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Abstract

Recently, many excellent weakly supervised semantic
segmentation (WSSS) works are proposed based on class
activation mapping (CAM). However, there are few works
that consider the characteristics of medical images. In this
paper, we find that there are mainly two challenges of medi-
cal images in WSSS: i) the boundary of object foreground
and background is not clear; ii) the co-occurrence phe-
nomenon is very severe in training stage. We thus propose
a Causal CAM (C-CAM) method to overcome the above
challenges. Our method is motivated by two cause-effect
chains including category-causality chain and anatomy-
causality chain. The category-causality chain represents
the image content (cause) affects the category (effect). The
anatomy-causality chain represents the anatomical struc-
ture (cause) affects the organ segmentation (effect). Exten-
sive experiments were conducted on three public medical
image data sets. Our C-CAM generates the best pseudo
masks with the DSC of 77.26%, 80.34% and 78.15% on
ProMRI, ACDC and CHAOS compared with other CAM-
like methods. The pseudo masks of C-CAM are further used
to improve the segmentation performance for organ seg-
mentation tasks. Our C-CAM achieves DSC of 83.83% on
ProMRI and DSC of 87.54% on ACDC, which outperform-
s state-of-the-art WSSS methods. Our code is available at
https://github.com/Tian-lab/C-CAM .

1. Introduction
Recently, semantic segmentation [22] is widely studied

due to the development of deep learning. Existing paradig-
*Corresponding Author
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Figure 1. Main challenges of medical images. Challenge1: The
object boundary for medical image is more ambiguous than natu-
ral image. Challenge2: Different organs often occur in the same
medical image in training stage.

m of semantic segmentation is training a model to clas-
sify the category of every pixel with abundant pixel-level
labeled data. However, the acquirement of pixel-level la-
bels is time-consuming and expensive. Therefore, a new
paradigm called weakly supervised semantic segmentation
(WSSS) comes out. Different from fully supervised seman-
tic segmentation (FSSS), WSSS utilizes weak annotation-
s, e.g., image-level label, point, scribble and bounding box.
Among these weak annotations, image-level label is the eas-
iest way to be obtained. Meanwhile, it is the most challeng-
ing one to be used for segmentation. In this paper, we focus
on image-level labels for medical image segmentation.

The main problem for WSSS with image-level labels is
the lack of location information. Class activation mapping
(CAM) methods [7, 14, 24, 30, 33, 44] creatively give con-
volutional neural network (CNN) locating ability with on-
ly image-level labels. However, the CAM could only lo-
cate discriminative part of object, which leads awful seg-
mentation performance. Many CAM-based WSSS method-
s [2, 8, 13, 18, 34, 39] are successively proposed to narrow
the gap between WSSS and FSSS. The main idea of these
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methods is to solve the problem that CAM could not com-
pletely cover object. Some methods [2, 8, 13, 18] use CAM
to generate seeds and refine the seeds to cover the whole ob-
ject. Some methods [19, 34, 39, 40] directly generate more
accurate saliency maps.

However, most of these CAM-based methods are de-
signed for natural images, which may not work well on
medical images. Compared with natural images, medical
images have mainly the following two challenges of WSSS
based on image-level labels. We intuitively demonstrate the
challenges in Fig. 1. i) The boundary of foreground and
background is not clear, which makes CAM model hard to
classify the category border of foreground and background.
ii) The co-occurrence is very severe in medical images in
training stage, e.g., different organs always appears togeth-
er in an abdominal magnetic resonance imaging (MRI) im-
age. However, the co-occurrence is not so severe in natural
images. For example, the “people” would not always ap-
pear together with “horse”, and vice versa. Therefore, CAM
model could know which part of an image is “people” with
abundant image-level labels. Unfortunately, it is hard for
CAM model to activate correct co-occurring organs in one
image only according with image-level labels.

