
Computing Wasserstein-p Distance Between Images with Linear Cost

Yidong Chen1,2 Chen Li1 Zhonghua Lu1,∗

1Computer Network Information Center, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

chenyidong@cnic.cn, lichen@sccas.cn, zhlu@cnic.cn

Abstract

When the images are formulated as discrete measures,
computing Wasserstein-p distance between them is chal-
lenging due to the complexity of solving the correspond-
ing Kantorovich’s problem. In this paper, we propose a
novel algorithm to compute the Wasserstein-p distance be-
tween discrete measures by restricting the optimal trans-
port (OT) problem on a subset. First, we define the re-
stricted OT problem and prove the solution of the restrict-
ed problem converges to Kantorovich’s OT solution. Sec-
ond, we propose the SparseSinkhorn algorithm for the re-
stricted problem and provide a multi-scale algorithm to es-
timate the subset. Finally, we implement the proposed al-
gorithm on CUDA and illustrate the linear computational
cost in terms of time and memory requirements. We com-
pute Wasserstein-p distance, estimate the transport map-
ping, and transfer color between color images with size
ranges from 64×64 to 1920×1200. (Our code is available
at https://github.com/ucascnic/CudaOT)

1. Introduction
The long history of optimal transport (OT) problems can

be traced back to the pioneering work of Monge (1781),
Toloston (1930), Kantorovich (1942) and Brenier (1991)
[6]. To this day, this theory has provided a fertile ground for
research with deep connections to convexity [18], partial d-
ifferential equations [8], economic problems [13], machine
learning [3] and computer vision [28].

The theory of OT defines a distance on probability mea-
sures, called the Wasserstein distance. The Wasserstein dis-
tance can not be calculated analytically in most cases and it
is computationally more costly than Lp-distance. The com-
putational effort to calculate Wasserstein distance and solve
optimal coupling remains the bottleneck in many applica-
tions as the problem size grows. Consequently, efficient al-
gorithms for computing Wasserstein distance are needed.

The straightforward way to solve the discrete OT prob-
lems is to use linear programming based algorithms such as

the Hungarian method [26], the auction algorithm [4] and
the network simplex [31], which are typically numerically
robust. The limitation of them is the algorithmic complex-
ity, especially the memory requirements for solving large
problems. The approximation based methods, however, ad-
d an entropy entry to the original formulation and make the
objective be a strongly convex function, which helps de-
velop iteration based algorithms such as the Sinkhorn al-
gorithm [41], the Greenkhorn algorithm [2] and Screening
Sinkhorn [1]. The Sinkhorn algorithm provides an efficient
and scalable approximation to the original OT problem and
it is easy to be parallelized. However, for large problems, it
is costly to store the dense matrix in memory and numerical
issues appear as some of the elements of the kernel become
too negligible to be stored as positive numbers and become
instead null. The Greenkhorn, has a better performance of
convergence compared to the Sinkhorn and the computa-
tional cost is much lower since it only requires updating a
specific row or column in each iteration, but it remains a nu-
merical issue for large discrete OT problems. An effective
way to remove the numerical issues of the Sinkhorn algo-
rithm is conducting the iteration on a log domain [25, 40],
which guarantees a bounded kernel during every iteration.
The drawback is that it requires many additional compu-
tations of exponential operation in each iteration. A sta-
bilized sparse algorithm, which brings the idea of generat-
ing a stabilized kernel during every iteration, was studied
in [37] to not only remove numerical issues of the Sinkhorn
algorithm but also solve the discrete OT problem between
large point clouds. A related scaling algorithm was studied
in [10] for computing the unbalanced OT problems. The
limitation of the sparse algorithm is that it requires consid-
erable time to generate the sparse kernel during iterations.
The multi-scale scheme for measures approximation was s-
tudied in [30] for solving the semi-discrete OT problems
and showed a significant improvement in terms of solution
time and memory requirements for solving the discrete OT
problems such as the Shielding method [36], which is ef-
ficient for computing Wasserstein-2 distance but converges
very slow for computing Wasserstein-1 distance. There are

519

also gradient-based algorithms [14,24] for solving large OT
problems with less complexity than the Sinkhorn algorith-
m. These algorithms work sufficiently for the semi-discrete
OT problems [7, 27] but remain numerical issues for large
dense discrete OT problems since the gradient will become
nearly zeros during iterations.

This paper focuses on developing the Sinkhorn based al-
gorithm on a restricted subset to reduce the time and mem-
ory requirements during iterations. Our work complements
both lines of work, theoretical and practical. By providing
the proof to guarantee the convergence of the OT problem
restricted on a subspace for general nonnegative cost func-
tions, we develop a multi-scale sparse Sinkhorn (M3S) al-
gorithm and implement it on CUDA for solving large dense
discrete OT problems with linear cost in terms of solution
time and memory requirements. In practice, we can com-
pute solutions with problem sizes going up to two million
variables on a modern GPU, much faster than other methods
and without loss of accuracy.

The main contributions of this paper are as follows.
Firstly, we introduce the restricted regularized OT problem
and prove its convergence to the original unregularized OT
problem. Secondly, based on the guarantee of the conver-
gence, we propose the M3S algorithm for computing large
dense discrete optimal transport problem. Thirdly, we pro-
vide a CUDA implementation of the proposed algorithm
for computing Wasserstein-p distance and transferring color
between images up to 1920× 1200 in size.

The remainder of the paper is organized as follows. In
Section 2, we review the unregularized and the regularized
discrete OT. Section 3 and Section 4 contain our main con-
tribution, that is, the convergence of the restricted regular-
ized discrete OT and the M3S algorithm. In Section 5, we
present numerical results for the proposed algorithm. Sec-
tion 6 concludes the paper.

