
Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation

Zhaozheng Chen1 Tan Wang2 Xiongwei Wu1

Xian-Sheng Hua3 Hanwang Zhang2 Qianru Sun1

1Singapore Management University 2Nanyang Technological University 3Damo Academy, Alibaba Group

zzchen.2019@phdcs.smu.edu.sg {tan317, hanwangzhang}@ntu.edu.sg
xiansheng.hxs@alibaba-inc.com {xwwu,qianrusun}@smu.edu.sg

Abstract

Extracting class activation maps (CAM) is arguably the
most standard step of generating pseudo masks for weakly-
supervised semantic segmentation (WSSS). Yet, we find that
the crux of the unsatisfactory pseudo masks is the binary
cross-entropy loss (BCE) widely used in CAM. Specifically,
due to the sum-over-class pooling nature of BCE, each pixel
in CAM may be responsive to multiple classes co-occurring
in the same receptive field. As a result, given a class, its
hot CAM pixels may wrongly invade the area belonging
to other classes, or the non-hot ones may be actually a
part of the class. To this end, we introduce an embarrass-
ingly simple yet surprisingly effective method: Reactivat-
ing the converged CAM with BCE by using softmax cross-
entropy loss (SCE), dubbed ReCAM. Given an image, we
use CAM to extract the feature pixels of each single class,
and use them with the class label to learn another fully-
connected layer (after the backbone) with SCE. Once con-
verged, we extract ReCAM in the same way as in CAM.
Thanks to the contrastive nature of SCE, the pixel response
is disentangled into different classes and hence less mask
ambiguity is expected. The evaluation on both PASCAL
VOC and MS COCO shows that ReCAM not only gener-
ates high-quality masks, but also supports plug-and-play in
any CAM variant with little overhead. Our code is public at
https://github.com/zhaozhengChen/ReCAM.

1. Introduction

Weakly-supervised semantic segmentation (WSSS) aims
to lower the high cost in annotating “strong” pixel-level
masks by using “weak” labels instead, such as scrib-
bles [29, 36], bounding boxes [7, 35], and image-level class
labels [1, 19, 27, 28, 42, 46]. The last one is the most eco-
nomic yet challenging budget and thus is our focus in this
paper. A common pipeline has three steps: 1) training a

0.8

0.85

0.9

0.95

1
BCE

SCE

80‐class 5‐hoofed
0.3

0.4

0.5

0.6

0.7

8.8%9.2%

5.9%

80‐class 5‐hoofed 80‐class 5‐hoofed

Train Set Val Set

4.7%

mIoU of CAMVal Accuracy

(a) (b)
Figure 1. We train two models respectively using binary cross en-
tropy (BCE) and softmax cross entropy (SCE) losses. Our train
and val sets contain only single-label images of MS COCO [30].
“80-class” model uses the complete label set. “5-hoofed” model
is trained on only the samples of 5 hoofed animals each causing
false positive flaws to another, e.g., between cow and horse.

multi-label classification model with the image-level class
labels; 2) extracting the class activation map (CAM) [51]
of each class to generate a 0-1 mask, with potential refine-
ment such as erosion and expansion [1, 23]; and 3) tak-
ing all-class masks as pseudo labels to learn the segmenta-
tion model in a standard fully-supervised fashion [5, 6, 41].
There are different factors affecting the performance of the
final segmentation model, but the classification model in the
first step is definitely the root. We often observe two com-
mon flaws. In the CAM of an object class A, there are 1)
false positive pixels that are activated for class A but have
the actual label of class B, where B is usually a confus-
ing class to A rather than background—a special class in
semantic segmentation; and 2) false negative pixels that be-
long to class A but are wrongly labeled as background.

Findings. We point out that these flaws are particu-
larly obvious when the model is trained with the binary
cross-entropy (BCE) loss with sigmoid activation function.
Specifically, the sigmoid function is ex

ex+1 where x denotes
the prediction logit of any individual class. The output is

969

https://github.com/zhaozhengChen/ReCAM

fed into the BCE function to compute a loss. This loss
represents the penalty strength for misclassification corre-
sponding to x. The BCE loss is thus not class mutually
exclusive—the misclassification of one class does not pe-
nalize the activation on others. This is indispensable for
training multi-label classifiers. However, when extracting
CAM via these classifiers, we see the drawbacks: non-
exclusive activation across different classes (resulting in
false positive pixels in CAM); and the activation on total
classes is limited (resulting in false negative pixels) since
partial activation is shared.
Motivation. We conduct a few toy experiments to empiri-
cally show the poor quality of CAM when using BCE. We
pick single-label training images in MS COCO 2014 [30]
(about 20% in the train set) to train 5-class and 80-class
classifiers, respectively, where for 5-class, we pick 5 hoofed
animal classes (e.g., horse and cow) that suffer from the
confused activation. We train every model using two losses,
respectively: BCE loss and softmax cross-entropy (SCE)
loss—the most common one for classification. We use the
single-label images in val set to evaluate models’ clas-
sification performance, as shown in Figure 1 (a), and use
the single-label images in both train and val sets to in-
spect models’ ability of activating correct regions on the
objects—the quality of CAM, as compared in Figure 1 (b).

Intrigued, 1) for 80-class models, BCE and SCE yield
equal-quality classifiers but clearly different CAMs, and 2)
the CAMs of SCE models are of higher mIoU, and this
superiority is almost maintained for validation images. A
small yet key observation is that for 5 hoofed animal classes,
BCE shows weaker to classify them. We point out this
is because the sigmoid activation function of BCE does
not enforce class-exclusive learning, confusing the model
between similar classes. However, SCE is different. Its
softmax activation function ex

ex+Σyey
, where y denotes the

prediction of any negative class, explicitly enforces class-
exclusion by using exponential terms in the denomina-
tor. SCE encourages to improve the logit of ground truth
and penalizes others simultaneously. This makes two ef-
fects on CAM: 1) reducing false positive pixels which con-
fuse the model among different classes; and 2) encour-
aging the model to explore class-specific features that re-
duce false negative pixels. We show the empirical evidence
in Figure 1 (b) where the mIoU improvements by SCE
over BCE are especially significant for 5-hoofed. Please
note that the functions of BCE and SCE are different. To
give more concrete comparison between them, we elaborate
the comparison between their produced gradients in Sec-
tion 4.2, theoretically and empirically.
Our Solution. Our intuition is to use SCE loss function to
train a model for CAM. However, directly replacing BCE
with SCE does not make sense for multi-label classification
tasks where the probabilities of different classes are not in-