Therefore, a causal CAM (C-CAM) method is proposed
to overcome the above-mentioned challenges. The C-CAM
starts from two causality chains. The first chain is category
causality X → Y , which indicates that the image content
X (cause) affects the classified category Y (effect). The
second chain is anatomy causality Z → S, which indi-
cates that the anatomical structure Z (cause) affects the or-
gan segmentation S (effect). In the category-causality chain,
we use causal intervention [28] to make C-CAM model fo-
cus on the real cause of predicted category. In the anatomy-
causality chain, anatomical constraint is integrated to make
C-CAM focus on the real cause of object segmentation,
which can well solve the co-occurrence problem.

In summary, the main contributions of this paper are
three folds:

• We propose C-CAM for WSSS on medical images.
The C-CAM generates pseudo segmentation masks
with clearer boundaries and more accurate shapes. To
the best of our knowledge, C-CAM is the first method
to introduce causality into medical image WSSS.

• We integrate two causality chains to cope with the
challenges of WSSS for medical images. Category-
causality chain is designed to alleviate the problem of
ambiguous boundary. Anatomy-causality chain is de-
signed to solve the co-occurrence problem.

• We demonstrate the effectiveness of our method with
extensive experiments on three public medical image
data sets. Our C-CAM generates pseudo masks with

False positive

False negative
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Anatomy 

causality

Biased category

Biased shape

Figure 2. Motivation of causality in medical image WSSS. Cat-
egory causality (first row): information of biased category cause
model activate wrong category of object. Anatomy category (sec-
ond row): information of biased shape cause model activate inac-
curate shape of object. The heatmaps represent saliency maps of
CAM. The red color means high value and blue color means low
value. The yellow curve represents ground-truth.

the DSC of 77.26%, 80.34%, and 78.15% respectively
on ProMRI, ACDC, and CHAOS data sets. The seg-
mentation performance achieves the DSC of 83.83%
± 5.14% on ProMRI and 87.54% ± 7.77% on ACDC,
which outperforms state-of-the-art methods.

2. Related Work
2.1. Weakly Supervised Semantic Segmentation

There are mainly four types of weak labels that are
explored in WSSS, including image-level labels [2, 18],
points [3], scribbles [20, 37] and bounding boxes [10, 17,
26]. Specially, since the image-level labels are easiest to ob-
tain, most works are designed for image-level WSSS. Our
work also focuses on the image-level supervision.

Current image-level supervised WSSS methods are
mostly based on CAM technique [44], which could locate
discriminative areas with classification model. However,
the CAM only activates regions that are highly related to
the classified category. Common pipeline of CAM-based
method could be divided into three stages. The first stage
is to generate seed regions with CAM method. The second
stage is to refine seeds regions to generate pseudo masks.
The last stage is to train segmentation model with pseudo
masks. Many works focus on how to refine seed region-
s. AffinityNet [2] exploits affinity labels from seed regions
and trains an affinity model to refine seed regions. Simi-
larly, BES [8] predicts object boundaries in an explicit way
and uses predicted boundaries to revise seed regions. D-
SRG [13] utilizes the seeded region growing mechanism to
gradually refine seed regions. Recently, some researchers
design models that directly generate more accurate saliency
maps. FickleNet [19] generates more precise saliency maps

11677



CNNCNN Up++

Classification Head

Causality 

Module

Mapping

..

Mc Ms

Pseudo masks

CAMcc

CAMac

Medical images

GS Module

Category 

causality chain

Anatomical 

causality chain

FCNN

MGC

Fully Connection

Global Average 

Pooling

Classification Head

++

..

Concatenation

Element-wise 

Multiplication

Coarse

Argmax & 

Upsampling
UpUp

Figure 3. The architecture of our proposed C-CAM. Firstly, a global sampling (GS) module (Sec. 3.2) is designed to generate global
context (MGC ) and coarse mask. Successively, a causality module (Sec. 3.4) is designed to compute category-causality map Mc and
anatomy-causality map Ms. The Mc is then concatenated with CNN features FCNN . The concatenated features [FCNN ,Mc] are fed into
a classification head in training stage. In inferring stage, CAMcc that represents saliency maps with only category causality is generated
by class activation mapping. CAMac that represents saliency maps with both category causality and anatomy causality is generated by
multiplying CAMcc and Ms. Finally, the pseudo masks are generated from CAMac, which could be used to train a segmentation model
in the following full-supervision stage.