2. Discrete Optimal Transport and Entropy
Regularization

Notations. We denote non-negative real numbers by R+,
the set of integers {1, . . . , n} by [n]. The standard Eu-
clidean inner product is denoted by ⟨·, ·⟩. The probability
simplex is denoted by Σn := {ai ∈ R+ :

∑n
i=1 ai = 1}.

For a discrete, finite space Z (typically X , Y and X × Y)
we write |Z| for its cardinality. For a matrix A ∈ Rn×m

its support is defined by sptA = {(i, j)|Aij > 0}. The
coordinates ri(A) and cj(A) denote the ith row sum and
jth column sum of A. For a, b ∈ Rn the operators ⊙
and ⊘ denote pointwise multiplication and division, e.g.
a ⊙ b ∈ Rn, (a ⊙ b)i := ai · bi for i ∈ [n]. The functions
exp and log are extended to Rn by pointwise application to
all components: exp(a)i := exp(ai). We use 1n and 0n

to denote the all-ones and all-zeroes vectors in Rn. diag(a)
represents the diagonal matrix with the vector a on the di-

agonal.

2.1. Discrete Optimal Transport

Given discrete probability measures µ and ν such that

µ =

n∑
i=1

µiδxi , ν =

m∑
j=1

νjδyi , (1)

n∑
i=1

µi =

m∑
j=1

νj = 1, µi, νj ≥ 0, (2)

the set Π(µ, ν) := {π ∈ Rn×m
+ |π1m = µ, πT1n = ν} is

called the couplings between µ and ν. Let c ∈ Rn×m
+ be

a cost matrix, such that the cost of taking one unit of mass
from xi ∈ X to yj ∈ Y is given by cij . The discrete optimal
transport problem between µ and ν is given by

Lc(µ, ν) := min
π∈Π(µ,ν)

E(π) := ⟨c, π⟩. (3)

We focus on the general case with c being a non-negative
dense matrix. In this case, we call (3) the dense or full prob-
lem. The problem is linear programming with the best the-
oretical complexity O(n

5
2) when m = n [29].

2.2. Entropy Regularization

Definition 1 (Entropy Function) For discrete measure
π ∈ Rn×m

+ , we define the entropy H(π) of π by

H(π) := −
∑
i,j

(πij log πij − πij),

Remark 1 If π is not strictly positive for some i, j such
that πij = 0, the value πij log πij is defined as 0. Since
lim
z→0

z log z = 0, the entropy function H(π) is a continuous

function defined on Rn×m
+ .

The entropy regularization of the discrete optimal OT
problem is given by

min
π∈Π(µ,ν)

Eε(π) := ⟨c, π⟩ − εH(π), (4)

where ε > 0 is a regularization parameter. By applying
the Fenchel-Rockafellar duality theory ([34] Section 6), the
corresponding dual problem is given by

max
(α,β)∈(Rn,Rm)

Jε(α, β) := ⟨α, µ⟩+ ⟨β, ν⟩ − ε⟨eα/ε,Keβ/ε⟩,

where K ∈ Rn×m
+ is the Gibbs kernel with entries Kij :=

exp(−cij/ε). The optimal coupling π∗
ε of the problem (4)

can be described by

π∗
ε = diag(exp (α/ε))Kdiag(exp (β/ε)). (5)

520

The combination of (5) and the marginal conditions induces
a natural and famous Sinkhorn algorithm by updating vari-
ables u(l) and v(l) with

u(l+1) = µ⊘ (Kv(l)), v(l+1) = ν ⊘ (KTu(l+1)),

where the initial value v(0) is given by v(0) = 1m.
As ε → 0, the solution of the regularized OT problem

(4) converges to the unregularized problem (3) [11], and
the primal-dual gap between Eε(π) and Jε(α, β) has been
well estimated in [37]. However, in practice, the memo-
ry required to store the kernel K becomes too large to be
ignored. For examples, if we compute the Wasserstein-p
distance between two 256 × 256 gray images by Sinkhorn
algorithm, the size of kernel is 216 × 216. It requires 32 G-
B memory for the kernel to be stored in double precision,
which is very demanding and low efficiency.

3. Optimal Transport Restricted on Subset
We propose the regularized optimal transport restricted

on a subset and prove that the solution of the restricted opti-
mal transport converges to the unregularized problem (3) as
ε→ 0 under certain conditions, which inspires us to devel-
op our algorithm to compute the Wasserstein distance and
the optimal coupling fast and precisely by using less mem-
ory.

Definition 2 (Restricted OT Problem) Let c ∈ Rn×m
+ be

a cost matrix and N0 be the basis set, the indices of the
entries of c, i.e N0 = [n] × [m]. If N ⊂ N0, the un-
regularized optimal transport problem restricted on N is
given by

min
π∈ΠN (µ,ν)

EN
ε (π) :=

∑
(i,j)∈N

πijcij , (6)

where the restricted coupling ΠN (µ, ν) is given by

ΠN (µ, ν) := {π ∈ Rn×m
+ |

∑
{j|(i,j)∈N}

πij = µi, i ∈ [n],

∑
{i|(i,j)∈N}

πij = νj , j ∈ [m],

πij = 0, (i, j) ∈ N0 \ N}.

For ε > 0, the regularized OT problem restricted on N is
defined as

min
π∈ΠN (µ,ν)

EN
ε (π) :=

∑
(i,j)∈N

(
πijcij − ε(πij log

1
πij

+ πij)
)
.

