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Abstract

Neural Radiance Field (NeRF) regresses a neural param-
eterized scene by differentially rendering multi-view images
with ground-truth supervision. However, when interpolat-
ing novel views, NeRF often yields inconsistent and visually
non-smooth geometric results, which we consider as a gen-
eralization gap between seen and unseen views. Recent ad-
vances in convolutional neural networks have demonstrated
the promise of advanced robust data augmentations, either
random or learned, in enhancing both in-distribution and
out-of-distribution generalization. Inspired by that, we pro-
pose Augmented NeRF (Aug-NeRF), which for the first time
brings the power of robust data augmentations into regular-
izing the NeRF training. Particularly, our proposal learns to
seamlessly blend worst-case perturbations into three dis-
tinct levels of the NeRF pipeline with physical grounds,
including (1) the input coordinates, to simulate imprecise
camera parameters at image capture; (2) intermediate fea-
tures, to smoothen the intrinsic feature manifold; and (3)
pre-rendering output, to account for the potential degra-
dation factors in the multi-view image supervision. Exten-
sive results demonstrate that Aug-NeRF effectively boosts
NeRF performance in both novel view synthesis (up to 1.5dB
PSNR gain) and underlying geometry reconstruction. Fur-
thermore, thanks to the implicit smooth prior injected by
the triple-level augmentations, Aug-NeRF can even recover
scenes from heavily corrupted images, a highly challeng-
ing setting untackled before. Our codes are available in
https://github.com/VITA-Group/Aug-NeRF.

1. Introduction
Neural radiance fields (NeRF) [29] and its variants have

demonstrated impressive progresses in learning to represent
3D objects and scenes from images towards photo-realistic
novel view synthesis. NeRF leverages a multi-layer percep-
tron (MLP) to implicitly modeling the mapping from an input
5D coordinates (i.e., 3D coordinates (x, y, z) and 2D viewing
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Figure 1. Comparisons between Aug-NeRF (ours) and NeRF [29].
From upper to bottom, we present the test-set synthesized views,
3D geometry, and their zoom-in RGBσ distributions, respectively.

directions (θ, ϕ)) to volume density σ and view-dependent
emitted radiance color (r, g, b) at the corresponding position
in the scene. Then, the obtained continuous 5D function (i.e.,
MLP) can be utilized to generate novel views with traditional
volume rendering mechanisms.

Although NeRF is capable of producing novel views, it
unfortunately suffers from inconsistent and non-smooth ge-
ometries since the vanilla MLP lacks geometry-awareness.
For example, as shown in Fig. 1, the depth maps and 3D
geometries of the scene generated by NeRF show obvious
discontinuity and outliers, especially around the edge of ob-
jects. Considering that the quality of reconstructed geometry
plays a central role in view rendering, that might account for
NeRF’s limited generalization to unseen views.

To fill in this research gap, a straightforward solution
is introducing explicit geometric regularizers like Lapla-
cian [17, 45] or total variation (TV) [84] to enhance the
continuity. However, these explicit regularizers are often
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found to constrain the representation flexibility of MLP too
aggressively, resulting in inferior performance. Recent ad-
vances in robust data augmentations [72] establish promising
successes in image recognition in terms of both improved
functional smoothness and generalization.

Motivated by that, we design an Augmented NeRF (Aug-
NeRF) training framework, which injects worst-case per-
turbations [23] to implicitly regularize the NeRF pipeline
with physical foundations. Specifically, Aug-NeRF con-
siders to regularize three different levels, including (i) the
input coordinates, where perturbations can imitate the in-
accurate camera poses during collecting images; (ii) the
intermediate features, in order for a smooth/flat model loss
landscape [5, 8, 70] when fitting objects’ 3D geometries that
is believed to enhance generalization; (iii) the pre-rendering
output, to model potential degradation factors in the image
supervision. As presented in Fig. 1, our Aug-NeRF achieves
smoother and more consistency reconstructed geometry and
improved unseen view synthesis. Additionally, we find Aug-
NeRF to show surprising resilience towards severely cor-
rupted supervision images. The main contributions of this
paper can be summarized as follows:

• We reveal the existence of highly non-smooth geome-
tries in representing scenes as neural radiance fields
(NeRF), which we regard as a crucial bottleneck of
NeRF’s generalization ability to unseen views.

