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Abstract

Domain generalization (DG) aims to improve the gener-
alization performance for an unseen target domain by us-
ing the knowledge of multiple seen source domains. Main-
stream DG methods typically assume that the domain la-
bel of each source sample is known a priori, which is chal-
lenged to be satisfied in many real-world applications. In
this paper, we study a practical problem of compound DG,
which relaxes the discrete domain assumption to the mixed
source domains setting. On the other hand, current DG al-
gorithms prioritize the focus on semantic invariance across
domains (one-vs-one), while paying less attention to the
holistic semantic structure (many-vs-many). Such holis-
tic semantic structure, referred to as meta-knowledge here,
is crucial for learning generalizable representations. To
this end, we present COmpound domain generalization via
Meta-knowledge ENcoding (COMEN), a general approach
to automatically discover and model latent domains in two
steps. Firstly, we introduce Style-induced Domain-specific
Normalization (SDNorm) to re-normalize the multi-modal
underlying distributions, thereby dividing the mixture of
source domains into latent clusters. Secondly, we harness
the prototype representations, the centroids of classes, to
perform relational modeling in the embedding space with
two parallel and complementary modules, which explicitly
encode the semantic structure for the out-of-distribution
generalization. Experiments on four standard DG bench-
marks reveal that COMEN exceeds the state-of-the-art per-
formance without the need of domain supervision.

1. Introduction
The success of many computer vision algorithms hinges

on a strong presumption that the training and test data are
independent and identically distributed (i.i.d.). In practice,
however, this hypothesis is prone to be violated due to the
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Figure 1. Top: (a) Vanilla domain generalization. (b) Compound
domain generalization. Bottom: The workflow of our approach.

change of environments, imaging devices, selection bias, to
name a few. How to generalize a well-trained model to out-
of-distribution domains has motivated a body of research on
Domain Adaptation (DA) [15,37,48,52,54,68,70] and Do-
main Generalization (DG) [2, 8, 9, 31, 34, 41]. In contrast
to DA problem where the unlabeled or partially labeled tar-
get data is available, DG considers a harder problem setting
where a model trained on a set of source domain data should
directly generalize to an unseen target domain with differ-
ent data statistics, without the need of accessing to target
domain data for retraining or fine-tuning (cf. Fig. 1 (a)).

Mainstream DG literature typically assumes that the do-
main label of each source sample is known a priori, which
is too restrictive to be satisfied in many practical applica-
tions. For instance, with the explosive increase of the multi-
source data from Internet, a mixture of multiple source
data can be easily collected. However, manually dividing
the crawled images into multiple domains requires tedious
labor-intensive work given a large amount of training data.
Meanwhile, the latent domains may blend and interact in
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complex ways. Thus, it is non-trivial and significant to auto-
matically discover and model distinct underlying domains.

In this paper, we investigate a practical problem of com-
pound domain generalization, where the domain label is
unavailable for training (cf. Fig. 1 (b)). An intuitive ap-
proach is to use the embedded features along with clus-
tering strategies to conduct domain separation in advance.
However, the source samples are naturally divided into dif-
ferent clusters according to their semantic categories rather
than the domain-wise distinctions. When the source data
contains heterogeneous but unknown latent domains, most
conventional DG methods will not be applicable. Although
some recent works [2,23,33,43] do not require domain label
information during training, the informative latent domain
structure contained in the source data is neglected.

On the other hand, existing DG methods, which mainly
span domain invariant feature learning [16,34,35,41,42,69],
gradient based meta-learning [9, 30, 31], and augmentation
based generalization [50, 58], are devoted to learn seman-
tic representations in virtue of one-vs-one consistency con-
straints. Unfortunately, the learned representations may
be insufficient to precisely encode the semantic informa-
tion. By prioritizing the focus on semantic invariance across
domains, the holistic semantic structure, which contains
rich many-vs-many information regarding the inter-class
relations and interactions, is yet to be thoroughly investi-
gated. In particular, we refer such holistic semantic struc-
ture as meta-knowledge, namely, knowledge that is domain-
agnostic and generalizable for unseen target domains.