(7)

The problem (6) and (7) are feasible if the set ΠN (µ, ν) is
nonempty. Clearly, if we could estimate a suitable subset

such that the set N has a smaller cardinality |N | and guar-
antee the feasibility of the problem, then the problem can be
solved faster and with less memory. The key point is, under
what conditions the problem is feasible and whether the re-
stricted regularized problem converges to the unregularized
problem. We state the following theorem and prove it.

Theorem 1 Let π∗ be the optimal solution with maximal
entropy within the set of all optimal solutions of the unreg-
ularized problem as in (3), namely

π∗ = argmin
π
{−H(π) : π ∈ Π(µ, ν), ⟨c, π⟩ = Lc(µ, ν)}

If sptπ∗ ⊂ N , then
(i) min

π∈Π(µ,ν)
EN

ε (π) is feasible.

(ii) The unique solution π̂∗(ε) of (7) converge to π∗,
namely

lim
ε→0

π̂∗(ε) = π∗. (8)

The limitation is taken with every entry of π̂∗(ε).
(iii) The min

π∈Π(µ,ν)
EN

ε (π) converge to the unregular-

ized Kantorovich problem as in Definition (3), namely

lim
ε→0

min
π∈Π(µ,ν)

EN
ε (π) = Lc(µ, ν). (9)

If we restrict the original regularized problem (4) on a
sparse subset N such that sptπ∗ ⊂ N , it would be suf-
ficient to solve the problem and get an approximate solu-
tion. For such a subset N and a matrix A ∈ Rn×m, we de-
note its rows and columns’ sum on the subset by rN (A) :=∑
{j|(·,j)∈N}

A(·, j) ∈ Rn and cN (A) :=
∑

{i|(i,·)∈N}
A(i, ·) ∈

Rm, respectively. The Sinkhorn iteration restricted on sub-
set N is given in Algorithm 1.

Algorithm 1 RestrictedSinkhorn (N ,K, µ, ν, ε)

1: k ← 0
2: v(0) ← 1m

3: repeat
4: if k is even then
5: u

(k+1)
i ← µi/r

N
i (Kv(k)) for all i ∈ [n]

6: v(k+1) ← v(k)

7: else
8: v

(k+1)
j ← νj/c

N
j (KTu(k+1)) for all j ∈ [m]

9: u(k+1) ← u(k)

10: end if
11: k ← k + 1
12: π

(k)
ij ← u

(k)
i exp(−cij/ε)v(k)j for (i, j) ∈ N

13: until ||rN (π(k))− µ||2 + ||cN (π(k))− ν||2 < δ2

14: α(k) ← ε log u(k), β(k) ← ε log v(k)

15: Output π(k), α(k), β(k)

521

The only difference between the Sinkhorn algorithm and
the RestrictedSinkhorn algorithm is that we conduct the it-
erations on a subset rather than the whole domain [23]. The
RestrictedSinkhorn algorithm outputs two extra variables,
u(k) and v(k), which play a key role in finding a new subset
N such that sptπ∗ ⊂ N . We’ll discuss them later. The
following theorem guarantees the convergence of the Re-
strictedSinkhorn algorithm. (Proof. See Appendix).

Theorem 2 Let N ⊂ N0 be a subspace such that
sptπ∗ ⊂ N . Algorithm 1 outputs a matrix π
satisfying ||rN (π) − µ||2 + ||cN (π) − ν||2 < δ2

after O(ρh(δ)−2 log (h/s)) iterations, where h =∑
(i,j)∈N πij , ,ρ = max{||rN (π)||∞, ||cN (π)||∞} and

s = min{(i,j)∈N ,πij>0} πij .

Corollary 1 LetN ⊂ N0 be a subspace such that sptπ∗ ⊂
N . Algorithm 1 outputs a matrix π satisfying ||rN (π) −
µ||1 + ||cN (π) − ν||1 < δ2 after O(Nρh(δ)−2 log (h/s))
iterations, where N = max{m,n}.

The extra factor of N in Corollary 1 is needed since we
have to conduct N more times iterations to convert the l2
bound to the l1 bound. The stoping criterion ||rN (π(k)) −
µ||2+||cN (π(k))−ν||2 < δ2 in Algorithm 1 could be adjust
to ||rN (π(k))−µ||1+ ||cN (π(k))−ν||1 < δ, which follows
the idea from [2] and is a stronger l1 approximation. This
adjustment is justified by the following theorem.

Theorem 3 Let N ⊂ N0 be a subspace such that sptπ∗ ⊂
N . Algorithm 1 with stopping criterion ||rN (π(k)) −
µ||1 + ||cN (π(k)) − ν||1 < δ outputs a matrix π sat-
isfying ||rN (π) − µ||1 + ||cN (π) − ν||1 < δ after
O((δ)−2 log (h/s)) iterations.

Algorithm 1 conducts the standard Sinkhorn iteration on
a subset, which will cause numerical issues as ε → 0. To
avoid that, we define the following stabilized kernel to re-
place the original kernel. The replacement generates stabi-
lized iterations, which are mathematically equivalent to the
original Sinkhorn algorithm but make a significant improve-
ment in practice.

Definition 3 (Stabilized Kernel [37]) For ε > 0, α ∈ Rn

and β ∈ Rm, the stabilized kernel K(ε, α, β) associated
with cost matrix c is given by

Kij(ε, α, β) = exp

(
1

ε
(αi + βj − cij)

)
, (i, j) ∈ N0. (10)

Definition 4 (Restricted Kernel) For a space N ⊂ N0,
the restricted kernel KN is defined as

KN
ij :=

{
Kij (i, j) ∈ N ,
0 (i, j) ∈ N0 \ N .