dependent [34, 47]. Instead, we use SCE as an additional
loss to Reactivate the model and generate ReCAM. Specif-
ically, when the model converges with BCE, for every in-
dividual class labeled in the image, we extract the CAM
in the format of normalized soft mask, i.e., without hard
thresholding [40, 51]. We apply all masks on the feature
(i.e., the feature map block output by the backbone), re-
spectively, each “highlighting” the feature pixels contribut-
ing to the classification of a specific class. In this way, we
branch the multi-label feature to a set of single-label fea-
tures. We can thus use these features (and labels) to train a
multi-class classifier with SCE, e.g., by plugging another
fully-connected layer after the backbone. The SCE loss
penalizes any misclassification caused by either poor fea-
tures or poor masks. Then, backpropagating its gradients
improves both. Once converged, we extract ReCAM in the
same way of CAM.
Empirical Evaluations. To evaluate the ReCAM, we con-
duct extensive WSSS experiments on two popular bench-
marks of semantic segmentation, PASCAL VOC 2012 [9]
and MS COCO 2014 [30]. A standard pipeline of WSSS
is to use CAM [51] as seeds and then deploy refinement
methods such as AdvCAM [23] or IRN [1] to expand the
seeds to pseudo masks—the labels used to train the seg-
mentation model. We design the following comparisons to
show the generality and superiority of ReCAM. 1) ReCAM
as seeds, too. We extract ReCAM and use refinement meth-
ods afterwards, showing that the superiority over CAM is
maintained after strong refinement steps. 2) ReCAM as an-
other refinement method. We compare ReCAM with exist-
ing refinement methods, regarding the quality of generated
masks as well as the computational overhead added to base-
line CAM [51]. In the stage of learning semantic segmen-
tation models, we use the ResNet-based DeepLabV2 [5],
DeepLabV3+ [6] and the transformer-based UperNet [41].
Our Contributions in this paper are thus two-fold. 1) A
simple yet effective method ReCAM for generating pseudo
masks for WSSS. 2) Extensive evaluations of ReCAM on
two popular WSSS benchmarks, with or without incorpo-
rating advanced refinement methods [1, 23].

2. Related Works
The training of multi-label classification and semantic

segmentation models are almost uniform in the works of
WSSS. Below, we introduce only the variants for seed gen-
eration and mask refinement.
Seed Generation. Vanilla CAM [51] first scales the fea-
ture maps (e.g., output by the last residual block) by using
the FC weights learned for each individual class. Then,
it produces the seed masks by channel-wise averaging,
spatial-wise normalization, and hard thresholding (see Sec-
tion 3). Based on this CAM, there are improved meth-
ods. GAIN [25] applies the CAM on original images to

970

generate masked images, and minimizes the model predic-
tion scores on them, forcing the model to capture the fea-
tures in other regions (outside the current CAM) in the
new training. A similar idea was used in erasing-based
methods [14, 20, 39, 49]. The difference is erasing meth-
ods directly perturbed the regions (inside the CAM) and
fed the perturbed images into the model to generate the
next-round CAM that is expected to capture new regions.
Score-CAM [37] is a different CAM method. It replaces
the FC weights used in vanilla CAM with a new set of
scores predicted from the images masked by channel-wise
(not class-specific) activation maps. EDAM [40] is a recent
work of using CAM-based perturbation to optimize an ad-
ditional classifier.One may argue that our ReCAM is similar
to EDAM. We highlight two differences. 1) EDAM uses an
extra layer to produce class-specific soft masks, while our
soft masks are simply from the byproducts of CAM with-
out needing any parameters. 2) EDAM still uses BCE loss
for training with perturbed input, while we inspect the lim-
itations of BCE and propose a different training method by
leveraging SCE (see Section 4.2).

Mask Generation. Seed masks generated by CAM or
its variants can go through a refinement step. One cate-
gory of refinement methods [1, 2, 4, 42] propagate the ob-
ject regions in the seed to semantically similar pixels in
the neighborhood. It is achieved by the random walk [33]
on a transition matrix where each element is an affinity
score. The related methods have different designs of this
matrix. PSA [2] is an AffinityNet to predict semantic affini-
ties between adjacent pixels. IRN [1] is an inter-pixel re-
lation network to estimate class boundary maps based on
which it computes affinities. Another method is BES [4]
that learns to predict boundary maps by using CAM as
pseudo ground truth. All these methods introduced addi-
tional network modules to vanilla CAM. Another category
of refinement methods [15,17,22,26,44,48] utilize saliency
maps [13,50]. EPS [24] proposed a joint training strategy to
combine CAM and saliency maps. EDAM [40] introduced
a post-processing method to integrate the confident areas in
the saliency map into CAM. In experiments, we plug Re-
CAM in them to evaluate its performance with additional
saliency data. A more recent category of methods lever-
age iterative post-processing to refine CAM. OOA [16] en-
sembles the CAM generated in multiple training iterations.
CONTA [45] iterated through the whole process of WSSS
including a sequence of model training and inference. Ad-
vCAM [23] used the gradients with respect to the input im-
age to perturb the image, and iteratively find newly activated
pixels. Overall, these refinement methods are based on the
seed generated by CAM [51]. Our ReCAM is a method
of leveraging SCE to reactivate more pixels in CAM, and
is thus convenient to incorporate it. We conduct extensive
plug-and-play experiments in Section 5.

Other ideas of improving CAM include ICD [10] that
learned intra-class boundaries on feature manifolds, SC-
CAM [3] that learned fine-grained classification models
(with pseudo fine-grained labels); and SEAM [38] that en-
forced the consistency of CAM extracted from different
transformations of the image. A recent work RIB [21] did a
careful analysis based on the theory of information bottle-
neck, and proposed to retrain the multi-label classification
model without the last activation function. Our ReCAM
does not remove any activation function but adds a softmax
activation based loss (SCE), as shown in Figure 3. Another
difference is in the inference stage. RIB needs 10 iterations
of feeding forward and backward for each test image, but
ReCAM feeds forward the image only once. For example,
on PASCAL VOC 2012 [9] dataset, RIB costs 8 hrs in its in-
ference (its training cost is the same as vanilla CAM), while
our total cost over vanilla CAM is only 0.6 hrs.

