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Abstract

Test-time adaptation is a special setting of unsupervised
domain adaptation where a trained model on the source
domain has to adapt to the target domain without access-
ing source data. We propose a novel way to leverage self-
supervised contrastive learning to facilitate target feature
learning, along with an online pseudo labeling scheme with
refinement that significantly denoises pseudo labels. The
contrastive learning task is applied jointly with pseudo la-
beling, contrasting positive and negative pairs constructed
similarly as MoCo but with source-initialized encoder, and
excluding same-class negative pairs indicated by pseudo la-
bels. Meanwhile, we produce pseudo labels online and re-
fine them via soft voting among their nearest neighbors in
the target feature space, enabled by maintaining a mem-
ory queue. Our method, AdaContrast, achieves state-of-the-
art performance on major benchmarks while having several
desirable properties compared to existing works, including
memory efficiency, insensitivity to hyper-parameters, and
better model calibration. Code is released at https:
//github.com/DianCh/AdaContrast.

1. Introduction
Deep networks are remarkably successful in learning vi-

sual tasks when training and test data follow the same distri-
bution. However, their ability to generalize to unseen data
suffers in the presence of domain shift [42, 43]. Building
models that can adapt to distribution shifts is the focus of
domain adaptation where the goal is to transfer knowledge
from a labeled source domain to a new but related target
domain [2, 13, 19, 31, 44, 53]. In this work we focus on the
problem of test-time [50, 56] or source-free [23, 28, 58] do-
main adaptation where the source data is no longer available
during adapting to unlabeled test data. Since test-time adap-
tation (TTA) only requires access to the source model, it is
appealing to real-world applications where data privacy and
transmission bandwidth become critical issues.
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ŷ2
<latexit sha1_base64="VYF3GmvUW1rJHICN+DV8nynTWcs=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF71VsB/ShrLZbtulu0nYnQgh9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSyFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZaJEM95kkYx0J6CGSxHyJgqUvBNrTlUgeTuY3Mz89hPXRkThA6Yx9xUdhWIoGEUrPfbGFLN02vf65Ypbdecgq8TLSQVyNPrlr94gYoniITJJjel6box+RjUKJvm01EsMjymb0BHvWhpSxY2fzQ+ekjOrDMgw0rZCJHP190RGlTGpCmynojg2y95M/M/rJji89jMRxgnykC0WDRNJMCKz78lAaM5QppZQpoW9lbAx1ZShzahkQ/CWX14lrYuqd1mt3dcq9bs8jiKcwCmcgwdXUIdbaEATGCh4hld4c7Tz4rw7H4vWgpPPHMMfOJ8/4W6Qfg==</latexit>

ŷ1
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Figure 1. Illustration of how our method, AdaContrast, leverages
target domain data vs. prior works. (a) Without adaptation, source-
only model is only evaluated on target data. (b) With pseudo label-
ing, the source classifier predictions are used as pseudo labels for
self-training. (c) Existing pseudo labeling approach, SHOT [28],
uses offline global refinement to reduce noisy pseudo labels. (d)
In AdaContrast, we consider two kinds of relations among tar-
get samples: we use contrastive learning to exploit information
from sample pairs to learn better target representation, while refin-
ing pseudo labels by aggregating knowledge in the neighborhood.
Colors indicate pseudo-labeled classes.

However, the challenging setting of TTA raises two ma-
jor questions: 1) how to learn the target-domain represen-
tation without the help of ground truth annotation 2) how
to build the target-domain classifier with only the source-
domain classifier available as a proxy for the source do-
main. To address these difficulties, existing works have
leveraged image/feature generation [23, 27], class proto-
types [28, 57], entropy minimization [28, 56], self-training
or pseudo labeling [28], and self-supervised auxiliary task
training [50]. Generative models have the drawback of re-
quiring a large computation capacity for generating target-
style images/features [27]. Entropy minimization-based
methods have been competitive but the direct optimization
of entropy disrupts the model calibration on target. Pseudo-
labeling methods have shown promising results but their
performance can suffer from noisy pseudo labels [28]. Test-
time training [50] introduced a self-supervised auxiliary ro-
tation prediction task to be optimized jointly during both
source and target training. This approach is limited because
it requires altering the source training protocols, which may
not be feasible for all models of interest. Moreover, the
contrastive learning paradigm has been shown to learn more
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transferable representations compared to rotation prediction
as a pre-text task. Recently, [55] used self-supervised learn-
ing in the pre-training stage, however, we argue this method
does not fully leverage the strength of self-supervised rep-
resentation learning during the adaptation stage.