• To address such limitation of NeRF, we propose Aug-
NeRF, a triple-level, physically-grounded augmented
training pipeline, by leveraging worst-case perturba-
tions to implicated regularize the input coordinate, in-
termediate feature, and pre-rendering output levels.

• Extensive experiments validate the effectiveness of our
proposal on diverse scene synthesis tasks, to endow
NeRF with smoothness-aware geometry reconstruction,
enhanced generalization to synthesizing unseen views,
and stronger tolerance of noisy supervisions.

2. Related Work
Adversarial Training and Robust Augmentation. It is
well-known that deep networks are vulnerable to impercep-
tible worst-case perturbations [11, 16, 23]. Numerous de-
fense mechanisms [31, 38, 47, 55, 57, 80] have been invented
to address the issue, where adversarial training (AT) ap-
proaches [11, 16, 23] remains as the de-facto. Although
conventional AT enhances model robustness at the price of
compromising the standard accuracy [62], recent studies
reveal AT can be harnessed to enhance models’ standard
generalization as well [9, 63, 68, 72, 86]. Taking [72] for ex-
ample, it applies adversarial perturbations to input samples
as a form of data augmentation, and shows to improve image
classification on the clean dataset. [9,63,86] apply worst-case
perturbations to the input embedding for natural language

understanding, language modeling, and vision-and-language
tasks, all successfully boosting their standard generaliza-
tion. [14, 40, 64, 83] constructed more sophisticated varia-
tions of robust augmentations, including both data-driven
and heuristic components, to improve model generalization
further. However, such robust augmentations on inputs or
intermediate features, to our best knowledge, have not been
studied in the view synthesis field. This paper explores this
possibility by looking into the intrinsic physical grounds.

Neural 3D Representations. Classic 3D reconstruction
approaches utilizes discrete representations such as point
clouds [1, 71], meshes [43, 44, 61], multi-plane images
[28, 53, 54, 85], depth maps [12, 49, 74] and voxel grids
[18, 21, 37, 48, 51, 58]. Neural implicit representations lever-
age coordinate-based neural networks to approximate visual
signals [27, 34, 36]. Such ideas have been successfully ap-
plied to both 2D images [20,50,60] and 3D objects [6,46,50].
Recent advances follow differentiable rendering and end-to-
end optimization to reconstruct the neural 3D scene from 2D
image supervision [29, 33, 75]. Liu et al. [20] presented the
first usage of neural implicit function to infer 3D representa-
tion with differentiable rendering. DVR [33] and IDR [75]
adopt surface rendering to reconstruct implicit iso-surface by
supervising on both images and pixel-accurate object masks.

NeRF [29] pioneered to use differentiable volumetric
rendering to optimize a neural radiance field, and achieved
more photorealistic and view-consistent results. Many works
continue to improve its training and rendering accuracy, ef-
ficiency, and generalization. NeRF++ [81] separates two
NeRFs to handle foreground and background, respectively.
NeRF-W [24] tackles unstructured photos via modeling tran-
sient noises and uncertainty. MipNeRF [3] mitigates ob-
jectionable aliasing artifacts for NeRF to represent fine de-
tails. HyperNeRF [35] introduces topology-aware level-set
methods to rectify NeRF geometry especially for dynam-
ics. [10, 39, 42, 69] extend NeRF to broader scenarios with
specific lighting and rendering modeling. [4,65,79] leverage
multi-view spatial image feature or semi-reconstructed 3D
information to reduce input view number and enhance the
generalization to new scenes. [26,67,76] free NeRF from ac-
curate camera pose estimation. Acceleration of NeRF train-
ing and inference have also been discussed in [41, 59, 78].
Despite so many exciting progresses, studying NeRF’s train-
ing stability and data robustness remains an open question.

3. Preliminaries
NeRF models the underlying 3D scene as a continuous

volumetric radiance field of color and density. Formally, a
typical radiance field can be written as F : (x,θ) 7→ (c, σ),
where x ∈ R3 is the spatial coordinate, θ ∈ [−π, π]2 in-
dicates the view direction, and c ∈ R3, σ ∈ R+ represent
the RGB color and density, respectively. NeRF further pa-
rameterizes this 5D-valued function by a composition of
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Figure 2. The overall pipeline of our proposed Aug-NeRF. The worst-case perturbations are generated at the triple levels of the NeRF
pipeline: ① input coordinates, ② intermediate features, and ③ pre-rendering output.