by randomly selecting hidden units for a single image. M-
CIS [34] exploits cross-image semantic correlations to im-
prove the quality of saliency maps. SEAM [39] uses equiv-
ariant regularization to constrain saliency maps of CAM
more consistent over rescaling. Wei et al. [40] simply u-
tilizes multi-scale dilated convolution to produce dense and
reliable saliency maps. However, these CAM-based meth-
ods could not work well on medical images because they
do not consider the ambiguous boundary and co-occurrence
problems in medical images.

2.2. Anatomical Prior

Incorporating prior knowledge into image segmentation
is a useful way to improve performance both for natural
image [12, 27, 42] and medical image [11, 25, 31]. In F-
SSS scene, current CNN-based methods do not take into
account the constraint of output structure since they usually
utilize pixel-wise loss functions, e.g. cross-entropy. While a
good design of prior can provide better structure constrain-
t [27]. In WSSS scene, prior knowledge is more valuable
to make up for the lack of information contained in weak
labels [12]. Specially, the priors in medical images have
more impact than natural images since objects in medical
images naturally have more anatomical information. The
anatomical information is inherent like the location of body
parts and organs, which is called anatomical prior. Zotti
et al. [45] utilize shape prior to aid cardiac MRI segmenta-
tion. Mirikharaji et al. [23] design a star shape prior for skin
lesion segmentation. Dalca et al. [11] design a generative
model for biomedical segmentation, which integrates rich
probabilistic anatomical priors. However, existing meth-
ods need specialized knowledge or complicated model to
utilize anatomical prior. In contrast, our C-CAM extracts
anatomical information from the model itself and integrates

anatomical prior with an anatomy-causality chain.

2.3. Causality in Computer Vision

Causality has recently been widely used in learning-
based computer vision tasks [29, 35, 38, 41, 43]. The intro-
ducing of causality to machine learning helps provide bet-
ter learning and explainable models, since traditional CNN
models only take account of association relationship oth-
er than causality relationship. Especially, causality plays a
more important role in medical imaging. Castro et al. [6]
highlight the importance of causality between medical im-
ages and their annotations. However, there is no work has
been done to apply causality for weakly supervised medical
image segmentation as we know. Illuminated by previous
excellent works, we introduce causality into weakly super-
vised semantic segmentation on medical images.

3. Method
3.1. Motivation

We observe that causality plays an important role in med-
ical imaging. The causality for medical image WSSS could
be analysed by answering two questions. Question 1: why
the accuracy of classification model is very high but the ac-
tivated region of CAM is not accurate? Question 2: why
the shape of activated region differs far from the ground-
truth contour of object? The answer for the first question is
that classification model is essentially an association model,
which performs well in classification task. However, it does
not work in medical image segmentation task. For example,
some non-prostate area may has high correlation relation-
ship with prostate in statistical sense. This will lead biased
category information that misleads CAM to activate wrong
areas that don’t have causality relationship with prostate as
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shown in Fig. 2. The answer for the second question is that
current learning-based methods ignore constraint of output
structure since they use pixel-wise loss functions. This de-
fect can be remedied with abundant pixel-level labels, while
it is obviously not applicable in WSSS scene.

Therefore, two causality chains for WSSS on med-
ical images are proposed to solve the above problems.
Category-causality chain is designed to alleviate the prob-
lem of ambiguous boundary. Anatomy-causality chain is
designed to solve the co-occurrence problem. Fig. 3 shows
our C-CAM network structure.

3.2. Global Sampling Module

The saliency map of CAM is not accurate enough for
segmentation task. However, it can provide valuable infor-
mation highly related to category and anatomy for medical
image. Therefore, we design a global sampling (GS) mod-
ule to exploit these valuable information. In this section, the
GS module is used to extract global context that contains
both category and anatomy information. The GS module is
shown as Fig. 4. The training images are directly fed in-
to a pure CAM (P-CAM) model to generate coarse pseudo
masks. The P-CAM is a CAM-like model that is composed
of a CNN backbone, a classification head, a mapping opera-
tion and a upsampling operation. The mapping operation is
referred to CAM [44]. In the training stage, only the CNN
backbone and classification head are used. In the inferring
stage, the mapping operation and a upsampling operation
are conducted to generate coarse pseudo masks.