In this work, we introduce AdaContrast, a novel test-
time adaptation strategy that uses self-supervised con-
trastive learning on the target domain to exploit the pair-
wise information among target samples, which is optimized
jointly with pseudo labeling. Compared to the pretrain-and-
finetune paradigm [4, 7, 17], the joint optimization on tar-
get domain allows the model to reuse source knowledge to
quickly adapt, while benefiting mutually with pseudo label-
ing. The intuition is that a better target representation facil-
itates the learning of the decision boundaries [3], while the
useful priors contained in pseudo labels further enhances
the effectiveness of contrastive learning in representation
learning. We also show that our auxiliary contrastive learn-
ing brings robustness to the pseudo labeling, preventing di-
vergence and allowing the online pseudo labels to consis-
tently provide high-accuracy supervision.

As for the pseudo labeling, we introduce a new online
pseudo label refinement scheme that results in generating
significantly more correct pseudo labels by using soft k-
nearest neighbors voting [33] in the target domain’s feature
space for each target sample. As shown in Fig. 1, un-
like prior works which typically require an offline global
memory bank to store pseudo labels/features generated ev-
ery single or a few epochs [28, 55], we produce and refine
pseudo labels at a per-batch basis by aggregating probabili-
ties from nearest neighbors based on feature distances. Re-
lying on a relatively small memory queue instead makes our
approach both computationally affordable and suitable for
online streaming where target data cannot be revisited such
as robotics applications.

The two key factors in AdaContrast, self-supervised con-
trastive learning trained jointly with pseudo labeling, of-
fer several empirical merits including hyper parameter in-
sensitivity and better model calibration. Hyper-parameter
selection in TTA setting is a key design factor that is
often neglected in TTA literature where tuning hyper-
parameters is not an option due to lack of access to tar-
get labels. We empirically show our proposed AdaContrast
approach consistently performs well under a wide range
of hyper-parameters. We also found AdaContrast to have
a better model calibration [16, 41] compared to entropy
minimization-based methods [28]. We have evaluated our
method on major domain adaptation benchmarks where it
achieves state-of-the-art test-time adaptation performance.
Its 86.8% average accuracy and 84.5% overall accuracy on
VisDA-C surpass the previous state-of-the-art by +3.8% and
+6.2%, respectively. We are also the first TTA method to
evaluate on the large-scale DomainNet dataset, where Ada-

Contrast achieves state-of-the-art 67.8% accuracy averaged
over 7 domain shifts.

2. Related Work
Domain adaptation has been extensively explored for
many visual tasks, including image classification [54], se-
mantic segmentation [52] and object detection [9]. The goal
of unsupervised domain adaptation (UDA) is to close the
performance gap when the source model is deployed on a
different target domain without any target annotation. Exist-
ing works have made tremendous progress revolving around
the idea of feature space alignment, with different mecha-
nisms. [39] align the statistics of the distributions, notably
the moments at different orders. [31, 54] exploit maximum
mean discrepancy. [12] achieve domain confusion by adver-
sarially training the feature encoder and a domain discrimi-
nator, whereas GAN-based methods [19] employ generative
task to make indistinguishable source and target images. All
these methods, however, need to access both source data
and target data during the adaptation, making the learning
essentially transductive.