Grounded on these findings, we present a novel DG
framework called COmpound domain generalization via
Meta-knowledge ENcoding (COMEN). The basic idea of the
COMEN is to identify latent domain structure and model
the semantic correlations among different categories across
domains. To achieve this goal, we establish the COMEN
in two stages. During the first stage, we introduce Style-
induced Domain-specific Normalization (SDNorm) to re-
veal the complex combinations of latent domains and learn
a set of domain assignment probabilities for each source
sample. SDNorm is end-to-end trainable and can be eas-
ily plugged into modern deep neural networks. In the sec-
ond stage, based on the discovered latent domains, we resort
to prototypes (the feature centroids of categories) to model
the relations among different semantic categories via two
parallel modules, i.e., Prototypical Graph Reasoning (Pro-
toGR) and Prototypical Category-aware Contrastive Learn-
ing (ProtoCCL). ProtoGR helps each categorical prototype
attend and reason over its neighborhoods’ prototypical fea-
tures instead of using pairwise alignment, thereby captur-
ing the topological structure of semantic space. ProtoCCL
compensates for the shortage of samples in the prototypi-
cal feature space by contrastively learning the relations of
different categories while preserving their discriminability.

These two modules work in a synergistic manner towards
encoding semantic structures into the embedding space.

Our contributions can be summarized as follows:

• We introduce a more practical compound DG setting
that imposes no prior knowledge on the domain label
of each source sample. Then, a unified learning frame-
work, called COMEN, is introduced to jointly discover
and model the latent domains.

• In terms of latent domain discovery, we uncover and
re-normalize the multimodal underlying distributions
with the proposed SDNorm.

• In terms of encoding the semantic structure, we pro-
pose two complementary modules, ProtoGR and Pro-
toCCL, to explicitly explore the relations and interac-
tions of prototype in the common feature space.

• Experiments on four standard DG benchmarks (PACS,
Digits-DG, VLCS, and Office-Home) demonstrate that
COMEN outperforms the state-of-the-art methods by
large margins without the need of domain supervision.

2. Related Work
2.1. Domain Generalization

Domain generalization [59], which aims at generalizing
model learned from multiple seen source domains to an un-
seen target domain, have received a great surge of interest
in the deep learning era. In practice, numerous approaches
have been developed to learn a good predictive model for
the unseen test domain with generalizable representations.

Domain Alignment. An intuitive solution for do-
main generalization is to extract features that are domain-
invariant but preserve discriminability for the task predic-
tion. For example, Ghifary et al. [16] propose to extract in-
variant features with a multi-task auto-encoder. Motivated
by the success of mainstream domain adaptation methods,
domain adversarial training [15] are introduced to adver-
sarially learn generalizable representations across multiple
source domains via a two-player min-max game [34,35,40].

Augmentation. Volpi et al. [58] augment the dataset
with a new adversarial data augmentation procedure by syn-
thesizing the “hard” samples for the training model, and
then provide an an iterative updating procedure. Xu et
al. [66] resort to randomized convolutions by leveraging
the outputs of random convolutions as new images or mix-
ing them with the original inputs during training. By con-
trast, feature augmentation, such as mixstyle [73], curricu-
lum mixup [38], and stochastic feature augmentation [33],
is newly investigated to augment the latent feature space
without explicitly changing the original inputs. In addition,
Carlucci et al. [2] use a self-supervision loss, called solving
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Figure 2. The overall structure of COMEN. Given a mixture of source domains, it discovers the latent domain structure via SDNorm in the
first stage. During the second stage, it first converts all samples into the embedding space with pseudo domain labels (based on the domain
prediction). Then, a set of prototypes are computed and fed into two parallel modules, ProtoGR and ProtoCCL.

jigsaw puzzles, to enhance the generalization ability of deep
model by distinguishing different jigsaw puzzles.

Meta-Learning. A category of methods resort to the
meta-learning [13] by constructing meta-train and meta-test
domains during training time for mimicking the train and
test distributional disparity. Li et al. [30] and Balaji et al. [1]
propose to update the network parameters by minimizing
the meta-optimization objective. Li et al. [31] first develop
a strong baseline by aggregating data from all source do-
mains and training a deep model on all the data, and then a
episodic training strategy is proposed to mimic the domain
shift. Dou et al. [9] propose to explicitly enforce the cross-
domain semantic coherence via metric learning losses along
with the episode training strategy to enhance the seman-
tic robustness. Despite their general efficacy, meta-learning
methods are notoriously slow to train.