Positional Embedding (PE) and the MLP FΘ = γ ◦MLPΘ,
where γ is a Fourier feature mapping network [60], Θ is the
network weights. Given a radiance field, NeRF follows the
classical volume rendering to render an arbitrary view [25].

Our goal is to fit a neural radiance from calibrated RGB
images captured from multiple views. Suppose we have a set
of images with corresponding extrinsic parameters. NeRF
simulates the physical imaging process, by casting a ray r =
(o,d,θ) for each pixel via inverse perspective projection
with respect to the camera pose, where o ∈ R3 denotes the
optical center of camera, d ∈ R3 is the direction of the ray,
and θ ∈ [−π, π]2 is the angular view direction (see Fig. 2).
We collect all pairs of rays and pixel colors as the training
set R = {(ri, Ĉi)}Ni=1, where N is the total number of rays,
and Ĉi denotes the ground-truth color of the i-th ray. To
simulate the color of a ray, NeRF first partitions K evenly-
spaced bins between the near-far bound [tn, tf ] along the ray,
and then uniformly samples one point within each bin: tk ∼
U [tn+(k−1)(tf −tn)/K, tf +k(tf −tn)/K]. Afterwards,
NeRF numerically evaluates volumetric ray integration [25]
via the following equation:

C(r|Θ) =

K∑
k=1

T (k)(1− exp(−σk∆tk))ck

where T (k) = exp

(
−

k−1∑
l=1

σl∆tl

)
, (1)

where ∆tk = tk+1 − tk, and (ck, σk) = FΘ(o + tkd,θ).
With this forward model, NeRF optimizes the expected L2

distance between rendered ray colors and ground-truth pixel
colors as follows:

L(Θ|R) = E(r,Ĉ)∼P(R)

∥∥∥C(r|Θ)− Ĉ
∥∥∥2
2
, (2)

where P(·) defines a probability measure supported in the
ray space R.

4. Methodology
Overview. NeRF conducts uniform sampling along each
ray and interpolates a continuous radiance field via an MLP.
However, we argue that the point sampling and the MLP
interpolation can never be optimal during training dynamics
due to the biased sampling strategy and non-smoothness of
MLP. To this end, we propose to train NeRF with a smooth-
ing prior. Sec. 4.1 provides a probabilistic interpretation
of this intuition. Different from explicit smoothness model-
ing, e.g., total variation penalty or low rank prior, we utilize
worst-case perturbations as a data-adaptive regularization.
We call this training strategy Aug-NeRF.

An overview of our Aug-NeRF is presented in Fig. 2.
Following the rendering pipeline of NeRF, Aug-NeRF injects
adversarial noises into the following stages: point sampling,
intermediate features, and MLP outputs. Each perturbation
is searched within a small range to maximize the final loss.
It could be treated as a regularization to be jointly minimized
with the original training loss (see Sec. 4.2).

4.1. NeRF as Maximum A Posterior

Fitting a neural radiance field to satisfy multi-view ob-
servations can be modeled as a Maximal Likelihood (ML)
problem Θ∗ = argmaxΘ P(R|Θ), which can be derived as:

Θ∗ = argmin
Θ

−E(r,Ĉ)∼P(R) logP(r, Ĉ
∣∣Θ),

by assuming each ray is conditionally independent given
network parameters. Optimizing NeRF by MSE loss (Eqn.
2) can be obtained by regarding the conditional distribution
P(r, Ĉ

∣∣Θ) as a Gaussian distribution:

P(r, Ĉ
∣∣Θ) =

1

Z
exp

(
− 1

2Σ

∥∥∥C(r|Θ)− Ĉ
∥∥∥2
2

)
,
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where Z is a normalization term, and Σ is the variance.
However, the maximum likelihood does not introduce any

prior on the reconstructed NeRF as MLP is a universal ap-
proximator. Instead, we consider the Maximum A Posterior
(MAP) form P(Θ|R) to inject the prior for robust training.
By Bayesian rule, we have P(Θ|R) ∝ P(R|Θ)P(Θ), where
P(Θ) is some prior distribution of the network weights Θ.
Hence, maximizing this posterior probability is equivalent
to minimizing the original loss (Eqn. 2) plus a penalty term:

L(Θ|R) = E(r,Ĉ)∼P(R)

∥∥∥C(r|Θ)− Ĉ
∥∥∥2
2
+ λR(Θ), (3)

where R(Θ) = − logP(Θ)/λ. Here we expect Θ to induce
a geometry-aware smooth FΘ.