The mapping operation generates saliency maps for each
class. This process is defined as a function fp cam (·). The
GS module finally outputs global context map MGC ∈
RC×H×W , which could be formulated as:

MGC =
1

N

∑
k∈N

Up Argmax (fp cam (Ik)) , (1)

where N denotes the number of training images, I ∈
RH×W×3 denotes the input images, Up Argmax (·) de-
notes an operation that performs upsampling after argmax,
C denotes number of category, H , W denote the height
and width of original image size, H ′, W ′ denote down-
sampled size. Specifically, the coarse segmentation mask
Coarsek = UP Argmax (fp cam (Ik)) of every input im-
age is also preserved.

3.3. Causality in medical image WSSS

The key task for WSSS is to generate pseudo mask with
accurate category and shape. Our C-CAM starts from t-
wo causality chains as shown in Fig. 5. The first chain is
category causality X → Y . It indicates that the image
content X (cause) affects the classified category Y (effect)
with the disturbing of context confounder C. The second

Coarse 

masks Global 

context

CNNCNN Up

Classification Head

Mapping

Pure CAM Model

∑ 

Output

GS Module

Figure 4. Global Sampling (GS) module.The GS samples all the
training data and feeds them into a pure CAM model (P-CAM).
The P-CAM generates coarse masks for every training images. In
addition, GS module outputs a global context with summarize op-
eration on all coarse masks.

X Y

SZ

PC

Figure 5. The causal graph of medical
image WSSS. X denotes medical image,
Y denotes classified category, C denotes
context confounder. Z denotes anatomi-
cal structure, S denotes shape of segmen-
tation and P denotes pseudo mask.

chain is anatomy causality Z → S, which indicates that
the anatomical structure Z (cause) affects the shape of seg-
mentation S (effect). Therefore, pseudo mask is determined
both by category Y and shape S.

3.4. Causality Module

In this section, a causality module is designed as shown
in Fig. 6 to improve the accuracy of our P-CAM in a causal
manner. As mentioned in Sec. 3.1, the causality module is
designed based on two causality chains: category-causality
chain and anatomy-causality chain.

Category-Causality Chain. In the category-causality
chain, the coarse segmentation mask Coarse ∈ R1×H×W

and global context map MGC ∈ RC×H×W are fed into a
reshape layer. Two convolution layers are used to project
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Figure 6. The network structure of causality module. The causal-
ity module takes coarse segmentation mask and global context
map MGC as input. Finally, the category causality map Mc and
the anatomy-causality map Ms are generated respectively for two
causality chains.The value of coarse mask is in [0, 1, . . . , C-1], C
is the number of categories.

11679



Coarse and MGC into the same space, respectively. A
category-aware attention vector Acategory ∈ R1×C is then
computed with the following formulation:

Acategory = softmax
(
Φ (Coarse)×Θ(MGC)

T
)
,

(2)
where Φ and Θ represent two convolution operations. Fi-
nally, the image-specific category-causality map Mc ∈
R1×H′×W ′

is computed as follows:

Mc = Down (Acategory ×MGC) , (3)

where Down (·) is a downsamling operation to make the
output Mc could be concatenated with CNN features.

Anatomy-Causality Chain. The shape and boundaries of
the targets can be well-capture while the semantic mean-
ing cannot be fully determined, which is later addressed by
the anatomical structure information. Especially, for some
multi-organ scenes like abdominal scans, CAMcc could
even not discriminate left kidney and right kidney since
they always co-occur in an image. To this end, an anatomy-
causality chain is designed to solve this problem.