(11)

To avoid numerical issues during iteration, we intended
to start from choosing a suitable subspace N to conduct it-
erations and then refine the subset to a ’smaller’ one, which
is summarised in the Algorithm 2. We will show how to
generate the subspace N by multi-scale scheme in the next
section.

Algorithm 2 SparseSinkhorn (X , Y , N , α, β, ε, θ)

1: initialize l← 0, ε(0)

2: N (0) ← N , α(0) ← α, β(0) ← β
3: repeat
4: generate the kernel KN (l)

by (11)
5: (π(l+1), α(l+1), β(l)) ← RestrictedSinkhorn(N (l),

KN (l)

, µ, ν, ε(l))
6: ε(l+1) ← ε(l)/(1 + σ)
7: N (l+1) ← ∅
8: for (i, j) ∈ N (l) do
9: if KN (l)

ij (ε(l+1), α(l+1), β(l+1)) > θ then
10: N (l+1) ← N (l+1) ∪ (i, j)
11: end if
12: end for
13: l← l + 1
14: until ε(l) < ε
15: Output π(l), α(l), β(l)

The scaling steps ε(l+1) ← ε(l)/(1 + σ) (Algorithm 2
step 12) generate a decreasing sequence {ε(l)} that con-
verges to zeros (σ > 0). For positive parameter εl, Algo-
rithm 2 step 5 performs the RestrictedSinkhorn algorithm
on a subsetN (l), which outputs a coupling π∗(l+1) and two
dual variables α(l+1) and β(l+1). Followed by the trunca-
tion steps (Algorithm 2 steps 7-12), the new subset is gener-
ated by truncating the kernel with the parameter θ. The idea
of truncating kernel to generate a new subset takes inspira-
tion from [37]. However, we should point out that our algo-
rithm create the new subsetN (l+1) by truncating the kernel
on the old subset N (l) rather than the whole space X × Y ,
which reduces the computational cost significantly. Follow-
ing the idea from [42], we provide a theoretical analysis to
valid the proposed truncation steps when |X| = |Y | = n.

Definition 5 Let V be the vertices of the set Π(µ, ν), the
suboptimal gap ∆ of the restricted OT is defined as

∆ , inf
{π∈V :⟨c,π⟩>⟨c,π∗⟩}

⟨c, π⟩ − ⟨c, π∗⟩. (12)

Theorem 4 Let ε(0) < ∆
n logn−log(s/2) and θ < (s2 −

δ)(1+σ), Algorithm 2 steps 7-12 output a subsetN (l+1) such
that sptπ∗ ⊂ N (l+1), where s = min{(i,j)∈N ,πij>0} πij .

4. Estimate the Subset by Multi-Scale Scheme
Algorithm 2 approaches the unregularized OT problem

by performing Sinkhorn iterations on a restricted subspace

522

N . The remaining problem is, how to provide a suitable
N for Algorithm 2. We employ the multi-scale scheme to
identify the subset N by using the solution from the previ-
ous scale. Additionally, the solution at the previous scale
provides a initialization for the current scale, which reduces
the memory usage significantly.

Definition 6 (Hierarchical Partition [38]) A hierarchical
partition for a discrete set X is an ordered tuple
(X(0), . . . , X(K−1)) where X(0) = {{x} : x ∈ X} is the
trivial partition of X into singletons and the child cell is
constructed by merging cells from the child cell’s previous
level. For k ∈ {1, · · · ,K − 1} and any xi ∈ X(k) there
exists some X̂ ⊂ X(k−1) such that xi =

⋃
x̂i∈X̂ x̂i, and we

call x̂i a child of xi.

For discrete measure µ =
∑n

i=1 µiδxi , its multi-scale mea-
sure scheme is the tuple (µ(0), . . . , µ(K−1)) which can be
decomposed from fine (k = 0) to coarse (k = K − 1)
scales by setting

µ(k) =
∑

i∈J(k)

µ
(k)
i δ

x
(k)
i

, X(k) = {x(k)
i , i ∈ J (k)}. (13)

Starting from µ(0) = µ (and X(0) = {X}), we extract a
clustering X(k) = ∪i∈J(k)C

(k)
i of the support of Xk of µk,

and we denote by X(k+1) = {x(k+1)
i , i ∈ J (k+1)} the cor-

responding cluster centroids. Next, we compute the weights
by gathering the mass in each cluster µ(k+1)

i = µk(C
(k)
i).

Let X ∈ Rn and Y ∈ Rm be vectors with hierarchical
partitions (X(0), . . . , X(K−1)) and (Y (0), . . . , Y (K−1)),
where X(k) = {x(k)

i , i ∈ J
(k)
X } and Y (k) = {y(k)j , j ∈

J
(k)
Y }. For cost matrix c ∈ Rn×m, the cost map C is giv-

en by C : X × Y → Rn×m with C(xi, yj) = cij . The
hierarchical partition of cost matrix (c(0), . . . , c(K−1)) is

c
(k)
ij = min(x,y) C(x, y), (i, j) ∈ J

(k)
X × J

(k)
Y , (14)

(x, y) ∈
(

children(x(k)
i), children(y(k)j)

)
.

for k ∈ {0, · · · ,K − 1}. Fig. 1 (left) shows a three-level
multi-scale structure of two discrete measures X and Y
(Each measure has eight elements and the measure (X,Y)
has 64 elements). The hierarchical partition is created by
combining the adjoined measure from the previous level.
The first layer (k = 0) denotes the original measure and
(x

(0)
i , y

(0)
i) is a child of (x

(1)
i , y

(1)
i) in the second layer

(k = 0). The third layer has only four elements. Each of
the element is the combination of the measures (x(1)

i , y
(1)
i)

from the second layer. We further illustrate how the multi-
scale scheme is combined with the SparseSinkhorn algo-
rithm to approach the restricted OT problem (4). We start
computing the optimal coupling from the coarse layer by

calling the SparseSinkhorn algorithm. After that a new cou-
pling is generated and the subset is estimated for the next
layer. Then the SparseSinkhorn algorithm is called again,
and a new coupling is computed. The loops continue until
reaching the first layer with k = 0. Finally, we generate the
subset N (0) and compute the optimal coupling π(0). The
procedure is summarised in Algorithm 3. Please refer to
Fig. 1 (right) for a specific example.