4.2. Regularize NeRF with Robust Augmentations

Imposing smoothness onto NeRF can be done in many
explicit ways, such as regularizing total variation [84], Lapla-
cian of surface [7, 52, 77], etc. However, those regularizers
are often not sufficiently data-adaptive, and can constrain
the representation flexibility too aggressively, as evidenced
in Sec. 5.3. Also, their computation also usually operates
on discretized volumetric representations, and needs extra
differentiation steps to be added in NeRF.

Recent works [5, 9, 63, 68, 72, 86] suggest a promising al-
ternative by integrating worst-case adversarial perturbations
as data augmentations (i.e., AT). AT restricts the change of
loss when its input is perturbed, leading to flattening the loss
landscape [30, 56]. As a result, the trained network’s intrin-
sic feature manifold and loss landscape become smoother.
Prevailing theories [15, 19, 32] link the generalization ability
of deep networks to the geometry of the loss landscape; in
particular, a model trained to converge to wide valleys (i.e.,
flat basins) in loss landscape shows better generalization
ability as well as robustness to distributional shifts.

NeRF is trained by given 2D image views (often with
known camera poses) and is tested to synthesize novel views
from unseen angles. Intuitively, the unsatisfactory novel
view synthesis could be seen as a training-testing “gener-
alization gap” issue. This inspires us to incorporate robust
augmentations into NeRF to induce a data-adaptive smooth-
ness prior that enhances generalization.

Designing dedicated perturbations for NeRF is far from
trivial due to its inherent physics. Unlike conventional deep
models, the forward pass of NeRF consists of two white-box
simulating stages (point sampling, volumetric rendering) and
one black-box network mapping stage. We propose to inject
worst-case perturbations into all three levels: coordinates,
intermediate features of MLP, and pre-rendering MLP output:
all with clear physical meanings. Formally, our approach

can be formulated as a min-max game:

min
Θ

E(r,Ĉ)∼P(R) max
δ

∥∥∥C†(r|Θ, δ)− Ĉ
∥∥∥2
2
,

where δ = (δp, δf , δr) ∈ Sp × Sf × Sr, (4)

where δp, δf , and δo are the perturbations to be learned
and injected to the input coordinate, intermediate MLP fea-
ture, and pre-rendering RGB-σ output, respectively, where
Sp ⊆ R6, Sf ⊆ RD, and Sr ⊆ R4 are the corresponding
perturbation search range, D is the hidden dimension of the
MLP. We elaborate on each perturbation as below.

Input Coordinate Perturbation. The original NeRF first
randomly samples point along each ray and then conducts
importance sampling to simulate the quadrature of the inte-
gration. This strategy also mitigates overfitting and produces
smoother scene representation [29]. Arandjelovic et al. [2]
further proposes an attention-guided sampling scheme to
refine this process. However, our insight is that using ei-
ther coarse-to-fine or learning-based sampling will cause the
sampling to overfit the density distribution of the currently
rendered ray, which might hold back NeRF when the density
field is biased or cannot generalize.

To this end, we propose to produce a worst-case point
sampling during training, to simulate a test-time “distribu-
tional shift” for NeRF to handle. To be specific, we search
a coordinate perturbation δxyx = (δx, δy, δz) following
Eqn. 4. The coordinate perturbation δp = (δt, δxyz, δθ)

T

consists of three parts: 1) the along-ray perturbation δt ∈ R
shifts point samples along the ray, 2) the point position per-
turbation δxyz ∈ R3 is added to the direct input of the NeRF
MLP, 3) in addition, we also inject the perturbation δθ ∈ R3

to the view direction. Formally, given the perturbation δp,
the input of MLP turns out to be:

t†k = tk + δt, θ† = θ + δθ, p†
k = o+ t†kd+ δxyz.