3. Preliminaries
CAM. The first step of CAM [51] is to train a multi-label
classification model with global average pooling (GAP)
followed by a prediction layer (e.g., the FC layer of a
ResNet [12]). The prediction loss on each training exam-
ple is computed by BCE function in the following formula:

Lbce = − 1

K

K∑
k=1

y [k] log σ (z[k])+(1− y[k]) log [1− σ (z[k])] ,

(1)
where z[k] denotes the prediction logit of the k-th class,
σ(·) is the sigmoid function, and K is the total number of
foreground object classes (in the dataset). y[k] ∈ {0, 1} is
the image-level label for the k-th class, where 1 denotes the
class is present in the image and 0 otherwise.

Once the model converges, we feed the image x into it
to extract the CAM of class k appearing in x:

CAMk(x) =
ReLU (Ak)

max (ReLU (Ak))
,Ak = w⊤

k f(x), (2)

where wk denotes the classification weights (e.g., the FC
layer of a ResNet) corresponding to the k-th class, and f(x)
represents the feature maps of x before the GAP.

Please note that for simplicity, we assume the classifica-
tion head of the model is always a single FC layer, and use
w to denote its weights in the following.
Pseudo Masks. There are a few options to generate pseudo
masks from CAM: 1) thresholding CAM to be 0-1 masks;
2) refining CAM with IRN [1]—a widely used refinement
method; 3) iteratively refining CAM through the classifi-
cation model, e.g., using AdvCAM [23]; and 4) cascading
options 3 and 2. In Figure 2, we illustrate these options with
our ReCAM plugged in. We elaborate these in Section 4.1.
Semantic Segmentation. This is the last step of WSSS.
We use the pseudo masks to train the semantic segmentation

971

FC Layer-1 CAM

FC Layer-2 ReCAM Iterative
Inference IRN

Seed Generation Mask Generation

IRN
Iterative
Inference

1

2

3

4

Figure 2. The pipeline of using ReCAM to generate pseudo masks
for WSSS. There are two steps, seed generation and mask gen-
eration, and our ReCAM is taken as a module plugged in seed
generation step. The mask generation has a few options: 1) take
the ReCAM directly as pseudo mask; 2) refine the ReCAM with
the most common refinement method IRN [1]; 3) iteratively infer
better masks via the model of ReCAM; and 4) cascade options 3
and 2. The details of learning ReCAM model are shown in Fig-
ure 3. Table 2 shows the results of these options.

model in a fully-supervised way. The objective function is
as follows:

Lss = − 1

HW

H∑
i=1

W∑
j=1

1

K+1

K+1∑
k=1

yi,j [k] log
exp(zi,j [k])∑
k exp(zi,j [k])

,

(3)
where yi,j and zi,j denote the label and the prediction logit
at pixel (i, j), respectively. yi,j [k] and zi,j [k] denote the k-
th element of yi,j and zi,j , respectively. H and W are the
height and width of the image. K is the total number of
classes. K+1 means including the background class.

For implementation, we deploy DeepLab variants [5, 6]
with ResNet-101 [12], following related works [1, 21, 23,
45]. In addition, we employ a recent model UperNet [41]
with a stronger backbone—Swin Transformer1 [31].

4. Class Re-Activation Maps (ReCAM)
In Section 4.1, we elaborate our method of reactivat-

ing the classification model and extracting ReCAM from
it. Note that we also use “ReCAM” to name our method.
In Section 4.2, we justify the advantages of class-exclusive
learning in ReCAM, by comparing the gradients of SCE
with BCE theoretically and empirically.

4.1. ReCAM Pipeline

Backbone and Multi-Label Features. We use a standard
ResNet-50 [12] as our backbone (i.e., feature encoder) to
extract features, following related works [1, 21, 23, 45].

Given an input image x and its multi-hot class label y ∈
{0, 1}K , we denote the output of feature encoder as f(x) ∈
RW×H×C . C denotes the number of channels, H and W
denote the height and width, respectively. K is the total
number of foreground classes in the dataset. Please note

1Please note that we did not implement our method on transformer-
based classification models and will take this as the future work.

FC Layer-1

Si
gm

oi
d

CAM

PersonBus Bicycle

So
ft

m
ax

[1]
[0]
[1]

[1]

Bus

Person

Bicycle
…

[1]
[0]
[0]

[0]

[0]
[0]
[1]

[0]

[0]
[0]
[0]

[1]

… … …

Bus
Person

Bicycle

W x H x C

[W x H x C] x 3 [One-hot label] x 3

Multi-hot label
(the weak label
used in WSSS)

M
ul

ti-
La

be
l C

la
ss

ifi
er

(b
ac

kb
on

e
is

 o
m

itt
ed

)

FC Layer-2

ReCAM

PersonBus Bicycle

Feature Maps

M
ul

ti-
Cl

as
s C

la
ss

ifi
er

(b
ac

kb
on

e
is

 sh
ar

ed
 w

ith
 a

bo
ve

)

Exclusive
between

Person and
Bicycle

Exclusive
between Bus
and Person

GAP

GAP

Figure 3. The training framework of ReCAM. In the upper block,
it is the conventional training of multi-label classifiers using BCE.
The feature extraction via backbone is omitted for conciseness. We
extract the CAM for each class and then apply it (as a normalized
soft mask) on the feature maps f to obtain the class-specific fea-
ture fk. In the lower block, we use fk and its single label to learn
multi-class classifiers with SCE loss. The gradients of this loss are
backpropagated through the whole network including backbone.

that in Figure 3, 1) the feature extraction process is omitted
for conciseness; and 2) the feature f(x) is written as f in
the upper block and usually represents multiple objects.
FC Layer-1 with BCE Loss. In the conventional model
of CAM, the feature f(x) first goes through a GAP layer
and the result is fed into a FC layer to make prediction [51].
Hence, the prediction logits can be denoted as

z = FC1(GAP(f(x))). (4)

Then, z and the image-level labels y are used to compute a
BCE loss. An element-wise formula is given in Eq. (1).
Extracting CAM. We extract the CAM for each individ-
ual class k given the feature f(x) and the corresponding
weights wk of the FC layer, as formulated in Eq. (2). For
brevity, we denote the CAMk(x) as Mk ∈ RW×H .
Single-Label Feature. As shown in Figure 3, we use Mk

as a soft mask to apply on f(x) to extract the class-specific
feature fk(x). We compute the element-wise multiplication
between Mk and each channel of f(x) as follows,

f c
k(x) = Mk ⊗ f c(x), (5)

where f c(x) and f c
k(x) indicate the single channel before

and after the multiplication (by using Mk), c ranges from
1 to C and C is number of feature maps (i.e., channels).
The feature map block fk(x) (each contains C channels)
corresponds to the examples f1,f2,f3 in Figure 3.