In the anatomy-causality chain, a 1/0 indicator is de-
signed to represent anatomical information of medical im-
ages. Finally, the anatomy-causality map Ms is computed
as the following formulation to obtain the possible position
of each category:

MS =

{
1, if MGC > 0
0, else

. (4)

The Ms is downsampled and multiplied with CAMcc to get
final saliency maps CAMac. Finally, the pseudo segmenta-
tion mask Spseudo is formulated as:

Spseudo = UP Argmax (MS · CAMcc) . (5)

The generated pseudo segmentation mask is used to train a
U-Net [32] model in the following full-supervision stage.

4. Experiments
4.1. Dataset

Three medical image data sets for human organ seg-
mentation were used in our experiments. We used only
image-level weak supervision for every data set.

ProMRI. This data set is used for prostate segmentation,
which contains 172 volumes of T2-weighted transverse
MRI. ProMRI is a mixed data set composed of three subsets
that are from PROMISE12 [21], ISBI2013 [5] and in-house
data [36]. 30 volumes in PROMISE12 test set are used for
testing. The remaining 142 volumes are used for training.

ACDC. This is a data set for left ventricular endocardium
segmentation task. The ACDC includes 100 cases of cine
MRI, which is publicly available on the 2017 Automatic
Cardiac Diagnosis Challenge (ACDC) [4]. The 100 cases
are randomly divided into two parts. The first part including
75 cases is used for training. The second part including 25
cases is used for testing.

CHAOS. This is a public data set from the challenge
of Combined Healthy Abdominal Organ Segmentation
(CHAOS) [15]. This data set contains 4 abdominal organs,
which are liver, left kidney, right kidney and spleen. The
modality of T2 Spectral Pre-Saturation Inversion Recovery
(SPIR) is choosed to evaluate our method. The segmenta-
tion task provide 20 cases with labeled masks for training
and 20 cases without labeled masks for testing.

4.2. Implementation Details

Our work was mainly implemented in Python and the
PyTorch framework. All the codes were ran on Ubuntu
16.04.1 platform with 2 NVIDIA GTX 1080Ti GPUs. In
the pseudo-masks generation stage, our P-CAM model was
firstly trained with all training images including negative
samples. The negative samples represent images that con-
tain no organs. Only positive samples were used to train
our C-CAM model. Both the two models were optimized
by stochastic gradient (SGD) schedule with different ini-
tial learning rate, 0.1 for our P-CAM model and 0.001 for
C-CAM model. The U-Net model was adopted to train a
segmentation model with pseudo segmentation masks. The
segmentation model was optimized by the Adam optimizer
with a initial learning rate of 5e−4. We trained our model
for 100 epochs for every data set.

4.3. Ablation Studies for C-CAM

P-CAM AC CC Aff
DSC (%)

ProMRI ACDC CHAOS

X 69.45 72.01 52.17
X X 73.80 76.10 64.50
X X 71.88 73.80 70.47
X X 75.54 75.67 56.18
X X X 76.10 77.26 75.88
X X X X 77.26 80.34 78.15

Table 1. The ablation study for each part of C-CAM. AC: anatomy
causality. CC: category causality. Aff: affinity refine. DSC: Dice
Similarity Coefficient.

Tab. 1 gives an ablation study of each module in our
approach. It shows that both the category causality and
anatomy causality improve the accuracy of pseudo masks
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ProMRI ACDC
CHAOS

Liver Right kidney Left kidney Spleen Avg.

CAM [44] 69.45 72.01 58.59 42.43 47.26 62.34 52.66
GradCAM [33] 46.09 69.81 56.51 31.06 33.29 50.66 42.88

GradCAM++ [7] 64.68 70.21 59.47 35.59 41.21 54.43 47.68
AblationCAM [30] 48.19 64.14 56.38 19.83 40.29 51.66 42.04

EigenCAM [24] 63.91 45.85 58.78 7.91 41.08 53.83 40.40
LayerCAM [14] 63.67 69.84 59.24 35.57 41.33 54.26 47.60
C-CAM(Ours) 77.26 80.34 72.68 84.75 81.00 74.16 78.15

Table 2. Evaluation of different CAM-like localization methods on three data sets with Dice Similarity Coefficient (DSC: %).