The constraint set for δt is defined as δt ≤ |αt(tk+1 − tk)|,
where αt is a hyperparamter. The coordinate perturbation
δxyz lies in a ball B(0, ϵp) to constrain points with a cylinder
along the ray. View direction perturbation δθ is restricted
within the conical frustum [−ϵp/2f, ϵp/2f ]

2, where f is the
focal length, and ϵp is the pixel size.

Pre-Rendering Output Perturbation. NeRF next maps
points on a ray to the corresponding color and density, then
conducts volumetric rendering to compose these point values
into the 2D pixel values. As shown by Fig. 1, the recon-
structed shape can be noisy and discontinuous. We attribute
these artifacts to two reasons: (i) neural implicit functions
represented by MLP are not necessarily smooth [60, 73].
When zooming in, we observe the function landscape to be
rugged; (ii) the MLP output goes through volumetric render-
ing to form the RGB output. As the volumetric rendering
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Figure 3. Comparisons on the test-set views for scenes from the realistic LLFF dataset [29]: local zoom-in in the red box.

itself has smoothing effects owing to its point-by-point ac-
cumulation, it might “mask” the non-smoothness and noise
of the pre-rendering results hence they cannot be effectively
eliminated at supervised training.

Inspired by robust training enhancing output smoothness
[5, 9, 63, 68, 72, 86], we propose to intentionally corrupt the
output of the MLP with worst-case pertubation, in order
to encourage the output smoothness of the MLP, which in
turn smooths the NeRF underlying geometry. Given the pre-
rendering perturbation δr = (δc, δσ), δc = (δr, δg, δb), we
perturb the rendering in Eqn. 1 by:

C†(r|Θ) =

K∑
k=1

T (k)(1− exp(−(σk + δσ)∆t†k))(ck + δc),

where (ck, σk) = FΘ(p
†
k,θ

†) are outputs by perturbed coor-

dinates, T (k) = exp
(
−
∑k−1

l=1 (σl + δσ)∆t†l

)
is the trans-

mittance term, ∆t†k = t†k+1 − t†k is the interval of integral,
and δc, δσ correspond to color and density perturbations, re-
spectively. We fix the constraint set as [−ϵc, ϵc]

3× [−ϵσ, ϵσ].
δc, δσ will be further clamped to make sure ck, σk lie be-
tween [0, 1].

Intermediate Feature Perturbation. In addition to per-
turbing per-rendering color and ray density, we also inject
adversarial noise into the intermediate features. As revealed
by [5], augmenting intermediate features can further smooth
learned functional mappings, more than just augmenting
inputs or outputs. To be specific, according to [29], the back-
bone MLP can be written as (c(p), σ(p)) = FΘ(p,θ) =

(g ◦ f(p,θ), h ◦ f(p)), where f(·) (with positional encod-
ing) maps a coordinate to a D-dimension feature vector, and
g(·), h(·) project it to RGB color and density, respectively.
We crafted the worst-case perturbations as follows:

ck = g(f(p†
k) + δf ,θ

†), σk = h(f(p†
k) + δf ).

Intermediate feature perturbation is searched over Sf =
[−ϵf , ϵf ]

D with a hyperparameter ϵf . We also test various
injection points of the backbone MLP in Sec. 5.3.

4.3. Optimization

To search for the worst-case perturbation in Eqn. 4, we
introduce a theoretically guaranteed way to reach the maxi-
mum. We only consider additive perturbation here, and all
search spaces (i.e., Sp,Sf ,Sr) are defined as ℓp norm ball
with a radius ϵ > 0. The radius ϵ is the maximum magnitude
of the perturbation, which can roughly signify the strength
of the perturbation. The perturbations can be accurately es-
timated by multi-step Projected Gradient Descent (PGD).
Taking ℓ∞ norm ball for example:

δ(t+1) = Π
∥δ∥∞≤ϵ

[
δ(t) + α · sgn(∇δL(Θ|R, δ)

]
(5)

where α is the step size of the inner maximization, Π[·] de-
notes a projection operator, sgn(·) takes the sign of the input,
and L(Θ|R, δ) represents the MSE loss between perturbed
color C† and ground-truth color Ĉ (see Eqn. 4).

After incorporating all augmentations, the full training
objective is defined as (λ = 0.1 as tuned by grid search):
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Figure 4. Comparisons of learned depth maps on scenes from LLFF
dataset. The local zoom-in is placed in the red box.