Algorithm 3 Multi-Scale SparseSinkhorn

1: Construct multi-scale structures {(Xk, µ(k))}K−1
k=0 ,

{(Y (k), ν(k))}K−1
k=0 and {c(k)}K−1

k=0

2: α(K−1), β(K−1) ← 0

3: N (K−1) ← J
(K−1)
X × J

(K−1)
Y

4: for k = K − 1, . . . , 0 do
5: (π(k), α(k), β(k)) ← SparseSinkhorn(X(k), Y (k),
N (k), α(k), β(k), ε(k), θ)

6: if k > 0 then
7: N (k−1) ← ∅
8: for (̂i, ĵ) ∈ sptπ(k) do
9: for (x

(k−1)
i , y

(k−1)
j) ∈ (children(x(k)

î
),

children(y(k)
ĵ

)) do
10: N (k−1) ← N (k−1) ∪ (i, j)

11: (α
(k−1)
i , β

(k−1)
j)← (α

(k)

î
, β

(k)

ĵ
)

12: end for
13: end for
14: end if
15: end for
16: Output π(0)

Remark 2 Using the multi-scale scheme to compute the
OT problem was first proposed in [30] and studied in
[21, 27, 37]. The difference between our algorithm and the
existing methods is that the methods [27, 30] only use the
solution from the coarse as a warm start but do not provide
a new subset for the next layer. Moreover, we compute the
subset N (l−1) according to the set sptπ(k) while the multi-
scale algorithm [37] computes the subset in the set X × Y ,
which is much more time-consuming to estimate the subset
compared with ours.

5. Numerical Experiments
Numerical experiments are presented in this section to

demonstrate the performance of the M3S algorithm in terms
of computing time and memory requirements. Moreover,
we compute the Wasserstein-p distance between color im-
ages and transfer color between 1920 × 1200 images. All
reported run-times are obtained on a computer with 64G-
B memory, a 2.7GHz Intel Xeon E5-2697 processor, and a
GPU of RTX (2080Ti).

523

(optimal coupling)

layer
k=2

(xi
(1),yj

(1))

(xi
(2),yj

(2))

(xi
(0),yj

(0))

call SparseSinkhorn

call SparseSinkhorn

call SparseSinkhorn

generate the subset

initialize the subset

generate the subset

get the optimal coupling

get the optimal coupling

get the optimal coupling

layer
k=1

layer
k=0

(0)

(2)

(2)

(1)

(1)

(1)

(2)

(2)

(0)

(0)

(0)

(1)

Figure 1. Left: A three level hierarchical partition of discrete measure (X,Y). Right: How the multi-scale scheme is combined with the
SparseSinkhorn algorithm. The pink area denotes the subset {N (l)}. The algorithm starts from the third layer for k = 3. The subset N (2)

is initialized in the entire space and the SparseSinkhorn algorithm is called to get the optimal coupling π(2). The support of the coupling is
used to generate the subset N (1), after which the SparseSinkhorn algorithm is called to get the optimal coupling π(1). Finally, we generate
N (0) and get the optimal coupling π(0) in the first layer. The adjoined measure of (x(3)

i , y
(3)
i) is its the children measure (x

(2)
i , y

(2)
i).

5.1. Performance Analysis

We first consider the OT between pairs of n × n gray-
scale images. The cost matrix c ∈ Rn2×n2

is computed by
c(x, y) = |x − y|p, which is the lp distances between pixel
locations. The experiment is tested on the DOT benchmark
[39] with image size ranges from 32 × 32 to 512 × 512,
which means that the cardinalities of X and Y ranged from
210 to 218 and the dimension of the full coupling spaces
between 220 and 236. We consider transports between two
images with equal size, i.e. |X| = |Y |. We first compute the
OT problem with the lp distances between pixel locations
for p ∈ [1, 2.5]. For p = 1, we compute the earth mover’s
distance. We set θ = 10−8 for refining the new subset and
δ = 10−5 for estimating the error bound.

The performance of the M3S algorithm is compared with
our GPU implementation of the Sinkhorn Algorithm, and
compared with CPU implementation of the CPLEX net-
work simplex [12], the FastEMD [32], the Greenkhorn al-
gorithm [2] implemented by the POT library [19]. More-
over, we compare the M3S with the multi-scale Sinkhorn
(M2S) implemented by [17]. We also equip both algorithm-
s with the keops backend [9] and set the same parameters
for comparison. Fig. 2 (right) compares the memory us-
age of different algorithms for computing the Wasserstein-
1 distance, namely, we compute the Earth Mover Distance
(EMD). The M3S algorithm shows an O(n) increase in
memory requirements. The Sinkhorn algorithm shows an
O(n2) increase in memory requirements, and it runs out
of memory on our device (RTX 2080ti) after the prob-

1024 4096 16384 65536 262144

0.1

0.3

1

3

10

30

100

300

1000

| X |

So
lv

in
g

tim
e

(s
)