972

FC Layer-2 with SCE Loss. Each fk(x) has a single ob-
ject label (i.e., a one-hot label where the k-th position is 1).
Then, we feed it to FC Layer-2 (see Figure 3) to learn multi-
class classifier, so we have new prediction logits for x as:

z′
k = FC2(GAP(fk(x))), (6)

where FC2 has the same architecture as FC1.
By this way, we succeed to convert the BCE-based model

on multi-label images to the SCE-based model on single-
label features. The SCE loss is formulated as:

Lsce = − 1∑K
i=1 y[i]

K∑
k=1

y[k] log
exp(z′

k[k])∑
j exp(z

′
k[j])

, (7)

where y[k] and z′
k[k] denotes the k-th elements of y and

z′
k, respectively. We use the gradients of Lsce to update the

model including the backbone.
Therefore, our overall objective function for reactivating

the BCE model is as follows:

LReCAM = Lbce + λLsce, (8)

where λ is to balance between BCE and SCE. Please note
the re-optimization of FC1 with Lbce is also included be-
cause we need to use FC1 to produce updated soft masks
Mk during the learning.
Extracting ReCAM. After the reactivation, we feed the im-
age x into it to extract its ReCAM of each class k as follows,

ReCAMk(x) =
ReLU (Ak)

max (ReLU (Ak))
,Ak = w′′

k
⊤
f(x),

(9)
where w′′

k denotes the classification weights corresponding
to the k-th class. As we have two FC layers, our imple-
mentation takes w′′ optional as: 1) w, 2) w′, 3)w ⊕w′, or
4)w ⊗ w′, where ⊕ and ⊗ are element-wise addition and
multiplication, respectively. We show the performances of
these options in Section 5.2.
Refining ReCAM (Optional). As introduced in Section 3,
there are a few options to refine ReCAM: 1) AdvCAM [23]
iteratively refines ReCAM by perturbing images x through
adversarial climbing:

xt = xt−1 + ξ∇xt−1Ladv,

Ladv = yt−1[k]−
∑

j∈K\k

yt−1[j]

− µ
∥∥M⊗

∣∣ReCAMk

(
xt−1)− ReCAMk

(
x0)∣∣∥∥

1
,

(10)
where t ∈ [1, T] is the adversarial step index, xt is the ma-
nipulated image at the t-th step. k and j are the positive and
negative classes, respectively. ξ and µ are hyper-parameters
(same as in [23]). M = 1

(
ReCAMk

(
xt−1

)
> 0.5

)
is a

restricting mask of ReCAM for regularization. The final

refined activation map M ′
k =

∑T
t=0 ReCAMk(xt)

max
∑T

t=0 ReCAMk(xt)
, note

that here we follow AdvCAM [23] to use ReCAM without
max normalization in Eq. (9). 2) IRN [1] takes ReCAM
as the input and trains an inter-pixel relation network (IR-
Net) to estimate the class boundary maps B. Here, we omit
the training details of IRNet for brevity. Then, it applies
a random walk to refine ReCAM with B and the transition
probability matrix T:

vec (M ′
k) = Tt · vec (ReCAMk(x)⊗ (1− B)) , (11)

where t denotes the number of iterations and vec(·) repre-
sents vectorization. Finally, we use {M ′

k} as pixel-level
labels of the image, where k denotes every positive class in
the image, to train semantic segmentation models.

4.2. Justification: BCE vs CE

In this section, we justify the advantages of introducing
SCE loss in ReCAM. We compare the effects of SCE and
BCE on optimizing the classification model, theoretically
and empirically.

For any input image, let z denote the prediction logits
and y as the one-hot label. Based on the derivation chain
rule, the gradients of BCE and SCE2 losses on logits can be
derived as:

∇zLbce =
σsig(z)− y

K
,

∇zLsce = σsof (z)− y,
(12)

where σsig and σsof represent sigmoid and softmax func-
tions, respectively.
Theoretically. For the ease of analysis, we consider the
binary-class (K = 2) situation with the positive class p and
negative class q. Eq. (12) can be further derived as:

① ∇zpLbce =
−1

2 + 2ezp
② ∇zqLbce =

1

2 + 2e−zq

③ ∇zpLsce =
−1

1 + ezp−zq
④ ∇zqLsce =

1

1 + ezp−zq

(13)
Then, we consider different situations of zp and zq to com-
pare the magnitude of gradient terms for both positive class
p (① and ③) and negative class q (② and ④). a) zp ≪ zq:
the negative class logit is much larger than that of positive
class. This case is quite rare and most are due to the false la-
beling. In this case, ∥①∥ and ∥②∥ are less than 0.5, but ∥③∥
and ∥④∥ approach 1—SCE converges faster. b) zp ≫ zq .
This appears when model is converging. All the four gradi-
ent terms are close to 0, which cannot tell any difference.

Next, we consider the last and most confusing case: c)
zp ≈ zq . We split it into two subcases: c1) both zp and zq
are large, e.g., around 10 (as we observed in the MS COCO
“5 hoofed” experiments). We can find that the magnitude of
the SCE loss gradients (i.e., ∥③∥ and ∥④∥) both approach

2The SCE loss here is the vanilla SCE rather than Eq. (7).

