients from the output color to the basis and
the query point coordinates to small neighborhoods.

UV mapper. Once trained, we can input a regular grid
of query points to the basis generator to obtain the aligned
basis images such as those in Fig. 2(d), and the aligned tex-
ture images shown in Fig. 2(c) by multiplying the basis im-
ages with the coefficients. However, at training time, we
need to “deform” the texture images to reconstruct the in-
put images in Fig. 2(a). This is achieved by the UV mapper,
which maps the query points sampled from the square shape
into UV coordinates to index the texture image, as shown in
Fig. 3. The final deformed outputs are shown in Fig. 2(b).
The UV mapper is an MLP conditioned on a shape latent
code. It takes 2D point coordinates concatenated with the
shape code as input, and outputs UV coordinates.

Encoder and loss function. Since the inputs are images,
we use a 2D CNN as our encoder to predict shape codes
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Figure 4. Network architecture of our AUV-Net.

and coefficients. The deformed basis produced by the ba-
sis generator is multiplied with the coefficients to produce
the final output, as shown in Fig 3. We use Mean Squared
Error (MSE) between the output and the input image as the
reconstruction loss. During early stage of training (first few
epochs), we apply a prior loss, i.e., MSE between the query
point coordinates and their corresponding UV coordinates,
to encourage the UV mapper to perform an identity map-
ping, so that the basis is initialized with appropriate orien-
tation, scale, and position.
Obtaining high-quality texture images. After training,
our network produces aligned texture images as shown in
Fig. 2(c). However, the images are in low quality since they
are constructed by a limited number of over-smoothed basis
images. To obtain a high-quality texture image with details,
we can deform the input image into the UV space. We sam-
ple points from the input image, feed those points to the UV
mapper to obtain UV coordinates, use the UV coordinates
and colors of the sampled points to fill a blank image, and
finally inpaint the missing regions. We use [42] for inpaint-
ing. The results are shown in Fig. 2(e).

3.2. Learning aligned UV maps for 3D shapes
Our network for 3D shapes, dubbed AUV-Net, is built

upon the alignment module in Fig. 3. It can be thought of
as a 3D-to-2D version of the 2D-to-2D alignment module,
with modifications to address issues caused by the proper-
ties of 3D shapes. The architecture of AUV-Net is shown
in Fig. 4. In the following, we will first describe the no-
table changes in AUV-Net compared to the 2D alignment
module, and then the loss functions and training details.
Predicting color, normal, and coordinate maps. 3D
shapes tend to have textures with large areas of pure color
or similar colors. Those featureless regions make it hard

for our network to align the textures with only a loss func-
tion defined on colors. Therefore, in addition to the color
maps, our network also produces normal maps and coordi-
nate maps, as shown in Fig. 4 top-right. The normal maps
are used for predicting the unit normals of input points. The
coordinate maps are used for predicting the positions of the
input 3D points, therefore forming a 3D-2D-3D cycle in our
network, which encourages injective UV mapping.
Cutting surfaces with a masking network. Unlike im-
ages, it is usually impossible to embed a 3D shape onto a
2D plane without overlap or severe distortion. Therefore,
we introduce a masker, to generate a segmentation mask for
the input shape, as shown in Fig. 4 bottom-left. This can be
considered as cutting the 3D shape into multiple pieces, so
that each piece can be represented by a single texture image.
The input to the masker contains point coordinates, point
normals, and the shape code. The normals are essential to
segmenting the shapes, since thin parts such as fingers on a
human body mesh are very hard to segment with only point
coordinates. The predicted segmentation mask (M ) is used
to mask the outputs of the two basis generators (A and B),
as M ·A+ (1−M) ·B, to produce the final output.
Multiple basis generators. We introduce two basis gen-
erators to represent the “front” and the “back” part of a
shape, respectively. The “front” does not have to literally
denote the front-facing part of a shape. It simply refers to a
part of the shape so that the union of the “front” and “back”
covers the entire shape. The outputs of the two basis gen-
erators are shown in Fig. 4 right, where the head is being
represented with two texture maps. Note that the number of
basis generators does not have to be two; we use four basis
generators for chairs in our experiments.
Shared UV mapper. We use one shared UV mapper for
both the front and the back basis generators, instead of two
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independent UV mappers. This is based on a careful consid-
eration. In our experiments, one of the most prominent is-
sues when we transfer the texture from one shape to another
is that we inevitably obtain seams between the two pieces
of shapes using two different texture images. A shared UV
mapper alleviates this issue by forcing the two pieces to
share the same boundary in the texture images. It does not
fully resolve the seam issue, but it is very helpful in practice.
After we inpaint the texture images, the seams are barely
visible in most cases.
Loss functions. To train AUV-Net, the meshes are con-
verted into point clouds with normals and colors, as input
to our network. We also voxelize the point clouds to obtain
colored voxel grids as input to the 3D CNN encoder. The
overall loss function is composed of five terms:

L = wcLc + wnLn + wxLx + wsLs + wpLp (1)

where Lc, Ln, Lx denote the color loss, the normal loss, and
the cycle consistency loss on the 3D coordinates, respec-
tively. They are defined as MSEs between the predictions
and the ground truth.