E(r,Ĉ)∼P(R)

∥∥∥C(r|Θ)− Ĉ
∥∥∥2
2︸ ︷︷ ︸

photometric loss

+λmax
δ

∥∥∥C†(r|Θ, δ)− Ĉ
∥∥∥2
2︸ ︷︷ ︸

adversarial reg.

.

5. Experiments
5.1. Implementation details.

Datasets. We evaluate our proposals on public represen-
tative datasets of both LLFF [28] and NeRF-Synthetic [29].
Particularly, the face-forwarding scenes {“fern”, “orchids”,
“trex”} from LLFF dataset and {“drums”, “ship”, and
“chair”} instances in 360° NeRF-Sythetic dataset are adopted
in our experiments. To accelerate training, we down-sampled
LLFF dataset by 1/8 and 360° NeRF-Synthetic dataset by
1/2.

Training. We employ the same MLP architecture and
training recipe with the original NeRF. Aug-NeRF is trained
for 500K iterations to guarantee convergence. All hyperpa-
rameters are carefully tuned by a grid search and the best
configuration is applied to all experiments, as demonstrated
in Sec. 5.3. NeRF models are trained on a NVIDIA RTX
A6000 GPU with 48 GB memory.

Evaluation. We report three error metrics including peak
signal-to-noise ratio (PSNR), the structural similarity index
measure (SSIM) [66], and learned perceptual image patch
similarity (LPIPS) [82]. Meanwhile, to provide a compre-
hensive comparison, we also follow [3] and show an “av-
erage” error metric by computing the geometric mean of

Table 1. Quantitative comparison of our Aug-NeRF against NeRF
and other top-performers for novel view synthesis. Performance
is reported on the LLFF test set. ↑/↓ means that larger/smaller
numbers denote better performance.

Scene “fern” PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
SRN [50] 21.37 0.611 0.459 0.128
LLFF [50] 22.85 0.753 0.247 0.086

NeRF [29] 25.17 0.792 0.280 0.073
MipNeRF [3] 26.24 0.839 0.193 0.057

Aug-NeRF (Ours) 26.51 0.830 0.168 0.054

Scene “orchids” PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
SRN [50] 17.37 0.611 0.467 0.175
LLFF [28] 18.52 0.588 0.313 0.141

NeRF [29] 20.36 0.641 0.321 0.121
MipNeRF [3] 20.87 0.663 0.262 0.108

Aug-NeRF (Ours) 21.60 0.675 0.243 0.099

Scene “trex” PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
SRN [50] 22.87 0.761 0.298 0.091
LLFF [28] 24.15 0.857 0.222 0.069

NeRF [29] 26.80 0.880 0.249 0.056
MipNeRF [3] 27.55 0.894 0.208 0.049

Aug-NeRF (Ours) 28.17 0.881 0.206 0.048

MSE = 10
−PSNR

10 ,
√
1− SSIM, and LPIPS.

Baseline and Comparison Variants. Our Aug-NeRF is
established on the vanilla NeRF [29]. Two groups of current
top-performers for view synthesis are compared, including
(i) NeRF-based approaches: NeRF [29] and MipNeRF [3];
and (ii) classical methods: Neural Volume (NV) [21], Scene
Representation Network (SRN) [50], and Local Light Field
Fusion (LLFF) [28]. For a fair comparison, all above models
are trained/tested on the same views of identical scenes.

5.2. Improved NeRF with Augmentations

Results on LLFF and 360° NeRF-Sythetic datasets. In
this section, we validate our proposed Aug-NeRF on LLFF
and 360° NeRF-Sythetic datasets across six representative
scenes. Quantitative comparisons against vanilla NeRF
and other top-performing algorithms like {MipNeRF [3],
NV [21], SRN [50], LLFF [28]} are provided in Tab. 1
and 2, together with qualitative test views presented in Fig. 3.
These results convey several observations:

① Aug-NeRF reduces average error by 14.3% ∼ 26.0%
and 12.5% ∼ 44.7% on the LLFF and 360° NeRF-
Sythetic datasets, respectively. It consistently outper-
forms NeRF on all metrics by a large margin, e.g.,
{1.34, 1.24, 1.37, 1.33, 0.53, 0.87} PSNR improve-
ments at scenes {“fern”, “orchids”, “trex”, “drums”,
“ship”, “chair”}, showing impressive “generalization”
boosts on unseen views thanks to our augmentations.