Feature Decomposition. Khosla et al. [25] propose to a
decomposition-based approaches that decompose network
parameters to domain-invariant and domain-specific low-
rank components. This idea was further extended by [29]
to the deep learning model. A low common-specific low-
rank decomposition algorithm [46] is proposed to achieve
efficient domain generalization by only modifying the final
linear classification layer of deep networks.

2.2. Multiple Latent Domains

Learning from multiple latent domains is a long-standing
and challenging problem in machine learning and computer
vision community. Some previous works have explored the
latent domain discovery problem, but most in the regime
of domain adaptation. In particular, Hoffman et al. [21]
develop a hierarchical clustering technique to achieve do-
main separation for the following adaptation procedure.
Gong et al. [17] aim to reshape the visual datasets by im-
posing two properties (distinctiveness and learnability) on
domains. Xiong et al. [65] draw motivation from multi-

ple manifold learning to infer the domain assignment by a
new local subspace representation. Mancini et al. [39] pro-
pose to automatically discover latent domains by using a set
of mDA-layers to estimate the domain assignment of each
source sample. In contrast, how to discover and model la-
tent domains are less investigated in DG especially under
the presence of unseen target domains. More importantly,
exploring the topological relations among multiple latent
domains remains out of reach for current DG approaches.

3. Methodology
The overall architecture of COMEN is depicted in Fig. 2,

which consists of three components, SDNorm, ProtoGR,
and ProtoCCL. SDNorm statistically estimates the domain
membership of each sample in an unsupervised fashion to
decouple the multi-modal data distributions. ProtoGR and
ProtoCCL are built on the basis of prototype representations
to model the both intra- and inter-domain semantic relations
among different categories, thereby encoding the semantic
structure into the learned feature spaces.

3.1. Task Formulation

In vanilla domain generalization problem, we are given
M source domains Ds = {D1,D2, ...,DM} that are sam-
pled from different probability distributions on the joint
space X × Y . It requires the presence of domain la-
bels, thus the m-th source domain can be represented as
Dm = {(xm

i , ymi , dmi )}Nm
i=1, where Nm denotes the number

of samples in this domain. In our work, we focus on the
compound domain generalization problem which assumes
that the domain labels of source data are not available, i.e.,
the source data has mixed domains Ds = {(xi, yi)}Ni=1,
where N denotes the number of all source samples. Both
vanilla and compound domain generalization assume that
different source domains share the identical label space, and
we consider that there are K classes in all.
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3.2. Latent Domain Discovery

A strong baseline [29] for compound (or vanilla) DG is
to train a prediction model by simply combining all source
samples. However, this approach inevitably deteriorates
the performance on the domain of interest [53] as the in-
trinsic inter-domain relationships are not considered. This
phenomenon indicates that the underlying multi-modal in-
formation is crucial for the success of DG methods. On
the other hand, discovering the latent domains in the con-
text of DG remains an open question since the typical rep-
resentation learning method are naturally devised to di-
vide the input data into different semantic categories, and
most existing DG approaches require the domain informa-
tion to implement their frameworks. In addition, using em-
bedded representations along with standard clustering ap-
proaches, such as k-means, may not lead to satisfactory es-
timation results with respect to the domain membership of
each sample. Remedying this issue, we propose to uncover
the multi-modal distribution patterns with a simple and ef-
fective Style-induced Domain-specific Normalization (SD-
Norm) module, which can be easily plugged into modern
deep neural networks and DG methods.

Suppose that we are given feature maps of an image ex-
tracted from a CNN layer f ∈ RC×H×W , where C, H and
W represent the channel, height, and width of the feature
maps. Technically, we resort to the channel-wise mean and
standard deviation µ, σ of f to obtain its style representa-
tion. The definition is formulated as,

µ(f) =
1

HW

H∑
h=1

W∑
w=1

fh,w (1)

σ(f) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(fh,w − µ(f))2 + ϵ (2)

Then, we concatenate the computed µ(f) and σ(f) in each
channel to represent the style representation, sty(f) ∈ R2C .
The style representation sty(f) is further fed into a domain
label predictor Fd

1 to output a set of domain assignment
probabilities. Formally, we optimize this domain prediction
module by minimizing the entropy of its output,

Ld = − 1

N

N∑
i=1

Fd(sty(f)i) logFd(sty(f)i) (3)

We further incorporate the computed domain assignment
probabilities into Batch Normalization (BN) [24] layer to
re-normalize the multi-modal distributions. BN is devised
to standardize the features of each layer to zero-mean and
univariance. Suppose that we are given an input feature map
z in a certain channel to a BN layer, then BN layer trans-
forms the feature by incorporating the domain information