on three data sets compared with P-CAM (without any im-
proved design). The anatomy causality achieves 2.43% im-
provement on ProMRI and 1.79% improvement on ACDC.
Especially for multi-label segmentation task, like CHAOS,
the anatomy causality brings significant performance eleva-
tion by 18.3%. The reason is that the co-occurrence phe-
nomenon is very serious for CHAOS as shown in Fig. 7.
Traditional CAM model could not effectively activate cor-
rect organ areas in an image without anatomical informa-
tion. In contrast, our C-CAM could accurately distinguish
four different organs appeared in the same image. With
the integrated of category causality, the generated pseudo
masks further achieve 4.22%, 3.46% and 5.41% DSC Simi-
larity Coefficient (DSC [36]) improvement respectively for
ProMRI, ACDC and CHAOS data sets. An affinity model
is further trained to improve the accuracy of final pseudo
segmentation mask as used in [2]. Finally, the generated
pseudo segmentation masks achieves the DSC of 77.26%,
80.34% and 78.15% respectively on three data sets.

4.4. Comparison with other CAM-like methods

Our C-CAM was compared with some CAM-like lo-
calization methods, including Grad-CAM [33], Grad-
CAM++ [7], Ablation-CAM [30], Eigen-CAM [24] and
Layer-CAM [14]. In the experiment, these different CAM-
like methods were evaluated with the same trained baseline
model used in our C-CAM. All background threshold were
tested. All the best DSC results of pseudo masks from d-
ifferent methods were presented, instead of comparing the
same threshold for different methods. The evaluation result-
s are shown in Tab. 2. From these results, we find that our
C-CAM achieves the best performance of pseudo masks on
all three medical image data sets. Especially, our C-CAM
performs well on all classes of CHAOS.

4.5. Parameter Sensitivity

The choice of an appropriate background threshold is
a basic but critical step to generate pseudo segmentation
masks from saliency maps. Extensive experiments were

(a)

(b)

Liver Right kidney Left kidney Spleen

(c)

Figure 7. Illustration of co-occurrence that shows the saliency
maps of our P-CAM (the first row), our C-CAM (the second row)
and the ground-truth (the last row) of four categories. All the pre-
sented results correspond to one T2-SPIR image in CHAOS.

conducted to evaluate the influence of background thresh-
old. Several different CAM-like methods were compared.
The accuracy of saliency maps were evaluated with vari-
ous background thresholds in the range of [0.05, 0.95]. As
shown in Fig. 8, most current CAM-like methods are sensi-
tive to different background thresholds. Firstly, the DSC of
saliency maps varies a lot with different thresholds for the
same CAM-like method. Secondly, the best threshold for
DSC is different among these CAM-like methods. Thirdly,
the accuracy changes heavily for one threshold value on d-
ifferent data sets. In contrast, our C-CAM is less sensitive
to the background thresholds. The DSC of saliency map-
s from C-CAM could stabilize at high values with back-
ground thresholds range from 0.3 to 0.9 as shown in Fig. 8.
On the one hand, this would make it easier for us to choose
a background threshold. On the other hand, it also indicates
the algorithm robustness to background threshold.

4.6. Visualization of saliency maps in C-CAM

Fig. 9 and Fig. 10 give an intuitive illustration of ben-
efits brought from our C-CAM. With the integration of
category causality, our C-CAM could well solve the am-

11681



Methods Publication&Year DSC(%) ↑ ASD(mm)↓ MAD(mm)↓

Whole

BES [8] ECCV(2020) 73.99 ± 6.78 5.16 ± 2.09 5.18± 1.59
AffinityNet [2] CVPR(2018) 77.77 ± 6.19 4.04 ± 1.02 4.32 ± 1.33
SizeLoss [16] MIA(2019) 81.94 ± 5.66 3.82 ± 1.29 5.00 ± 2.09
CONTA [43] NeurlPS(2020) 78.68 ± 5.17 4.16 ± 1.61 4.48 ± 2.57