973

0

0.1

0.2

0.3

0 200 400 600 800 1000

BCE SCE

Training Iteration

Confusion Class Gradient

Steep

Gentle

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

BCE SCE

Positive Class Gradient

Steep

Gentle

Training Iteration

Figure 4. The gradients with respect to the logits of the target class
(i.e., the only positive class p) and the confusing class (i.e., the
negative class q with the highest logit value). Both BCE and SCE
models are trained with the 5 hoofed animal classes in MS COCO
train set. These gradients are calculated on the val set.

0.5, while ∥①∥ ≈ 0 and ∥②∥ ≈ 0.5. c2) zp and zq are
small, e.g., around −10. ∥③∥ and ∥④∥ keep the same (as
0.5), yet ∥①∥ ≈ 0.5 and ∥②∥ ≈ 0. We can find that, in
both confusing cases, SCE loss yields gradients to encour-
age the prediction of positive class as well as to penalize the
prediction of negative class. The reason is the exponential
terms in the denominator of the softmax function explic-
itly involve both classes. Based on this, SCE guarantees a
class-exclusion learning—simultaneously improve the posi-
tive and suppress the negative, when confronting confusion.
By contrast, in BCE each case focuses on either positive or
negative class. It does not guarantee no reduction on the
positive when penalizing the negative, or no promotion on
the negative when encouraging the positive, leading to inef-
ficient learning especially for confusing classes.
Empirically. One may argue that larger magnitude of gra-
dients might not directly lead to stronger optimization, be-
cause common optimizers (e.g., Adam [18]) use adaptive
learning rates. To justify the effectiveness of SCE in prac-
tice, we monitor the gradients when running real models.
In specific, we review the toy experiments of “5 hoofed an-
imals” where the models are trained with the Adam opti-
mizer. We compute the gradients of both BCE and SCE
losses (produced via two independent models) with respect
to each prediction logit. As shown in Figure 4, we show
the gradients with respect to the logits of the target class
(i.e., the only positive class p) and the confusing class (i.e.,
the negative class q with the highest logit value), respec-
tively. We can see that the gradients of SCE loss change
more rapidly for both positive and negative classes, indicat-
ing that its model learns more actively and efficiently.

5. Experiments

5.1. Datasets and Settings

Datasets include the commonly used PASCAL VOC
2012 [9] and MS COCO 2014 [30]. We follow all settings,
including Evaluation Metrics, in related works [1, 23, 45].
Please kindly check the details in the supplementary.

Methods VOC MS COCO

w
/o

FC
2 Lbce only 48.8 33.1

Lsce only 44.6 27.9
Lsce for single only 49.4 33.4

w
/

FC
2 w (FC1 weights) 52.1 34.6 (rp.)

w′ (FC2 weights) 54.1 33.2
w ⊕w′ 52.7 33.7
w ⊗w′ 54.8 (rp.) 34.0

Table 1. The upper block shows the mIoU results (%) of training
a conventional multi-label classification model with different loss
functions: BCE, SCE and their mixture (SCE for single-label im-
ages and BCE for multi-label images). The lower block shows the
results of extracting ReCAM using different weights: the weights
of FC Layer-1 or FC Layer-2 or their mixture variants (element-
wise addition or multiplication). “rp.” denotes the options we used
to report the final results (including the mIoUs of mask refinement
and semantic segmentation). Please note the results of using other
options (e.g., w′ used for VOC) are in the supplementary.

Network Architectures. For mask generation, we follow
[1, 23, 45] to use ResNet-50 as backbone and its produced
feature map size is 32 × 32 × 2048. For semantic segmen-
tation, we employ ResNet-101 (following [1, 23, 45]) and
Swin Transformer [31] (the first time in WSSS). Both are
pre-trained on ImageNet [8]. We incorporated ResNet-101
into DeepLabV2 [5] and DeepLabV3+ [6], where the re-
sults for the latter is in the supplementary due to space lim-
its. We incorporated Swin into UperNet [41].
Implementation Details. For mask generation, we train FC
Layer-1 with the same setting as in [1]. We train FC layer-2
by: setting λ as 1 and 0.1 on VOC and MS COCO, respec-
tively; running 4 epochs with the initial learning rate 5e−4

and polynomial learning rate decay on both datasets. We
follow IRN [1] to apply the same data augmentation and
weight decay strategies. All hyper-parameters in Eq. (10)
and Eq. (11) follow original AdvCAM [23] and IRN [1]
paper. For the DeepLabV2 in the step of semantic segmen-
tation, we use the same training settings as in [1, 21, 23].
Please refer to the details in the supplementary. For the
UperNet, the input image was first resized uniformly as
2, 048 × 512 with a ratio range from 0.5 to 2.0, and then
cropped to be 512×512 randomly before fed into the model.
Data augmentation included horizontal flipping and color
jitter. We trained the models for 40k and 80k iterations on
VOC and MS COCO datasets, respectively, with a common
batch size of 16. We deployed AdamW [32] solver with
an initial learning rate 6e−5 and weight decay as 0.01. The
learning rate is decayed by a power of 1.0 according to the
polynomial decay schedule.

5.2. Results and Analyses

SCE on FC Layer-1 (FC1) or Layer-2 (FC2). One may
argue that SCE is not necessary to be applied on an addi-

974

False Negative False Positive Failure Cases
CA

M
GT

Re
CA

M

Bus DogPersonHorse Motorbike

Figure 5. Visualization of 0-1 masks generated by using CAM and ReCAM on the VOC dataset (before training segmentation models).
Left two blocks (each with four columns) present the two flaws introduced in Section 1: false negative pixels and false positive pixels,
respectively. Red dashed boxes highlight the regions improved by ReCAM. The last block shows an example of failure case.