1Fd was pretrained on a portion of samples with pseudo domain labels.

in the following manner,

ẑm =
z − µm√
σ2
m + ϵ

(4)

where µm =
|B|∑
i=1

pi,mzi and σ2
m =

|B|∑
i=1

pi,m(zi − µm)2.

pi,m represents the predicted probability from Fd that an in-
put image xi belongs to the m-th domain. Accordingly, the
proposed SDNorm can be formulated as a BN-like module,

SDNormm(z;λm, βm) = λm · ẑm + βm (5)

where λm and βm are learnable parameters for domain m.
We perform SDNorm for different source domains by using
different bias/variance terms by following the prior prac-
tices [3,4,36,39,49,62] in domain adaptation. Note that we
also normalize each channel independently in each mini-
batch, but we omit the subscript for the sake of simplicity.

We highlight that the latent domain discovery is an unsu-
pervised process, thus the false domain assignment will in-
evitably arise during training. Different from representative
latent domain discovery methods [17, 21, 40], which assign
a deterministic domain label (i.e. hard domain label) to each
source sample, our approach computes a set of probabilities
(i.e. soft domain label) for each source sample. In this way,
the negative influence of false domain assignment will be
mitigated during the feature re-normalization process.

3.3. Prototypical Relation Modeling

Mainstream DG approaches are devoted to enforce se-
mantic consistency in the shared embedding space via
alignment-based strategies, such as moment matching [42,
52] and adversarial learning [35, 40]. However, the seman-
tic relations among different categories, which are crucial
for depicting the semantic structures, are less investigated.
As a consequence, only seeking one-vs-one category align-
ment cannot ensure learning generalizable representations
for the unseen target domain. On the other hand, prototype
has demonstrated strong efficacy in few-shot learning [51],
domain adaptation [5, 6, 64, 67], and unsupervised learn-
ing [32] by encoding semantic structure under the circum-
stances of insufficient or noisy annotated data. In DG, we
encounter with a new challenge that how to generalize a
learned semantic structure to the unseen domain in an un-
supervised fashion. To solve the above issues, we propose
to model the prototypical relations among different seman-
tic categories via two parallel and complementary modules
called Prototypical Graph Reasoning (ProtoGR) and Proto-
typical Category-aware Contrastive Learning (ProtoCCL).
ProtoGR seeks to help each category prototype attend and
reason over its neighborhoods’ prototypical features instead
of using pairwise alignment, thereby capturing the topolog-
ical information of semantic structure. ProtoCCL compen-
sates for the limited sample size in the prototypical fea-
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ture space by contrastively learning the domain relation-
ships and preserving the category discriminability.

First of all, we compute the global prototype ckm for each
category in different discovered latent domains. The global
prototype is a mean vector of the embedded samples in each
category via a mapping function f ,

ckm =
1

|Dk
m|

∑
(xDm

i ,yDm
i )∈Dk

m

f(xDm
i ), (6)

whereDk
m represents the set of samples labeled with class k

in the m-th source domain. In order to harmonize the train-
ing process, we follow the prior practice [7,64] to update the
global class prototype by using a mini-batch sampled from
all source domains through an exponential moving average
strategy,

ckm(I) ← ρ ckm(I−1) + (1− ρ) ĉkm(I) (7)

where ρ denotes the exponential decay rate and is set to 0.7
in all experiments, ĉkm is the local class prototype, and I
represents the iteration times.

3.3.1 Prototypical Graph Reasoning (ProtoGR)

To implement ProtoGR, we utilize a graph G = {V, E}with
nodes vi ∈ V and edges (vi, vj) ∈ E . In this graph, V corre-
sponds to M×K global class prototypes, and the adjacency
matrix is defined as A ∈ RMK×MK which corresponds to
each edge (vi, vj) with its element Aij . The node features
are denoted by X = {x1, · · · ,xMK} ∈ RMK×d, where
each element corresponds to a node in V and d is the di-
mension of the prototype feature. Specifically, we define
the correlations between nodes,

Aij = 1(
xT
i xj

∥xi∥2 · ∥xj∥2
> δ) · xT

i xj

∥xi∥2 · ∥xj∥2
(8)

where xi and xj denote the i-th and j-th prototype features,
and δ is the threshold parameter that control the sparsity of
G. We fix δ to 0.5 in all experiments. 1(·) represents the
indicator function.