IRNet [1] CVPR(2019) 75.80 ± 5.49 4.72 ± 0.98 5.08 ± 1.24
ISSOC [9] PMB(2021) 83.39 ± 5.41 3.80 ± 0.88 3.68 ± 1.21

P-CAM(Ours) – 79.02 ± 6.30 3.82± 1.51 3.91 ± 2.01
C-CAM(Ours) – 83.83 ± 5.14 3.71 ± 0.78 3.36 ± 1.11

Apex

BES [8] ECCV(2020) 69.70 ± 10.83 6.14 ± 2.46 6.17 ± 2.73
AffinityNet [2] CVPR(2018) 69.22 ± 10.32 6.63 ± 2.84 6.96 ± 4.03
SizeLoss [16] MIA(2019) 73.98 ± 6.39 3.76 ± 1.78 4.47 ± 2.64
CONTA [43] NeurlPS(2020) 72.47 ± 14.86 5.25 ± 1.93 5.25 ± 2.48

IRNet [1] CVPR(2019) 63.73 ± 14.11 8.21 ± 3.13 8.39 ± 3.23
ISSOC [9] PMB(2021) 68.40 ± 10.48 6.300 ± 2.49 6.090 ± 3.23

P-CAM(Ours) – 67.61 ± 13.25 4.29 ± 2.49 4.92 ± 1.87
C-CAM(Ours) – 73.00 ± 10.31 2.03 ± 1.54 4.47 ± 1.56

Base

BES [8] ECCV(2020) 69.10 ± 11.96 6.70 ± 3.73 7.16 ± 4.94
AffinityNet [2] CVPR(2018) 77.81 ± 6.68 4.77 ± 1.90 4.81 ± 2.03
SizeLoss [16] MIA(2019) 76.96 ± 9.14 4.75 ± 2.13 5.29 ± 3.72
CONTA [43] NeurlPS(2020) 73.89 ± 9.95 5.78 ± 3.37 5.81 ± 4.99

IRNet [1] CVPR(2019) 73.73 ± 9.82 6.05 ± 2.62 6.21 ± 3.07
ISSOC [9] PMB(2021) 76.82 ± 7.95 4.62 ± 1.52 4.01 ± 1.77

P-CAM(Ours) – 73.51 ± 12.24 4.99 ± 2.73 5.79 ± 3.52
C-CAM(Ours) – 85.31 ± 4.76 3.22 ± 1.19 3.60 ± 1.58

Mid

BES [8] ECCV(2020) 79.62 ± 7.33 6.49 ± 3.78 6.96 ± 3.94
AffinityNet [2] CVPR(2018) 85.54 ± 5.40 4.13 ± 1.71 4.19 ± 1.86
SizeLoss [16] MIA(2019) 86.21 ± 4.43 3.94 ± 1.35 3.92 ± 1.77
CONTA [43] NeurlPS(2020) 85.17 ± 5.06 3.93 ± 2.60 3.91 ± 3.07

IRNet [1] CVPR(2019) 84.05 ± 4.16 4.94 ± 1.47 5.23 ± 1.64
ISSOC [9] PMB(2021) 86.01 ± 5.03 3.93 ± 2.14 3.93 ± 2.17

P-CAM(Ours) – 85.09 ± 6.25 4.29 ± 3.03 4.49 ± 3.32
C-CAM(Ours) – 86.40 ± 3.82 3.86 ± 1.20 3.85 ± 1.33

Table 3. Comparison of the proposed method with state-of-the-art WSSS methods on ProMRI. The whole-gland and three subregions of
prostate volume are compared. The subregions are divided according the prostate size, including apex, mid-gland and base subregions.
The prostate size of three subregions: apex < base < mid.
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Figure 8. The illustration of sensitivity to the background thresh-
old for different methods. The line charts show accuracy of salien-
cy maps of different methods with various background thresholds
on different data sets (left: ProMRI, right: ACDC).

biguous boundary problem. The saliency maps of C-CAM
have a clear boundary between foreground and background
both on ProMRI and ACDC data sets. In addition, the co-
occurrence problem is significant alleviated with the help of
anatomy causality as shown in Fig. 9 and Fig. 10. More in-
stitutive visualization is shown in Fig. 7. Finally, the salien-
cy maps of C-CAM have fewer error activated areas corre-
spond to unrelated background region, which further veri-
fies the superiority of C-CAM.