Methods
CAM ReCAM (ours)

mIoU Time mIoU Time
(%) (ut) (%) (ut)

V
O

C

ResNet-50 [51] 48.8 1.0 54.8 1.9
IRN [1] 66.3 8.2 70.9 9.1
AdvCAM [23] 55.6 316.3 56.6 317.2
AdvCAM + IRN 69.9 323.3 70.5 324.2

M
S

C
O

C
O ResNet-50 [51] 33.1∗ 1.0 34.6 2.1

IRN [1] 42.4∗ 8.5 44.1 9.6
AdvCAM [23] 35.8∗ 302.5 37.8 303.8
AdvCAM + IRN 45.6∗ 311.0 46.3 312.2

Table 2. Comparing ReCAM with baselines in terms of pseudo
mask mIoU (%) and consumption time on VOC and MS COCO.
“Time” means the total computing time from training the model
(with an ImageNet pre-trained backbone) to generating 0-1 masks
of all training images. The unit time (ut) is 0.7 hours on VOC [9]
and 5.4 hours for MS COCO [30]. ∗ denotes results are from our
re-implementation (no MS COCO results in original papers). Un-
derline shows our best results.

tional classifier FC2. We conduct the experiments of using
SCE on FC1 (i.e., w/o FC2) and show the results in up-
per block of Table 1. “Lbce only” is the baseline of using
only BCE loss for FC1. “Lsce only” is to use SCE only
for FC1, with modifying the original multi-hot labels to be
normalized (summed up to 1). For example, [1, 1, 0, 1, 0]
is modified as [1/3, 1/3, 0, 1/3, 0]. “Lsce for single only”
is to apply BCE for learning multi-label images but SCE
for single-label images (i.e., the subset of training images
containing one object class). It shows that “Lsce only” per-
forms the worst. This is because SCE does not make sense
for multi-label classification tasks where the probabilities
of different classes are not independent [47]. “Lsce for sin-
gle only” combines two losses to handle different images,
which increases the complexity of the method. Moreover, it
does not gain much, especially for MS COCO dataset where
there are a smaller number of single-label images and is a
more general segmentation scenario in practice.
Using the Weights of FC1 and FC2 in Eq.(9). As we have

0.48

0.50

0.52

0.54

0.56

CAM
ReCAMm

Io
U

(%
)

0.4

0.5

0.6

0.7

0.8 CAM
ReCAM

Single

ResNet-50

IRN

Multi Single Multi

(a) (b)

Figure 6. (a) The sensitiveness of ReCAM to the value of λ in
Eq. (8), on VOC. (b) Decomposing the mIoU results on the first
two lines of Table 2 into the respective results of single-label im-
ages (“Single”) and multi-label (“Multi”) images.

two FC layers, our implementation of w′′ has a few op-
tions: 1) w, 2) w′, 3)w⊕w′, or 4)w⊗w′, where ⊕ and ⊗
are element-wise addition and multiplication, respectively.
We show the results in the lower block of Table 1. We can
see that all options get better results than the baseline (i.e.,
“Lbce only” without FC2). ReCAM with w ⊗w′ achieves
best performance on VOC. The reason is that the element-
wise multiplication strengthens the representative feature
maps and suppresses the confusing ones. Intriguingly, on
MS COCO, ReCAM with w achieves a better performance
than w ⊗ w′. This is perhaps because the feature fk(x)
input to FC2 is poor in this difficult dataset and FC2 is not
well-trained3. Based on these results, we use w⊗w′ for all
experiments on VOC, and w for MS COCO.

It is worth highlighting that the effectiveness of ReCAM
is validated on both datasets, if comparing any row in the
second block with the first row in the Table 1—any option
of using ReCAM yields better masks than the baseline.
Effects of Different λ Values. λ in Eq. (8) controls the bal-
ancing between BCE and SCE. We study the pseudo mask

3The limitation of ReCAM is its FC2 may overfit to the noisy features
extracted by the poor backbone. We hope to tackle this in the future by
leveraging strong pre-training methods that can upgrade the backbone.

975

Methods

VOC MS COCO

DeepLabV2 UperNet-Swin DeepLabV2 UperNet-Swin

CAM ReCAM CAM ReCAM CAM ReCAM CAM ReCAM

val test val test val test val test val val val val
ResNet-50 [51] 54.3 55.0 59.0+4.7 58.7+3.7 48.5 49.6 54.6+6.1 55.3+5.7 35.7 36.5+0.8 35.9 36.8+0.9

IRN [1] 63.5 64.8 68.7+5.2 68.5+3.7 65.9 67.7 70.9+5.0 71.5+3.8 42.0 42.9+0.9 44.0 46.0+2.0

AdvCAM [23] 58.3 57.9 59.1+0.8 59.0+1.1 55.8 56.2 57.3+1.5 57.4+1.2 37.0 39.4+2.4 37.8 39.6+1.8

AdvCAM + IRN 68.1 68.0 68.4+0.3 68.2+0.2 70.2 70.4 70.4+0.2 71.7+1.3 44.2 45.0+0.8 46.8 47.9+1.1

Table 3. The mIoU results (%) of WSSS using different segmentation models on two benchmarks. Seed masks are generated by either
CAM or ReCAM, and mask refinement methods are row titles. We provide the results of DeepLabV3+ in the supplementary materials.

quality (mIoU) of ReCAM by traversing the value of λ on
VOC, as shown in Figure 6 (a). We can observe that the
optimal value of λ is 1, but the difference is not significant
when using other values, i.e., ReCAM is not sensitive to
λ. Please kindly refer to supplementary materials for more
sensitivity analysis, e.g., on learning rates.
Generality of ReCAM. We take ReCAM as seed, and eval-
uate its generality by: 1) comparing it to the vanilla CAM—
the most commonly used seed generation method; and 2)
applying different refinement methods after it. From the re-
sults in Table 2 and 3, we can find that ReCAM shows con-
sistent advantages over CAM on both VOC and MS COCO.
Specifically on the first row of Table 2, ReCAM itself out-
performs CAM by 6% on VOC. This margin is almost main-
tained when using ReCAM as pseudo masks to learn se-
mantic segmentation models, as shown in the first row of
Table 3. It is worth mentioning that the margin is larger on
the stronger segmentation model UperNet-Swin, e.g., 6.1%
compared to the 4.7% using DeepLabV2, on VOC val.

For refining ReCAM, we have two observations: 1) the
computational cost increases significantly (Table 2), e.g.,
about 4.5 times caused by IRN and 160 times by AdvCAM
(over the vanilla ReCAM on ResNet-50); and 2) the best
performance of WSSS is achieved always with the help of
IRN, as shown in the underlined numbers in Table 3.