To model the long-range dependencies and enhance the
expressive power of graph nodes, we introduce graph atten-
tion mechanism [56] to our model,

x
(l+1)
i = σ(

∑
j∈Ni

α
(l)
ij ·Wx

(l)
j ), (9)

where x
(l)
j is the hidden feature for node j in the l-th layer,

W is a weight matrix, and σ is a nonlinear function such
as ReLU. Given two nodes i and j in G, their edge weights
are formulated as,

α
(l)
ij =

Aij exp(LReLU(aT
(l)[Wx

(l)
i ∥Wx

(l)
j ]))∑

k∈Ni
Aik exp(LReLU(aT

(l)[Wx
(l)
i ∥Wx

(l)
k ]))

(10)

where Ni represents the neighborhood of node i in the
graph, a(l) is a learnable weight vector, and ∥ denotes the
concatenation operation. In practice, we stack two graph at-
tention layers to form our ProtoGR. Moreover, we combine
the hidden features with the input features in the last layer
to enhance the discriminability,

X(L) = X(L) +X(0) (11)

To further strengthen the discriminability of class proto-
types, we perform node classification based on G. To be
specific, the last layer of ProtoGR predicts the class label,
which can be formulated as,

ŷ = softmax(FC(ProtoGR(x,G))), (12)

where x is the node features, ŷ denotes the predicted label,
and FC denotes a fully-connected layer. Finally, the node
classification loss of ProtoGR module is defined asLProtoGR.

3.3.2 Prototypical Category-aware Contrastive Learn-
ing (ProtoCCL)

In addition to the topological relations among prototypes
learned by ProtoGR, we further encode the semantic struc-
tures into the embedding space by introducing a contrastive
learning objective for the task of category discrimination.

Contrastive learning based methods [18, 19, 22, 32, 61]
have demonstrated compelling results in (self-supervised)
representation learning. Among them, InfoNCE [45] is a
representative contrastive loss function,

LInfoNCE
I =− log

exp(v ·v+/τ)

exp(v ·v+/τ)+
∑

v−∈NI
exp(v ·v−/τ)

(13)

where v+ is positive embeddings for I ,NI contains embed-
dings of negatives, and τ is a temperature hyper-parameter.

In ProtoCCL, we utilize the contrastive loss in a fully su-
pervised way considering the presence of class labels. For
a prototype c (query) with its category label k, the posi-
tive samples c+ (positive keys) are other prototypes from
class k, while the negatives samples c− (negative keys) are
prototypes from other classes. Formally, ProtoCCL for a
prototype from category k can be formulated as follows,

LProtoCCL
k =

1

|Ck|
∑

c+∈Ck

− log
exp(c·c+/τ)

exp(c·c+/τ)+
∑

c−∈Nk
exp(c·c−/τ)

(14)
where Ck andNk denote prototype feature collections of the
positive and negative samples, for prototype c.

The proposed ProtoCCL shares the principle of con-
trastive loss [18] to output small value when prototype c
is similar to its positive key and dissimilar to all other neg-
ative keys. It is noteworthy that the constructed memory
bank only stores the prototypes instead of all samples, thus
significantly reducing the computational costs.
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3.4. Training Losses

The overall training process can be divided into two
stages. In the first stage, we obtain the pseudo domain la-
bels of all source samples by optimizing Eq. (3) and cross-
entropy loss Lcls. Formally, Lcls is defined as follows,

Lcls = −
1

N

N∑
i=1

K∑
j=1

1[yi = j] log(Fc ◦G(xi)) (15)

where G denotes the feature extractor and Fc represents the
class label predictor. In the second stage, by using the do-
main labels predicted in the first stage, we have the follow-
ing loss for our COMEN model,

LCOMEN = Lcls + λLProtoPR + γLProtoCCL (16)

where λ and γ is the trade-off parameters that balance dif-
ferent training losses.