 FastEMD
 Network simplex
 Sinkhorn GPU

 M2S
 M3S
 M2S(keops)
 M3S(keops)

Figure 2. Running time and memory requirement of different al-
gorithms. Right: The solving time of the FastEMD grows with the
order of O(n3). Sinkhorn algorithm shows an O(n2) time com-
plexity. The M2S algorithm grows with the O(nlog(n)) complex-
ity while the M3S grows with linear complexity. Left: Both the
M2S and M3S algorithm shows linear memory requirement and
the M3S algorithm requires less memory. When equipped with
the keops backend, M3S and M2S allocated the same buffer on
GPU and M3S runs faster as the problem size grows.

lem size becomes larger than 128 × 128(214). Both the
FastEMD and the transport network simplex show an O(n3)
increase in memory requirements. Among all of our tests,
the FastEMD method uses the smallest memory compared
with the Sinkhorn algorithm and the Network simplex, but
it still cost about 30.2GB memory to calculate the EMD
between two images with size 256× 256. The proposed al-
gorithm shows a linear memory requirement for computing
the EMD as N increases to more than 236.

Fig. 2 (left) shows the solving time for computing the
EMD by different algorithms. Among all of the tests, the

524

Figure 4. Computing Wasserstein-2 distance between 30 color images (1920 × 1200) by the M3S algorithm. We compute the Wasserstein
distance between images and construct the distance matrix. We use the multidimensional scale to reconstruct the distance matrix and get
the three-dimensional coordinates of the center point of each image. The images are presented in R3 according to their coordinates. We
take one image as a reference, and the other images are projected onto the plane of this image. Our work is an extension of measuring the
color images distance in 3D space. (see [35], Fig. 6)

Figure 5. Color transfer between 1920× 1200 images. We compute the optimal transport mapping of each pixel from the source image to
the reference image in RGB space by the proposed algorithm.

FastEMD shows an O(n3) increase of time requirement and
the time required by the proposed algorithm grows linearly.
It takes an average of 28.90 seconds for computing the EMD
between two images with size 512 × 512. Other methods
fail to converge within the observation time (1200 seconds).
We make a further study by comparing the average solving
time for cost c(x, y) = |x − y|p for different p. It can be
seen that the solving time varies with different p in Fig. 3
(left). We observe an average of 7 seconds for solving the
OT between two images with size 256×256 while p ranges
from 1 to 1.4, and as p becomes close to 2.0, the solving
time decreases. Fig. 3 (right) shows the memory usage for

storing the sparse matrix K(x, y), which takes up the main
memory resources on GPU. For different p, the memory we
allocated grows linearly with the problem size. We allo-
cate 64MB memory on GPU for the OT problem when the
images’ size is 64 × 64 and allocate four times memory
256MB as the images’ size goes to 128× 128. The relative
error |Wp −W ∗

p |/W ∗
p is reported in Tab.1 for different im-

age size n. The cost function is given by c(x, y) = |x−y|p.
The exact solution W ∗

p is obtained by the FastEMD, which
computes the solution of the unregularized problem (3).

525

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.3

1

3

10

30

100

So
lv

in
g

tim
e/

s

Exponent p

 n = 512 n = 128
 n = 256 n = 64

4096 16384 65536 262144

4

16

64

256

1024

4096

64MB for n = 64

1GB for n = 256

0.25GB for n = 128

M
em

or
y

al
lo

ca
te

d
fo

r k
er

ne
l (

M
B)

X

 p = 1
 p = 1.2
 p = 1.5
 p = 1.8
 p = 2.0
 p = 2.5

4GB for n = 512

Figure 3. Solving time and memory usage for cost c(x, y) = |x−
y|p with different p.

Table 1. Relative error between Wp and W ∗
p computed by the M3S

and FastEMD, respectively. ’-’ means that the FastEMD runs out
of memory so that the relative error is not compared.

Relative error (10−4)
Image size

32 64 128 256 512

p

1 0.134 0.492 3.56 1.27 −
1.2 0.157 0.0822 6.23 2.34 −
1.5 0.104 0.132 0.0978 0.0522 −
1.7 0.113 0.180 0.863 0.411 −
2 0.109 0.803 0.0675 0.923 0.460

5.2. Wasserstein Distance Between Color Images

The Wasserstein-p distance is a useful metric for images
[35], because it quantifies the intuitive notion of image sim-
ilarity, especially to quantity the distance between images
with different sizes. In this section we navigate through a
database of color images by computing the Wasserstein-2
distance for color images up to 1920×1200 in size. We con-
sider the color images as points in the image’s RGB space.
The base images are mapped to RGB space and then the
distances between all of the images are computed. To visu-
alize the relative location of images in R3 space, we employ
the multi-dimensional scaling (MDS) techniques [5], which
embeds a set of images as points in a Euclidean space. The
visualization of the 3-D MDS embedding can be used to or-
ganize and refine the results of the nearest-neighbor query
in a perceptually intuitive way. Users can quickly navigate
to the portion of the image space of interest by computing
the Wasserstein-2 distance with the proposed algorithm.

Fig. 4 shows the Wasserstein-2 distance between 30 d-
ifferent color images, the distance matrix W30×30 is con-
structed with W(i, i) = 0 and each entry W(i, j) is the
Wasserstein-2 distance between the images i and j. The
three-dimensional coordinates of each image are obtained
by embedding the matrix in R3 space. The smaller the dis-
tance is, the more similar the two images are. The Wasser-
stein distance is the navigation through a database of large
size color images.