② Compared with recent state-of-the-art MipNeRF and
other classical approaches, Aug-NeRF shows a clear
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Table 2. Quantitative comparison of our Aug-NeRF against NeRF
and other top-performer for novel view synthesis. Performance is
reported on the test set of 360° NeRF-Sythetic dataset. ↑/↓ means
that larger/smaller numbers denote better performance.

Scene “drums” PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
SRN [50] 17.18 0.766 0.267 0.135
NV [21] 22.58 0.873 0.214 0.075
LLFF [50] 21.13 0.890 0.126 0.069

NeRF [29] 25.01 0.925 0.091 0.043
MipNeRF [3] 26.22 0.939 0.065 0.034

Aug-NeRF (Ours) 26.34 0.941 0.060 0.032

Scene “ship” PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
SRN [50] 20.60 0.757 0.299 0.109
NV [21] 23.93 0.784 0.276 0.080
LLFF [50] 23.22 0.823 0.218 0.076

NeRF [29] 28.65 0.856 0.206 0.047
MipNeRF [3] 29.30 0.864 0.190 0.044

Aug-NeRF (Ours) 29.18 0.879 0.173 0.042

Scene “chair” PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
SRN [50] 26.96 0.910 0.106 0.040
NV [21] 28.33 0.916 0.109 0.036
LLFF [50] 28.72 0.948 0.064 0.027

NeRF [29] 33.00 0.967 0.046 0.016
MipNeRF [3] 33.82 0.972 0.042 0.014

Aug-NeRF (Ours) 33.87 0.972 0.040 0.014

Table 3. Quantitative comparison of Aug-NeRF against NeRF and
MipNeRF for novel view synthesis. All models are trained with
noisy data. Performance is reported on the noise-free test set.

“fern” + Gaussian Noise PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
NeRF [29] 16.95 0.451 0.535 0.200
Aug-NeRF (Ours) 17.12 0.535 0.495 0.187

“fern” + Shot Noise PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
NeRF [29] 15.75 0.231 0.755 0.260
Aug-NeRF (Ours) 17.00 0.495 0.485 0.190

advantage, especially in terms of PSNR. In some cases,
MipNeRF has a slightly higher SSIM; but Aug-NeRF
is able to outperform it in most cases.

③ Aug-NeRF achieves superior performance in represent-
ing fine geometry, as shown in Fig. 3 such as Fern’s
and Orchid’s leaves, the skeleton ribs, and railing in
T-rex. Both NeRF and MipNeRF reconstruct the low-
frequency geometry and color variation, but fail to gen-
erate high-quality fine details (see zoom-in).

Depth and Geometry visualization. The learned depth
maps and fitted 3D geometries from NeRFs are provided in
and 4 and Fig. 5, respectively. The 3D shapes (Fig. 5) are
synthesized by MarchingCube algorithms [22]. We observe
that vanilla NeRF suffers from a serrated surface (which
overwhelms the fine details), while traditional TV and Lapla-
cian regularizations tend to excessively smoothen the results.
Aug-NeRF reduces noises and improves surface smoothness,
in a detail- and geometry-preserving manner.

Table 4. Quantitative ablation study of our Aug-NeRF. Input, fea-
ture, and output augmentations. denote our proposed coordinate,
feature, and pre-rendering output augmentations respectively.

Scene “fern” PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
NeRF [29] 25.17 0.792 0.280 0.073

+ ℓ1 Reg. 25.15 0.750 0.285 0.076
+ Lap. Reg. 24.89 0.670 0.305 0.083
+ TV Reg. 26.05 0.806 0.217 0.062
+ Random Aug. 25.28 0.796 0.224 0.067

+ Input Aug. 25.30 0.797 0.251 0.069
+ Feature Aug. 25.39 0.787 0.243 0.069
+ Feature & (Pre-) Output Aug. 26.32 0.810 0.199 0.059
+ Tri-level Random Noise 25.36 0.802 0.205 0.064

Aug-NeRF (Ours) 26.51 0.830 0.168 0.054

Superior synthesis when trained on noisy data. As an
extra study, we examine Aug-NeRF under supervision im-
ages with additive noise corruptions. From Tab. 3 and Fig. 6,
compared to the vanilla NeRF, Aug-NeRF shows consistent
6.5% ∼ 26.9% average error reductions for both Gaussian
and Shot noises, while it substantially improves the visual
quality of constructed test views (e.g., much fewer noises
in the “fern”). We regard it as an additional bonus from
enforcing smooth geometry in NeRF training.