Ls is the smoothness loss. For a subset of input points,
we find their neighbors within a distance σ = 0.02 , and
use the distances between the points and their neighbors to
regularize the corresponding distances in the UV space:

Ls =
1

MN

M∑
i=1

N∑
j=1

|D(pi, pj)−D(qi, qj)| ·T (pi, pj) (2)

where N is the number of input points, M is the size of
the subset, pi is the i-th input 3D point, qi is the 2D UV
point predicted for pi by the UV mapper. D(a, b) is the
Euclidean distance between point a and b. T (a, b) is defined
as 1 if D(a, b) < σ, and 0 otherwise. In each mini-batch,
we process one shape, with N = 16, 384 and M = 2, 048.

Lp is the prior loss to initialize the UV coordinates and
the masks. It may vary per category of the training shapes.
For the human head dataset shown in Fig. 1 and Fig. 4,
where all the heads are facing z direction, we have:

Lp =
1

N

N∑
i=1

(pxi − qxi )
2 + (pyi − qyi )

2 + (mi − ni)
2 (3)

where pxi is the x coordinate of pi, qxi is the x coordinate of
qi, mi is the masking value predicted by the masker for pi.
ni is defined as 1 if the unit normal of pi in the z direction is
greater than −0.5, and 0 otherwise. This prior loss initial-
izes the UV mapping by projecting the 3D points onto the
xy-plane. To cut the shape into two pieces, this prior loss
follows our prior that: if the angle between a point’s normal
and z axis is less than 120 degrees, the point belongs to the
“front” part. Similar to Sec. 3.1, prior loss is only used in

the first few epochs of training to initialize the mask and the
UV coordinates. We provide the definitions of prior losses
for other categories in the supplementary.
Assumptions on the training set. Note that the above
loss terms assume certain properties of the training dataset.
First, the shapes need to have part-level correspondences,
as the network actually assigns dense correspondences be-
tween shapes when it maps all shapes into the same UV
space. Therefore, we only train our model on 3D shapes
of the same category. Second, the shapes need to be pose
aligned, e.g., heads should all face z direction in the afore-
mentioned human head dataset. We also normalize all
shapes to unit boxes before training, to avoid interference
of drastically different scales.
Multi-stage training. We train the network in three
stages, due to a trade-off between the quality of the tex-
ture alignment and the level of distortion. In some cases,
aligning textures requires heavy distortion in the texture
images, e.g., when aligning a sedan with a van (Fig. 5).
However, less distortion is a desirable feature that reduces
aliasing effect when rendering the textures, and makes post-
processing easier, e.g., when being edited by an artist. We
find that if the network is trained with fixed weighting
of the loss terms, we cannot get both the alignment and
minimal distortion. Therefore, we first initialize the net-
work with prior loss Lp and a set of weights focused on
minimal distortion. In the second stage, we remove Lp,
and use weights focused on alignment. In the final stage,
we use weights focused on minimal distortion. For the
human head dataset, the first stage has 10 epochs, with
{wc, wn, wx, ws, wp} = {1, 0.5, 100, 100, 1}; second stage
has 2,000 epochs, with {1, 0.5, 1, 1, 0}; third stage has
2,000 epochs, with {1, 0.5, 100, 100, 0}. Training takes 2
days on one NVIDIA RTX 3080 Ti GPU. Other training
details are in the supplementary.

3.3. Applications
Texture transfer. After training AUV-Net, we obtain
aligned high-quality texture images (10242 in our experi-
ments) for all training shapes, as shown in Fig. 1. The fact
that these texture images are aligned allows us to transfer
textures between two training shapes by simply swapping
their texture images, as shown in Fig. 1 and 5. We denote
this application as Tsf (transfer). Given a new shape that is
not in the training set, we can also texture it by mapping its
vertices into the aligned UV space. This is done via a post-
training optimization stage, in which we add the new shape
into the training set, and continue training the network for a
few epochs. During the optimization, we fix the weights of
the basis generators to reuse the well-learned texture basis.
Texture synthesis. A great advantage of having aligned
texture images is that it allows us to utilize existing 2D gen-
erative models to synthesize new textures for 3D shapes.
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Dataset name Number of Shapes Applications
ShapeNet [7] cars 7,497 Tsf, Gen, SVR
ShapeNet [7] chairs 6,778 Tsf, Gen, SVR
Turbosquid [3] cars 436 Tsf
RenderPeople [1] human bodies 500 Tsf
Triplegangers [2] heads 515 Tsf, Gen
Turbosquid [3] animals 442 Tsf

Table 1. Datasets used in our experiments. Tsf, Gen, and SVR
refer to the applications listed in Sec. 3.3.