5.3. Color Transfer Between Large Size Images

Color transfer has been receiving considerable attention
in the computer graphics and computer vision communities.
The purpose of color transfer is to recolor a given image or

video by deriving a mapping between that image and an-
other image as a reference [15]. The user can modify the
original image by choosing a reference image such that the
original image acquires the palette of that reference. Com-
puting optimal transport mapping for color transfer has been
studied in [16, 20, 22, 33]. However, the computational cost
increase heavily as the image size goes larger. In this sec-
tion, we transfer color between images by computing the
OT map with the proposed algorithm. We denote u : Ωu ⊂
Z2 7→ Σ ⊂ R, where Ωu is the pixel grid of u and Σ is the
quantized RGB color space. We denote Xi = (Ui) ∈ R3

to specify the spatial component (xi ∈ Ωu) and the color
component (Ui ∈ Σ). The source measure µX is construct-
ed with µX : X 7→

∑
i∈IX

µiδXi
(X) and similarly for the

target measure νY . Nx is the number of all pixels in the
image. The regularized OT problem between two measures
X and Y is given by

π∗
ε = arg min

π∈Π(µ,ν)
⟨C, π⟩ − εH(π). (15)

The transport cost is taken as Cij = ||Ui−Vj ||22, the square
of the l2 norm of the RGB space. To keep the sparsity of
the kernel, the point clouds are normalized to the [0, 1]3.
We define a one-to-one optimal coupling mapping T from
a optimal coupling π∗

ε :

T (Xi) = Yj , j ∈ argmin(πε)ij . (16)

By computing the optimal coupling and the OT mapping,
we present six different examples of color transfer between
seasons in Fig. 5. The OT mapping (16) defines a pixel-to-
pixel color transfer without smoothing transport maps and
avoid false colors artifacts as well as a loss of color contrast.

6. Conclusion

We proposed the restricted regularized OT problem and
proved the convergence of the restricted optimal solution.
Based on the theoretical guarantee, we introduced the M3S
algorithm for solving the regularized OT in a subset. The
proposed algorithm was implemented on CUDA with lin-
ear cost for computing OT problem in terms of time and
memory requirement. The proposed algorithm is accurate
enough to compute the Wasserstein-p distance and com-
pare features between color images’ RGB clouds. The color
transfer was realized between images with the size as large
as 1920 × 1200 by computing the optimal transport map
between RGB color space.

Acknowledgments: This research was supported by the
National Natural Science Foundation of China (Grant No.
61873254) and Science and Technology Major Project of
Guangxi (Guike AA18118054).

526

References
[1] Mokhtar Z. Alaya, Maxime Berar, Gilles Gasso, and Alain

Rakotomamonjy. Screening sinkhorn algorithm for regular-
ized optimal transport. In Advances in Neural Information
Processing Systems, pages 12169–12179, 2019. 1

[2] Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigol-
let. Near-linear time approximation algorithms for optimal
transport via sinkhorn iteration. In Advances in Neural In-
formation Processing Systems, pages 1961–1971, 2017. 1,
4, 6

[3] Martin Arjovsky and Léon Bottou. Towards Principled
Methods for Training Generative Adversarial Networks.
arXiv:1701.04862, 2017. 1

[4] D. P. Bertsekas. The auction algorithm: A distributed relax-
ation method for the assignment problem. Annals of Opera-
tions Research, 14(1):105–123, 1988. 1

[5] Ingwer Borg and J. Lingoes. Modern Multidimensional S-
caling. The University of Chicago Press, 1987. 8

[6] Yann Brenier. Polar factorization and monotone rearrange-
ment of vector-valued functions. Communications on Pure
and Applied Mathematics, 44(4):375–417, 1991. 1

[7] Bruno and Lvy. A numerical algorithm for l2 semi-discrete
optimal transport in 3d. Esaim Mathematical Modelling and
Numerical Analysis, 49(6):1693–1715, 2015. 2

[8] L. Caffarelli, L. Nirenberg, and J. Spruck. Correction to: The
dirichlet problem for nonlinear second-order elliptic equa-
tions i. monge-ampere equation. Communications on Pure
and Applied Mathematics, 40(5):659–662, 1987. 1

[9] Benjamin Charlier, Jean Feydy, Joan Alexis Glaunes,
Francois-David Collin, and Ghislain Durif. Kernel opera-
tions on the gpu, with autodiff, without memory overflows.
Journal of Machine Learning Research, 22(74):1–6, 2021. 6

[10] Lenaic Chizat, Gabriel Peyre, Bernhard Schmitzer, and
Francois-Xavier Vialard. Scaling algorithms for unbalanced
optimal transport problems. Mathematics of Computation,
87(314):2563–2609, 2018. 1

[11] R. Cominetti and J. San Martn. Asymptotic analysis of the
exponential penalty trajectory in linear programming. Math-
ematical Programming, 67(1):169–187, 1994. 3

[12] IBM Corporation. IBM ILOG CPLEX Optimizer. IBM,
2013. 6

[13] D. Dizdar. Optimal transport methods in economics. Journal
of Economics, 125(3):309–312, 2018. 1

[14] Pavel Dvurechensky, Alexander Gasnikov, and Alexey
Kroshnin. Computational optimal transport: Complexity by
accelerated gradient descent is better than by sinkhorn’s al-
gorithm. In Proceedings of the 35th International Confer-
ence on Machine Learning(ICML) in PMLR, pages 1367–
1376, 2018. 2

[15] H. Sheikh Faridul, T. Pouli, C. Chamaret, J. Stauder, E. Rein-
hard, D. Kuzovkin, and A. Tremeau. Colour mapping: A re-
view of recent methods, extensions and applications. Com-
puter Graphics Forum, 35(1):59–88, 2016. 8