4. Experiments
4.1. Datasets and Evaluation Protocol

We evaluate out-of-domain accuracy of COMEN on four
DG benchmarks: PACS [29], Digits-DG [72], VLCS [11],
and Office-Home [57]. (1) PACS, which includes 9,991
images of seven categories, is the most commonly used DG
benchmark due to its large distributional shift across four
domains (Photo, Art Painting, Cartoon, and Sketch). (2)
Digits-DG, which is a handwritten digit recognition bench-
mark, is composed of four domains (MNIST [28], MNIST-
M [14], SVHN [44], and SYN [14]) where the domain shifts
stem from the variations of background, style, and color.
(3) VLCS collects images from PASCAL VOC 2007 [10],
LabelMe [47], Caltech [12], and Sun [63] and contains five
categories in all. (4) Office-Home, which is an object recog-
nition dataset in office and home environments, consists of
15,500 images of 65 categories from four domains (Artistic,
Clipart, Product, and Real World).

To facilitate a fair comparison, we follow the leave-one-
domain-out evaluation protocol as in [2, 29, 33], i.e., one
domain is chosen as the held out domain and the remaining
domains are seen as source domains. For PACS, Digits-DG,
and Office-Home, we follow the train and val splits estab-
lished in [29, 72, 73]. For VLCS, we follow the previous
works [2, 40] to split 30% of the source samples as valida-
tion datasets. In the testing phase, we use all target samples
to compute the classification accuracy of the model that ex-
hibits the best performance in the validation dataset.

4.2. Implementation Details

For PACS and Office-Home, we use ResNet-18 [20] pre-
trained on the ImageNet as the backbone architecture. For
Digits-DG, we follow [72] to construct the backbone with

Table 1. Domain Generalization results on PACS benchmark.

Method Art Cartoon Photo Sketch Avg
w/ Domain Supervision

CCSA [41] 80.5 76.9 93.6 66.8 79.4
MMD-AAE [34] 75.2 72.7 96.0 64.2 77.0
CrossGrad [50] 79.8 76.8 96.0 70.2 80.7

Metareg [1] 83.7 77.2 95.5 70.3 81.7
MASF [9] 80.3 77.2 95.0 71.7 81.1

Epi-FCR [31] 82.1 77.0 93.9 73.0 81.5
L2A-OT [72] 83.3 78.2 96.2 73.6 82.8
SagNet [43] 83.6 77.7 95.5 76.3 83.3
SelfReg [26] 82.3 78.4 96.2 77.5 83.6

MixStyle [73] 84.1 78.8 96.1 75.9 83.7
w/o Domain Supervision

DeepAll [31] 77.6 73.9 94.4 70.3 79.1
JiGen [2] 79.4 75.3 96.0 71.6 80.5

MMLD [40] 81.3 77.2 96.1 72.3 81.7
RSC [23] 79.9 76.9 94.6 77.1 81.1

EISNet [60] 81.9 76.4 96.0 74.3 82.2
SFA-A [33] 81.2 77.8 93.9 73.7 81.7
SagNet [43] 83.6 77.7 95.5 76.3 83.3
COMEN (Ours) 82.6 81.0 94.6 84.5 85.7

four 64-kernel 3×3 conv layers and a softmax layer. For
VLCS, we use AlexNet [27] pre-trained on the ImageNet
as the backbone architecture. We train the networks using
SGD with momentum of 0.9 and weight decay of 5e-4 for
50 epochs. For PACS, VLCS, and Office-Home, the initial
learning rate is set to 0.001, which is decayed by 0.1 at 20
epochs. For Digits-DG, we train the network from scratch
and the initial learning rate is set to 0.05, which is decayed
by 0.1 every 20 epochs. The batch size is set to 128 in all
experiments. For Eq. (14), we set τ = 0.5. For Eq. (16), we
set λ = 0.1 and γ = 0.1. We evaluate the performance in
all classes and report the average accuracy over 3 runs with
different random seeds. All experiments are implemented
on the PyTorch framework using a 1080Ti GPU.

4.3. Comparisons with State-of-the-Arts

Comparison Methods. We extensively compare the pro-
posed COMEN against state-of-the-art DG methods, which
can be classified into two groups: w/ Domain Supervision
and w/o Domain Supervision. w/ Domain Supervision in-
dicates that these methods relies on the domain informa-
tion to implement their algorithms. Note that w/o Domain
Supervision does not imply that the included methods also
explicitly discover and model the latent domains. By con-
trast, they usually treat the compound source domains as a
whole. For all the compared approaches, we summarize the
domain generalization results reported in their original pa-
pers. DeepAll represents the standard supervised learning
by directly combining all source domains.
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Table 2. Domain Generalization results on Digits-DG benchmark.