4.7. Comparison with other WSSS methods

To further evaluate the effectiveness of our proposed C-
CAM, the pseudo segmentation masks were used to train
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Figure 9. The visualization of saliency maps from different meth-
ods for ProMRI. The yellow curve represents ground-truth.
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Figure 10. The visualization of saliency maps with/without cate-
gory causality and anatomy causality for ACDC. The yellow curve
represents ground-truth.

DSC(%) ↑ ASD(mm)↓ MAD(mm)↓
BES [8] 77.53 ± 11.20 2.49 ± 1.41 2.92 ± 2.54

AffinityNet [2] 80.17 ± 8.05 2.28 ± 1.08 2.68 ± 1.97
SizeLoss [16] 80.95 ± 8.57 2.53 ± 1.58 3.31 ± 3.02

IRNet [1] 74.67 ± 14.91 2.79 ± 1.39 3.02 ± 1.86
CONTA [43] 83.51 ± 8.32 1.98 ± 1.68 1.80 ± 0.54

ISSOC [9] 81.65 ± 9.57 2.60 ± 1.66 3.46 ± 3.02
P-CAM(Ours) 75.88 ± 8.70 2.78 ± 1.32 2.89 ± 2.30
C-CAM(Ours) 87.54 ± 7.77 1.62 ± 0.41 1.17 ± 0.24

Table 4. Comparison of the proposed method with state-of-the-art
WSSS methods on ACDC.

a U-Net model in full supervision. The final segmenta-
tion results of testing data were compared with some other
state-of-the-art WSSS methods. Since some other methods
are designed for natural images, the codes of these methods
were ran on the same data sets used in our experiments for
fair comparison. Tab. 3 shows quantitative comparison re-
sults. For the whole-gland of prostate, our C-CAM gets the

highest DSC of 83.83% with the lowest standard deviation
of 5.14%. In terms of the two other metrics average surface
distance (ASD) and mean absolute distance (MAD) [36],
the C-CAM also achieves the best performance. To verify
the performance on different object sizes, the prostate vol-
umes were explicitly compared on three subregions of the
whole-gland. The subregions are respectively denoted as
apex, base and mid with incremental object size. For three
subregions, we can see that our method performs rather well
in the mid-gland and base subregions. For the apex subre-
gion, our method achieves slightly lower performance than
SizeLoss [16]. The reason is that SizeLoss uses ground-
truth to generate weak labels, which avoids error-locating
especially for object of small size. However, our C-CAM
generate pseudo masks from saliency maps without ground-
truth, which may produce large locating error for small ob-
jects. The segmentation performance on ACDC data set was
also evaluated. Our C-CAM achieves the best performance
in terms of all three metrics as shown in Tab. 4. The above
experimental results show that our C-CAM significantly im-
proves the performance of segmentation.

5. Conclusion and future work

In this paper, we propose a causality CAM method for
WSSS on medical images. Based on the analysis of the
causality in medical image WSSS, we design C-CAM that
integrates two causal chains to generate accurate pseudo
segmentation masks. Category-causality chain is designed
to alleviate the problem of ambiguous boundary. Anatomy-
causality chain is designed to solve the co-occurrence prob-
lem. The generated saliency maps of C-CAM not only have
clear boundary between foreground and background, but al-
so keep consistent with anatomical knowledge. The salien-
cy maps of C-CAM outperforms six state-of-the-art CAM-
like methods on ProMRI, ACDC and CHAOS data sets. The
segmentation network U-Net trained with our pseudo masks
achieves state-of-the-art performance on ProMRI and ACD-
C data sets, which further proves the superiority of our C-
CAM. Nevertheless, the proposed C-CAM is hard to seg-
ment object with complicated shape. In future work, it is
possible to combine a small number of strong annotation-
s and a big number of weak annotations to provide more
accurate category and anatomical information.
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