[16] S. Ferradans, N. Papadakis, G Peyre, and Jean-Francois Au-
jol. Regularized discrete optimal transport. Siam Journal on
Imaging Sciences, 7(3):428–439, 2013. 8

[17] Jean Feydy, Thibault Séjourné, François-Xavier Vialard,
Shun-ichi Amari, Alain Trouve, and Gabriel Peyré. Inter-
polating between optimal transport and mmd using sinkhorn
divergences. In The 22nd International Conference on Ar-
tificial Intelligence and Statistics, pages 2681–2690, 2019.
6

[18] Alessio Figalli and Ludovic Rifford. Continuity of optimal
transport maps and convexity of injectivity domains on small
deformations of s2. Communications on Pure and Applied
Mathematics, 62(12):1670–1706, 2010. 1

[19] Rémi Flamary, Nicolas Courty, Alexandre Gramfort,
Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Cham-
bon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo
Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham
Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain
Tavenard, Alexander Tong, and Titouan Vayer. Pot: Python
optimal transport. Journal of Machine Learning Research,
22(78):1–8, 2021. 6

[20] Qian Fu, Ying He, Fei Hou, Juyong Zhang, Anxiang Zeng,
and Yong-Jin Liu. Vectorization based color transfer for
portrait images. Computer-Aided Design, 115(1):111–121,
2019. 8

[21] Samuel Gerber and Mauro Maggioni. Multiscale strategies
for computing optimal transport. Journal of Machine Learn-
ing Research, 18(72):1–32, 2017. 5

[22] M. Grogan and R. Dahyot. L-2 divergence for robust
colour transfer. Computer Vision and Image Understanding,
181(1):39–49, 2019. 8

[23] B. Kalantari, I. Lari, F. Ricca, and B. Simeone. On the
complexity of general matrix scaling and entropy minimiza-
tion via the ras algorithm. mathematical programming,
112(2):371–401, 2008. 4

[24] Jun Kitagawa, Quentin Merigot, and Boris Thibert. A new-
ton algorithm for semi-discrete optimal transport. Journal
of the European Mathematical Society, 21:2603–2651, 03
2016. 2

[25] JJ Kosowsky and AL Yuille. Solving the assignment problem
with statistical physics. In IJCNN-91-Seattle International
Joint Conference on Neural Networks, pages 159–164, 1991.
1

[26] HW Kuhn. The hungarian method for the assignment prob-
lem. Naval Research Logistics, 52(1):7–21, 2005. 1

[27] Arthur Leclaire and Julien Rabin. A fast multi-layer approx-
imation to semi-discrete optimal transport. In Scale Space
and Variational Methods in Computer Vision, pages 341–
353, 2019. 2, 5

[28] John Lee, Nicholas P. Bertrand, and Christopher J. Rozel-
l. Unbalanced optimal transport regularization for imaging
problems. IEEE Transactions on Computational Imaging,
6(1):1219–1232, 2020. 1

[29] Y. T. Lee and A. Sidford. Path finding methods for lin-
ear programming: Solving linear programs in o(vrank) it-
erations and faster algorithms for maximum flow. In 2014
IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 424–433, 2014. 2

[30] Quentin Mrigot. A multiscale approach to optimal transport.
Computer Graphics Forum, 30(5):1583–1592, 2011. 1, 5

527

[31] James B. Orlin. Network flows - theory, algorithms and
applications. Journal of the Operational Research Society,
45(11):791–796, 1993. 1

[32] Ofir Pele and Michael Werman. Fast and robust earth
mover’s distances. In 2009 IEEE 12th International Con-
ference on Computer Vision, pages 460–467, 2009. 6

[33] Julien Rabin, Sira Ferradans, and Nicolas Papadakis. Adap-
tive color transfer with relaxed optimal transport. In 2014
IEEE International Conference on Image Processing (ICIP),
pages 4852–4856, 2014. 8

[34] R. Tyrrel Rockafellar. Convex Analysis. Princeton University
Press, 1970. 2

[35] Yossi Rubner, Leonidas Guibas, and Carlo Tomasi. The earth
movers distance, multi-dimensional scaling, and color-based
image retrieval. In in Proceedings of the ARPA Image Un-
derstanding Workshop, pages 661–668, 1997. 7, 8

[36] Bernhard Schmitzer. A sparse multiscale algorithm for dense
optimal transport. Journal of Mathematical Imaging and Vi-
sion, 56(2):238–259, 2016. 1

[37] Bernhard Schmitzer. Stabilized sparse scaling algorithms for
entropy regularized transport problems. SIAM Journal on
Scientific Computing, 41(3):1443–1481, 2019. 1, 3, 4, 5

[38] Bernhard Schmitzer and Christoph Schnorr. A hierarchical
approach to optimal transport. In Scale Space and Variation-
al Methods in Computer Vision, volume 7893, pages 452–
464, 2013. 5

[39] Joern Schrieber, Dominic Schuhmacher, and Carsten
Gottschlich. Dotmark - a benchmark for discrete optimal
transport. IEEE Access, 5(3):271–282, 2017. 6

[40] Meisam Sharify, Stphane Gaubert, and Laura Grigori. Solu-
tion of the optimal assignment problem by diagonal scaling
algorithms. arXiv:1104.3830, 2013. 1

[41] Richard Sinkhorn. Diagonal equivalence to matrices with
prescribed row and column sums. American Mathematical
Society, 74(4):195–198, 1974. 1

[42] J Weed. An explicit analysis of the entropic penalty in linear
programming. arXiv:1806.01879, 2018. 4

528