Figure 6 (b) shows that ReCAM generates better masks
for single-label as well as multi-label images4. The im-
provements of ReCAM are maintained when adding IRN.
Figure 5 shows 4 examples where ReCAM mitigates the
two flaws we mentioned in Section 1: false negative pixels
and false positive pixels. The rightmost block in Figure 5
shows a failure case: both CAM and ReCAM fail to cap-
ture the object parts with the occlusion or similar color to
the surrounding, e.g., between “dog” and “human hands”.
Superiority of ReCAM. We may also take ReCAM as a re-
finement method, and compare it with related methods such
as IRN and AdvCAM. In Table 2, compared to AdvCAM
(55.6%), ReCAM achieves a comparable result of 54.8% on

4Single-label images have the main issues of false negative pixels and
multi-label images have more false positive pixels due to the co-occurring
classes. We provide detailed statistics in the supplementary materials.

w/o saliency val test w/ saliency val test
IRN [1] 63.5 64.8 DSRG [15] 61.4 63.2
OOA [16] 63.9 65.6 OOA* [16] 65.2 66.4
ICD [10] 64.1 64.3 SGAN [43] 66.2 66.9
SEAM [38] 64.5 65.7 ICD [10] 67.8 68.0
SC-CAM [3] 66.1 65.9 NSROM [44] 68.3 68.5
BES [4] 65.7 66.6 EDAM* [40] 70.9 70.6
CONTA [45] 65.3 66.1 EPS* [24] 70.9 70.8
AdvCAM [23] 68.1 68.0 plugin results:
RIB [21] 68.3 68.6 ReCAM-E* 71.6 71.4
ReCAM 68.5 68.4 ReCAM-M* 71.8 72.2

Table 4. The mIoU results (%) using DeepLabV2 on VOC, with
or without saliency detection models. On the left, the methods
are with IRN (by default) if they reported such combo in their
papers. On the right, we plug ReCAM respectively into EPS* (-
E*) and EDAM* (-M*), or equivalently, adding their saliency en-
coding modules respectively into our framework, where * denotes
DeepLabV2 is pre-trained on MS COCO.

VOC, yet it is more efficient—160× faster than AdvCAM
(1.9 ut v.s. 316.3 ut). By cascading IRN in addition, Re-
CAM surpasses AdvCAM by 1% (70.9% v.s. 69.9%), and
ReCAM is more efficient (only 8.2 ut). Besides, we can
see from Table 4 that ReCAM supports plug-and-play in
different CAM variants including saliency-based methods.

6. Conclusions
We started from the two common flaws of the conven-

tional CAM. We pointed out the crux is the widely used
BCE loss and demonstrated the superiority of SCE loss the-
oretically and empirically. We proposed a simple yet effec-
tive method named ReCAM by plugging SCE into the BCE-
based model to reactivate the model. We showed its gener-
ality and superiority via extensive experiments and various
case studies on two popular WSSS benchmarks.

Acknowledgments
This research was supported by Alibaba Innovative Re-

search (AIR) programme, A*STAR under its AME YIRG
Grant (Project No.A20E6c0101), Alibaba-NTU Joint Re-
search Institute, and Singapore Ministry of Education
(MOE) Academic Research Fund (AcRF) Tier 2 Grant.

976

References
[1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly su-

pervised learning of instance segmentation with inter-pixel
relations. In CVPR, pages 2209–2218, 2019. 1, 2, 3, 4, 5, 6,
7, 8, 11, 12, 13, 14

[2] Jiwoon Ahn and Suha Kwak. Learning pixel-level semantic
affinity with image-level supervision for weakly supervised
semantic segmentation. In CVPR, pages 4981–4990, 2018.
3

[3] Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson
Piramuthu, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Weakly-
supervised semantic segmentation via sub-category explo-
ration. In CVPR, pages 8991–9000, 2020. 3, 8

[4] Liyi Chen, Weiwei Wu, Chenchen Fu, Xiao Han, and Yun-
tao Zhang. Weakly supervised semantic segmentation with
boundary exploration. In ECCV, pages 347–362, 2020. 3, 8

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. TPAMI, 40(4):834–848, 2017.
1, 2, 4, 6

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, pages 801–818, 2018. 1, 2, 4, 6

[7] Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploit-
ing bounding boxes to supervise convolutional networks for
semantic segmentation. In ICCV, pages 1635–1643, 2015. 1

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 6

[9] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 88(2):303–338, 2010. 2, 3, 6,
7, 11

[10] Junsong Fan, Zhaoxiang Zhang, Chunfeng Song, and Tieniu
Tan. Learning integral objects with intra-class discrimina-
tor for weakly-supervised semantic segmentation. In CVPR,
pages 4283–4292, 2020. 3, 8

[11] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In ICCV, pages 991–998. IEEE, 2011. 11

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 3, 4, 11

[13] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,
Zhuowen Tu, and Philip HS Torr. Deeply supervised salient
object detection with short connections. In CVPR, pages
3203–3212, 2017. 3

[14] Qibin Hou, Peng-Tao Jiang, Yunchao Wei, and Ming-Ming
Cheng. Self-erasing network for integral object attention. In
NeurIPS, pages 549–559, 2018. 3

[15] Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu, and
Jingdong Wang. Weakly-supervised semantic segmentation
network with deep seeded region growing. In CVPR, pages
7014–7023, 2018. 3, 8

[16] Peng-Tao Jiang, Qibin Hou, Yang Cao, Ming-Ming Cheng,
Yunchao Wei, and Hong-Kai Xiong. Integral object mining
via online attention accumulation. In ICCV, pages 2070–
2079, 2019. 3, 8

[17] Beomyoung Kim, Sangeun Han, and Junmo Kim. Discrim-
inative region suppression for weakly-supervised semantic
segmentation. In AAAI, volume 35, pages 1754–1761, 2021.
3

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[19] Alexander Kolesnikov and Christoph H Lampert. Seed, ex-
pand and constrain: Three principles for weakly-supervised
image segmentation. In ECCV, pages 695–711, 2016. 1

[20] Hyeokjun Kweon, Sung-Hoon Yoon, Hyeonseong Kim,
Daehee Park, and Kuk-Jin Yoon. Unlocking the poten-
tial of ordinary classifier: Class-specific adversarial erasing
framework for weakly supervised semantic segmentation. In
ICCV, pages 6994–7003, 2021. 3

[21] Jungbeom Lee, Jooyoung Choi, Jisoo Mok, and Sungroh
Yoon. Reducing information bottleneck for weakly super-
vised semantic segmentation. In NeurIPS, 2021. 3, 4, 6, 8,
13