We train StyleGAN2 [26] in experiments and show results
in Fig. 9. We denote this application as Gen (generation).
Single-image 3D reconstruction. We can condition tex-
ture synthesis on a variety of inputs, for example, recon-
structing textured 3D shapes from single images, as shown
in Fig. 10. To this end, we add a 2D ResNet [21] image en-
coder to predict the texture latent code and the shape code
from an input image, a CNN decoder to predict the aligned
texture images from the texture latent code, and an IM-Net
decoder [14] to predict the geometry of the shape condi-
tioned on the shape code. We denote this application as
SVR (single view reconstruction). Implementation details
are provided in the supplementary.

4. Experiments
Datasets. We use six datasets in our experiments, as listed
in Table 1. Information about dataset licenses is in the
supplementary. We mainly perform generative tasks (Gen,
SVR) on ShapeNet [7] categories since other datasets have
too few training shapes. Note that the original shapes in
ShapeNet usually have complex geometry but simple tex-
tures. We create a new version of ShapeNet Cars and Chairs
better suited for the texture transfer/synthesis task, by sim-
plifying the meshes to reduce geometric details and baking
the geometric details into textures.

4.1. Texture Transfer
We show texture transfer results in Fig. 1 and 5. Only

non-ShapeNet categories are shown due to page limit. More
results can be found in the supplementary. Our method uses
cues such as colors, normals, and positions when learning
aligned UV mapping, and therefore performs well on align-
ing facial orifices, car windows and wheels, fingers, and an-
imal limbs. Previous methods find dense correspondences
among shapes by deforming geometry [16, 28]. How-
ever, they do not utilize color information, and may thus
misalign regions with fewer geometric cues, as shown in
Fig. 6. We show results on transferring textures to new
shapes that are clearly different from the training shapes
in Fig. 5. Our method is able to correctly texture an over-
simplified texture-less car model, and transfer textures to a
cartoon character model.

Quantitative evaluation. To evaluate the alignment qual-
ity, we label one texture image with a different color per se-
mantic part, as shown in Fig. 7 (b). Since the texture image

Figure 5. Texture transfer results. We show three categories in this
figure: Turbosquid cars (top), Turbosquid animals (middle), and
RenderPeople human bodies (bottom). Triplegangers heads can
be found in Figure 1. For RenderPeople, we show a zoom-in of
the head on the lower left of each shape; we also show zoom-ins
of hands for the second column of shapes.

is aligned across shapes, we get semantic segmentation of
3D shapes with a single labeled example. We evaluate our
part segmentation of shapes with ground truth segmentation
provided in the ShapeNet part dataset [49]. We compare
with BAE-Net [13] that performs one-shot shape segmen-
tation and DIF-Net [16] that learns dense correspondences,
and report Intersection Over Union (IOU) in Table 2. Our
method outperforms alternatives.
Ablation study. We provide the ablation study in Table 3
and Fig. 8, where we remove one of the five loss terms in
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Figure 6. Comparison with DIF-Net [16] on texture transfer. The
texture is transferred from (a) to (b). In (c), the eyes’ shapes are
not changed with respect to (a), the lips are misaligned, and the
hat is lower than it should be compared to (b). Those details are
mostly represented in colors rather than geometry.

Figure 7. Sample texture images and segmentation on ShapeNet
cars and chairs. (a) shows texture images before inpainting. Note
that there are 2 texture images for each car and 4 for each chair.
In (b), we show the segmentation we used to produce Table 2. A
visualization on 3D shapes is shown in (c).

Dataset (#parts) ShapeNet cars (4) ShapeNet chairs (4)
Segmented parts Wheel, body, hood, roof Back, seat, leg, arm
BAE-Net 59.3 85.2
DIF-Net 69.0 80.3
AUV-Net 72.7 85.8

Table 2. Semantic segmentation results in IOU, comparing with
BAE-Net [13] and DIF-Net [16].

Eq. 1, or the masker module. We use the same evaluation
setting described above. The results are consistent with our
design choices of the individual modules. The color loss Lc,
the normal loss Ln, and the cycle loss Lx are designed to
help find correspondences, therefore removing them often
causes the performance to drop (Table 3). The smoothness
loss Ls is designed to regularize the UV coordinates; it may
hurt the correspondence, but removing it can cause certain
parts to be squished (Fig. 8 column 4), thus making texture
synthesis difficult. The cycle loss Lx also helps regularize
the UV coordinates since it encourages one-to-one mapping
between surfaces of 3D shapes and the 2D textures; remov-
ing it causes overlap in the texture images (Fig. 8 column
3). The prior loss Lp and the masker are critical to our
model, as removing them causes severe segmentation and
overlap issues (Fig. 8 column 5&6). Also note that differ-
ent categories have different sensitivity to the loss terms. As

Figure 8. Ablation study: learned texture images with different
settings. Each chair has four texture images (shown vertically).