5.3. Ablation Study
Multi-level v.s. single-level augmentation. To compare
the effects of robust augmentations at different levels, we
conduct step-wise evaluation as: (i) NeRF, (ii) NeRF + Fea-
ture Aug., (iii) NeRF + Feature & Output Aug., iv) NeRF
+ Feature & Output & Input coordinates Aug., which is
our complete Aug-NeRF. Tab. 4 shows that applying ro-
bust augmentation to each level brings extra and comple-
mentary generalization gains, among which augmenting the
pre-rendering output level makes the biggest difference.

Worst-case v.s. random perturbations. One straightfor-
ward baseline for Aug-NeRF is to just use random data aug-
mentation. Particularly, we employ random Gaussian noises
to both intermediate features and pre-rendering outputs of
NeRF1. As in Tab. 4, Random Aug. obtains moderate per-
formance boosts for all metrics, but are clearly less obvious
than our worst-case perturbations.

Effects of augmentation strength and location. The ac-
curacy gains from Aug-NeRF are largely determined by the
strength and location of crafted worst-case perturbations. A
comprehensive investigation on three levels of augmenta-
tions, i.e., input coordinate, intermediates features, and pre-
rendering output, are presented in Fig. 7. When studying one
of the factors, we stick to the best configuration for the rest
factors. Fig. 7 reveals that: First, NeRF gains the most from
{coordinate, features, pre-rendering output} augmentations
with {PGD-3, PGD-1, PGD-1} and step size {10−2, 10−3,
10−5}; Second, applying generated perturbations to the mid-
dle layer of NeRF’s MLP contributes the most significantly;

1The vanilla NeRF has already included random noise in coordinates.
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NeRF NeRF + Laplacian NeRF + TV Aug-NeRF (Ours)Ground Truth

Figure 5. Comparisons of the fitted geometry by NeRF, NeRF with explicit Laplacian and TV regularizers, and our Aug-NeRF. The local
zoom-in is placed in the red box.
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Figure 6. AugNeRF yields superior synthesis results when trained
with noisy image supervision. Our investigated image corruptions
include Gaussian and shot noises, following the standard in [13].

Third, too strong (e.g., PGD-10) worst-case perturbations
may still deteriorate performance.

Comparison with explicit smooth regularizations. In
contrast to our implicit smooth prior, there exists sev-
eral explicit smooth regularizations which can be directly
plugged into the NeRF pipeline, like ① ℓ1 sparsity Reg.
Rℓ1(Θ) =

∫
|σΘ(u)|du; ② Laplacian Reg. RLap(Θ) =∫

|∆σΘ(u)|du; ③ Total Variation (TV) Reg. RTV(Θ) =∫
∥∇σΘ(u)∥2du. As demonstrated in Tab. 4, although hy-

perparameters are carefully tuned by a grid search, both ℓ1
and Laplacian regularizers degrade the performance, as such
explicit constraints are often too aggressive and limit the
representation flexibility of NeRF. The TV Reg. can lead to
positive gains but still largely lags behind our proposals.

6. Conclusion and Broad Impact
In this paper, we have presented Aug-NeRF that addresses

the inherent non-smooth geometries of NeRF. Specifically,
based on solid physical grounds, Aug-NeRF seamlessly in-
jects worst-case perturbations into three levels of the NeRF
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Figure 7. Ablations on the strength and location of all three aug-
mentations. Results are on the test set of LLFF. The PGD step is the
number of iterations for generating worse-case perturbations. Step
size α controls the strength of crafted perturbations. Position means
which layer the intermediate feature augmentation is injected into
NeRF’s MLP. Red indicates the top performance.

pipeline, leading to substantially improved geometry conti-
nuity and generalization ability. Extensive quantitative and
qualitative results across diverse scenes validate the effec-
tiveness of our proposals. Moreover, the implicit smooth
prior induced by triple-level augmentation enables NeRF to
recover scenes from noisy supervision images. One limita-
tion is that we only study additive noises (e.g., Gaussian) for
corrupted images. We will extend the investigation to other
complicated corruptions.
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