Method MNIST MNIST-M SVHN SYN Avg
w/ Domain Supervision

CCSA [41] 95.2 58.2 65.5 79.1 74.5
MMD-AAE [34] 96.5 58.4 65.0 78.4 74.6
CrossGrad [50] 96.7 61.1 65.3 80.2 75.8

DDAIG [71] 96.6 64.1 68.6 81.0 77.6
L2A-OT [72] 96.7 63.9 68.6 83.2 78.1
MixStyle [73] 96.5 63.5 64.7 81.2 76.5

w/o Domain Supervision
DeepAll [72] 95.8 58.8 61.7 78.6 73.7

JiGen [2] 96.5 61.4 63.7 74.0 73.9
SFA-A [33] 96.5 66.5 70.3 85.0 79.6
COMEN (Ours) 97.1 67.6 75.1 91.3 82.3

Table 3. Domain Generalization results on VLCS benchmark.

Method V L C S Avg
w/ Domain Supervision

D-MTAE [16] 63.9 60.1 89.1 61.3 68.6
CCSA [41] 67.1 62.1 92.3 59.1 70.2

DBA-DG [29] 70.0 63.5 93.6 61.3 72.1
CIDDG [35] 64.4 63.1 88.8 62.1 69.6

MMD-AAE [34] 67.7 62.6 94.4 64.4 72.3
MLDG [30] 67.7 61.3 94.4 65.9 72.3

Epi-FCR [31] 67.1 64.3 94.1 65.9 72.9
MASF [9] 69.1 64.9 94.8 67.6 74.1

w/o Domain Supervision
DeepAll [33] 71.9 59.2 96.9 62.6 72.7

JiGen [2] 70.6 60.9 96.9 64.3 73.2
MMLD [40] 72.0 58.8 96.7 68.1 73.9
SFA-A [33] 70.4 62.0 97.2 66.2 74.0
COMEN (Ours) 72.8 62.6 97.0 67.6 75.0

Table 4. Domain Generalization results on Office-Home.

Method Art Clipart Product Real Avg
w/ Domain Supervision

CCSA [41] 59.9 49.9 74.1 75.7 64.9
MMD-AAE [34] 56.5 47.3 72.1 74.8 62.7
CrossGrad [50] 58.4 49.4 73.9 75.8 64.4

DDAIG [71] 59.2 52.3 74.6 76.0 65.5
DOSN [49] 59.4 45.7 71.8 74.7 62.9

L2A-OT [72] 60.6 50.1 74.8 77.0 65.6
MixStyle [73] 58.7 53.4 74.2 75.9 65.5

w/o Domain Supervision
DeepAll [72] 58.9 49.4 74.3 76.2 64.7

JiGen [2] 53.0 47.5 71.5 72.8 61.2
RSC [23] 58.4 47.9 71.6 74.5 63.1

SagNet [43] 60.2 45.4 70.4 73.4 62.4
COMEN (Ours) 57.6 55.8 75.5 76.9 66.5

PACS and Digits-DG. The domain generalization re-
sults on PACS and Digits-DG benchmarks are reported
in Table 1 and Table 2, we can observe that the pro-
posed COMEN outperforms all the baseline methods by a

large margin and improves over state-of-the-art results by
+2.0% (PACS) and 2.7% (Digits-DG) on average, clearly
demonstrating that COMEN is capable of extracting gener-
alizable and transferable representations for effective out-
of-distribution generalization. In particular, COMEN largely
improves the classification accuracy on the hard general-
ization tasks, such as Sketch (70.3% → 84.5%), MNIST-M
(58.8%→ 67.6%), and SVHN (61.7%→ 75.1%), where the
source domains are significantly different from the unseen
target domain. This encouraging results further reveal the
significance of discovering and modeling latent domains.

VLCS and Office-Home. Table 3 and Table 4 display
the results on VLCS and Office-Home. Our method consis-
tently and substantially outperforms all the compared meth-
ods on most tasks, which indicates that COMEN is versatile
and scalable across different domain generalization scenar-
ios. However, we notice that the improvements on VLCS
are smaller than the results on the other datasets. The ra-
tionale is that the domain shifts of the VLCS dataset stems
from the type of camera, and thus the visual appearances
are more analogous to each other. In addition, all meth-
ods including ours achieve less improvements on Office-
Home dataset compared to the vanilla DeepAll baseline.
The DeepAll model even outperforms the state-of-the-art
w/o Domain Supervision methods, such as RSC and Sag-
Net. By comparison, COMEN significantly exceeds the per-
formance of these methods on this scenario.