[22] Jungbeom Lee, Eunji Kim, Sungmin Lee, Jangho Lee, and
Sungroh Yoon. Ficklenet: Weakly and semi-supervised se-
mantic image segmentation using stochastic inference. In
CVPR, pages 5267–5276, 2019. 3

[23] Jungbeom Lee, Eunji Kim, and Sungroh Yoon. Anti-
adversarially manipulated attributions for weakly and semi-
supervised semantic segmentation. In CVPR, pages 4071–
4080, 2021. 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13

[24] Seungho Lee, Minhyun Lee, Jongwuk Lee, and Hyunjung
Shim. Railroad is not a train: Saliency as pseudo-pixel su-
pervision for weakly supervised semantic segmentation. In
CVPR, pages 5495–5505, 2021. 3, 8

[25] Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and
Yun Fu. Tell me where to look: Guided attention inference
network. In CVPR, pages 9215–9223, 2018. 2

[26] Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and Yun
Fu. Attention bridging network for knowledge transfer. In
ICCV, pages 5198–5207, 2019. 3

[27] Xueyi Li, Tianfei Zhou, Jianwu Li, Yi Zhou, and Zhaoxiang
Zhang. Group-wise semantic mining for weakly supervised
semantic segmentation. In AAAI, volume 35, pages 1984–
1992, 2021. 1

[28] Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, and Wayne
Zhang. Pseudo-mask matters in weakly-supervised semantic
segmentation. In ICCV, pages 6964–6973, 2021. 1

[29] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun.
Scribblesup: Scribble-supervised convolutional networks for
semantic segmentation. In CVPR, pages 3159–3167, 2016.
1

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755, 2014. 1, 2, 6, 7, 11

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:

977

Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 4, 6

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. ICLR, 2019. 6

[33] László Lovász. Random walks on graphs. Combinatorics,
Paul erdos is eighty, 2(1-46):4, 1993. 3

[34] Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, and
Sanjiv Kumar. Multilabel reductions: what is my loss opti-
mising? In NeurIPS, pages 10600–10611, 2019. 2

[35] Chunfeng Song, Yan Huang, Wanli Ouyang, and Liang
Wang. Box-driven class-wise region masking and filling rate
guided loss for weakly supervised semantic segmentation. In
CVPR, pages 3136–3145, 2019. 1

[36] Paul Vernaza and Manmohan Chandraker. Learning random-
walk label propagation for weakly-supervised semantic seg-
mentation. In CVPR, pages 7158–7166, 2017. 1

[37] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian
Zhang, Sirui Ding, Piotr Mardziel, and Xia Hu. Score-cam:
Score-weighted visual explanations for convolutional neural
networks. In CVPRW, pages 24–25, 2020. 3

[38] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and
Xilin Chen. Self-supervised equivariant attention mech-
anism for weakly supervised semantic segmentation. In
CVPR, pages 12275–12284, 2020. 3, 8

[39] Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming
Cheng, Yao Zhao, and Shuicheng Yan. Object region mining
with adversarial erasing: A simple classification to semantic
segmentation approach. In CVPR, pages 1568–1576, 2017.
3

[40] Tong Wu, Junshi Huang, Guangyu Gao, Xiaoming Wei, Xi-
aolin Wei, Xuan Luo, and Chi Harold Liu. Embedded dis-
criminative attention mechanism for weakly supervised se-
mantic segmentation. In CVPR, pages 16765–16774, 2021.
2, 3, 8

[41] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, pages 418–434, 2018. 1, 2, 4, 6

[42] Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid
Boussaid, Ferdous Sohel, and Dan Xu. Leveraging auxiliary
tasks with affinity learning for weakly supervised semantic
segmentation. In ICCV, pages 6984–6993, 2021. 1, 3

[43] Qi Yao and Xiaojin Gong. Saliency guided self-attention
network for weakly and semi-supervised semantic segmen-
tation. IEEE Access, 8:14413–14423, 2020. 8

[44] Yazhou Yao, Tao Chen, Guo-Sen Xie, Chuanyi Zhang,
Fumin Shen, Qi Wu, Zhenmin Tang, and Jian Zhang. Non-
salient region object mining for weakly supervised semantic
segmentation. In CVPR, pages 2623–2632, 2021. 3, 8

[45] Dong Zhang, Hanwang Zhang, Jinhui Tang, Xiansheng Hua,
and Qianru Sun. Causal intervention for weakly-supervised
semantic segmentation. In NeurIPS, pages 655–666, 2020.
3, 4, 6, 8, 11

[46] Fei Zhang, Chaochen Gu, Chenyue Zhang, and Yuchao Dai.
Complementary patch for weakly supervised semantic seg-
mentation. In ICCV, pages 7242–7251, 2021. 1

[47] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label
learning algorithms. TKDE, 26(8):1819–1837, 2013. 2, 7

[48] Tianyi Zhang, Guosheng Lin, Weide Liu, Jianfei Cai, and
Alex Kot. Splitting vs. merging: Mining object regions with
discrepancy and intersection loss for weakly supervised se-
mantic segmentation. In ECCV, pages 663–679. Springer,
2020. 3

[49] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and
Thomas S Huang. Adversarial complementary learning for
weakly supervised object localization. In CVPR, pages
1325–1334, 2018. 3

[50] Ting Zhao and Xiangqian Wu. Pyramid feature attention net-
work for saliency detection. In CVPR, pages 3085–3094,
2019. 3

[51] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, pages 2921–2929, 2016. 1, 2,
3, 4, 7, 8, 11

978

	. Introduction
	. Related Works
	. Preliminaries
	. Class Re-Activation Maps (ReCAM)
	. ReCAM Pipeline
	. Justification: BCE vs CE

	. Experiments
	. Datasets and Settings
	. Results and Analyses

	. Conclusions
	. More Details about Toy Experiments
	. Datasets and Evaluation Metrics
	. More WSSS Results (DeepLabV3+)
	. Different Weights for ReCAM
	. Statistics of Two Flaws
	. on MS COCO
	. Sensitivity to learning rate

	. Gradients of BCE and CE
	. BCE
	. CE

	. Algorithm
	. Training Details of DeepLabV2
	. More Qualitative Results