No Lc No Ln No Lx No Ls No Lp No masker Full model
Cars 68.5 71.7 73.0 72.8 70.6 72.0 72.7
Chairs 85.2 84.6 83.7 87.1 85.7 71.1 85.8

Table 3. Ablation study: semantic segmentation results in IOU.

Triplegangers ShapeNet cars ShapeNet chairs
Tex. Fields 24.59 53.09 7.03
AUV-Net 5.69 12.11 5.33

Table 4. Quantitative results of generative models in FID.

shown in Table 3, the car category relies heavily on the col-
ors: removing Lc leads to significant performance drop. In
contrast, chair category is less sensitive: removing Lc has
no visible effect on the learned texture maps in Fig. 8.

4.2. Texture Synthesis
We show texture synthesis results in Fig. 9, and compare

them with Texture Fields [32] (TF). Our method generates
more details and gets correct alignments, while TF outputs
smooth color chunks that are sometimes misaligned. This is
because TF uses an MLP to map continuous 3D coordinates
into colors, and does not properly disentangle texture and
geometry. In contrast, Our method uses a sophisticated 2D
generative model trained on aligned texture images to gen-
erate the outputs. The texture images aligned by AUV-NET
are mostly independent from the actual mesh geometry.

To evaluate the methods quantitatively, we use Fréchet
Inception Distance (FID) [23]. We test on 1,000 shapes for
each ShapeNet category and 100 shapes for Triplegangers
heads. For each test shape, we generate 5 textures, and ren-
der each textured shape into 8 views. Results are presented
in Table 4, where our method clearly outperforms baseline.

4.3. Textured Single-View 3D Reconstruction
We show results in Fig. 10, and compare with TF. For

a fair comparison on texture prediction, we use the mesh
generated by our method as the output mesh of TF, so that
TF only needs to predict textures of the shapes. The re-
sults show that our method produces sharper boundaries and
more details in the textures.

In addition to FID evaluated on a set of shapes, we
use Structural Similarity Index Measure (SSIM) [45] and
feature-l1 [32] to evaluate the quality of each rendered view
and then average them, as proposed in TF. Table 5 reports
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Figure 9. Texture synthesis results. The holes on chairs are hallucinated via texture transparency (alpha channels in the texture images).

Figure 10. Textured single view reconstruction results. Zoom in
to see the details, e.g., wheels of the cars.

ShapeNet cars ShapeNet chairs
FID SSIM feature-l1 FID SSIM feature-l1

Tex. Fields 92.89 0.897 0.219 36.89 0.855 0.193
AUV-Net 40.85 0.894 0.186 33.26 0.853 0.189

Table 5. Results of textured single view reconstruction.

the results, with AUV-Net outperforming the baseline. We
observe that both methods overfitted on ShapeNet chairs,
and are unable to recover the correct textures of complex
test shapes. This is likely due to the fact that the dataset
has significant variation for chairs, but has insufficient train-
ing examples. In addition, we find that SSIM, which is not
semantics-aware, may not be a good evaluation metric when
the results are not very close to the ground truth. As shown
in Table 5, the SSIM of ours and the baseline are very close,
though other metrics show clear differences.

Figure 11. When transferring texture of a cartoon giraffe into other
animals, the positions of the eyes are wrong. The cut seam on the
hippo is clearly visible, although inpainted.

5. Conclusion, Limitations, and Future Work
We introduce the first method to learn aligned texture

maps for a set of shapes in an unsupervised manner. We
show that alignment can be done with a simple alignment
module inspired by PCA. The resulting texture images of
our method are well aligned and disentangled from geom-
etry. They have enabled several applications including tex-
ture transfer, texture synthesis, and textured single view 3D
reconstruction, which we showcase in our experiments.

There are three main limitations of our approach. First,
our method does not handle seams that arise when texturing
the shape, and only exploits a shared UV mapper network to
alleviate the issue. Therefore, seams may become conspic-
uous for some shapes after transferring textures, as shown
in Fig. 11. Second, our method does not always find correct
correspondences, especially when the textures are messy,
e.g., the animal dataset - one can observe that the eyes are
not properly aligned in Fig. 5. Adding weak supervision
could help, e.g., annotating two points for the eyes in all
training shapes. Third, our method does not handle shapes
with complex topology well. In fact, ShapeNet chairs pose
a significant difficulty for our method with two basis gener-
ators, and we had to use four to avoid overlapping textures.
We leave these challenges to future work.
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