These experimental results also reveal two important ob-
servations. (1) Mixstyle [73] and SFA-A [33], which intro-
duce explicit feature augmentation strategies, is clearly bet-
ter than the previous works that focus on feature alignment,
such as MASF [9] and MMLD [40]. (2) COMEN substan-
tially outperforms the state-of-the-art methods (Mixstyle
and SFA-A), which demonstrates the superiority of COMEN
by estimating the domain assignment of each source sample
and encoding semantic structure into latent space in virtue
of prototypical representations.

4.4. Further Empirical Analysis

Ablation Study. To study the relative contribution of
each component in the proposed COMEN, we perform an
extensive ablation analysis on four DG benchmarks. The
results are reported in Table 5, where the first raw corre-
sponds to the DeepAll baseline. Specifically, we evaluate all
possible combinations of the three proposed components:
DSNorm, ProtoGR, and ProtoCCL. We can observe that all
the components are designed reasonably and when any one
of these components is removed, the performance drops ac-
cordingly. Noting that removing the DSNorm module leads
to significant performance degeneration, which verifies the
importance of discovering the latent domains in compound
DG. Combining both ProtoGR and ProtoCCL, which model
the prototypical relations in the feature space, shows clear
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Table 5. Ablation of COMEN on four DG benchmarks (%).

DSNorm ProtoGR ProtoCCL PACS Digits-DG VLCS Office-Home Average
- - - 79.1 73.7 72.7 64.7 72.6
✓ - - 81.3 75.4 73.4 65.0 73.8
- ✓ - 82.0 75.6 74.1 65.4 74.3
- - ✓ 81.3 76.1 73.5 65.1 74.0
- ✓ ✓ 82.6 77.8 74.4 65.6 75.1
✓ ✓ - 83.5 79.0 74.3 65.8 75.7
✓ - ✓ 84.0 79.3 74.2 66.3 76.0
✓ ✓ ✓ 85.7 82.3 75.0 66.5 77.4

(a) DeepAll (b) COMEN (c) DeepAll (d) COMEN

Figure 3. The t-SNE visualization of deep network activations extracted by DeepAll and COMEN on the PACS and Digits-DG datasets.
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Figure 4. The confusion matrices of DeepAll and COMEN on PACS dataset. From left to right: Photo, Art, Cartoon, and Sketch.

improvement over DeepAll and DSNorm only. For methods
without DSNorm, we randomly and uniformly divide the
compound source domains into multiple discrete domains
so as to conduct the ProtoGR or/and ProtoCCL modules. In
this case, we can observe that these two modules are robust
to the noisy domain assignment results.

Feature Visualization. We utilize t-SNE [55] for the
visualizations of the deep network activations learned by
DeepAll and COMEN on the PACS and Digits-DG datasets.
The results are shown in Figure 3, where different colors
stand for different classes. The features learned by DeepAll
on the mixture of source domains cannot be reasonably sep-
arated, and the decision boundaries of some classes are am-
biguous in the feature space. By contrast, COMEN learns
discriminative representations for both source and unseen
target domains by simultaneously enlarging inter-class dis-
tance and suppressing the intra-class dispersion.

Confusion matrices. Figure 4 respectively plots confu-
sion matrices of DeepAll and COMEN regarding the PACS
dataset. We can see that the false prediction results are
largely reduced by COMEN especially on the hard general-
ization task (Cartoon and Sketch), revealing the key impor-

tance of discovering and modeling latent domains.

5. Conclusion
We study a challenging yet practical domain generaliza-

tion problem, namely compound domain generalization. To
solve this problem, we propose a novel COMEN framework
to automatically discover and model the distinct underlying
domains with three newly proposed modules. In particu-
lar, DSNorm re-normalizes the multi-modal distributions to
obtain domain information. ProtoGR and ProtoCCL model
the prototypical relations by simultaneously encoding se-
mantic structure of feature space and learning discrimina-
tive domain-invariant representations. Experiments reveal
that COMEN significantly outperforms state-of-the-art DG
methods on four benchmark datasets.
COMEN is tailored for the classification task, and cannot

be simply extended to other vision tasks, such as object de-
tection and semantic segmentation.
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