Some recent works on source-free/test-time adaptation
focus on the more challenging setting where only source
model and unlabeled target data are available [23,27,27,28,
56, 57]. TENT [56] introduce entropy minimization as test-
time optimization objective. SHOT [28] combined entropy
minimization with pseudo labeling. These methods are lim-
ited in several aspects. First, the entropy minimization ob-
jective does not model the relation among different samples
and more importantly, disrupts the model calibration on tar-
get data due to direct entropy optimization. Second, the
pseudo labels are updated only on a per-epoch basis, which
fails to reflect the most recent model improvement during an
epoch. In contrast, our method is equipped with contrastive
learning for contextual modeling and online pseudo-label
for the latest update.
Self-supervised learning methods [3–7, 14, 15, 17, 24, 36,
37, 59] have shown tremendous success in producing trans-
ferable visual representations. Researchers have found that
contrastive-based proxy tasks [4, 6, 7, 37] can help models
to learn a representation that has the potential to replace su-
pervised pre-training (e.g., ImageNet [11]). Consequently,
researchers have explored using self-supervised learning for
domain adaptation [46, 49, 50, 55]. [46, 49] tackle the un-
supervised domain adaptation (UDA) setting where concur-
rent access to source and target data is allowed. TTT [50]
utilizes rotation prediction task as a proxy to update back-
bone parameters. On-target adaptation [55] leverages con-
trastive learning to initialize the target-domain feature, as a
separate stage in the proposed framework. In contrast, we
propose a joint learning approach that combines contrastive
learning and pseudo labeling.
Pseudo labeling has been widely adopted in semi-
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supervised learning [26, 48], self-supervised learning [1, 3],
and domain adaptation [28–30, 55]. It is a simple yet effec-
tive strategy: for unlabeled samples, the predicted labels or
cluster assignment are treated as if they were ground truth
labels to provide “supervision”. FixMatch [48] is a semi-
supervised learning method benefitting from pseudo label-
ing and consistency regularization. The most recent pro-
posed on-target adaptation [55] augment the FixMatch-style
teacher-student learning with contrastive learned target-
domain model. Our method utilizes weak-strong consis-
tency as a regularizer while additionally denoise pseudo la-
bels via the proposed online refinement Sec. 3.1.

3. Method

We address the closed-set test-time adaptation problem
in image classification where source data is not used dur-
ing the adaptation. The source model is trained on source
pairs of {xi

s, y
i
s}

ns
i=1 ∈ Ds where xi

s ∈ Xs and yis ∈ Ys
are images and labels, respectively. Given the trained
source model, the goal is to adapt it to unlabeled target
data denoted as {xi

t}
nt
i=1 ∈ Xt. The underlying labels

{yit}
nt
i=1 ∈ Yt are accessed only for evaluation purpose.

In the closed-set case the source and target domain share
the same label space Ys = Yt = Y . The source model
has a general architecture consisting of a feature extractor
fs(·) : Xs → RD and a classifier hs(·) : RD → RC where
D and C are feature dimension and number of classes. To
obtain the source model, we follow [28] to first train a
model on source data with the standard cross-entropy loss
Lce
s = −

∑C
c=1 ỹ

c
s log p

c
s where pcs = σc(hs(fs((xs))) is

the c-th element of the model’s output after softmax op-
eration σc(a) = exp(ac)∑C

k=1 exp (ak)
, and ỹcs is the c-th element

of the converted one-hot label with label-smoothing [51]:
ỹcs = (1 − α)ycs + α/C, where α = 0.1 is the smoothness
coefficient.

In the test-time adaptation phase, we initialize the target
model gt(·) = ht(ft(·)) with the source model’s parameters
θs.

3.1. Online pseudo label refinement

During the adaptation, we produce pseudo labels
{ŷi}nt

i=1 for the unlabeled target data using the target model
initialized with source weights as a way to re-use knowl-
edge learned from the source domain while gradually boot-
strapping to the target domain. Instead of refining and up-
dating pseudo labels only after each epoch [28,55], we pro-
pose to predict and refine the pseudo labels at a per-batch
basis, so that the model’s progressive improvement is re-
flected in the most recent pseudo labels. The refinement
is accomplished via a nearest-neighbor soft voting, which
is enabled by a memory queue Qw representing the target
feature space. Specifically, as shown in Fig. 2(a), given

a target image xt and a weak augmentation tw randomly
drawn from a distribution Tw, the weakly-augmented image
tw(xt) is encoded into a feature vector w = ft(tw(xt)),
which we use to find its nearest neighbors in the target
feature space. The direct prediction for the image is then
refined by averaging the probabilities associated with the
nearest neighbors, followed by an argmax operation to get
the pseudo label ŷ. Note that this procedure is executed at
each mini-batch step.

Memory queue To enable the nearest-neighbor search,
we maintain a memory queue Qw of length M storing
features and predicted probabilities {w′j , p′j}Mj=1 of the
weakly-augmented target samples, and update it on-the-fly
with the current mini-batch. The memory queue Qw is ini-
tialized with features and probabilities of M randomly se-
lected target samples. Update is done by enqueue and de-
queue similar to [17]. To make the maintained feature space
more stable, we use a slowly changing momentum model
g′t(·) = h′

t(f
′
t(·)) to calculate update features w′ and prob-

abilities p′:

w′ = f ′
t(tw(xt)), p′ = σ(h′

t(w
′)) (1)

The momentum model g′t’s parameters θ′t are initialized
with the same source weights θs at the beginning of the
adaptation, and updated with momentum m at each mini-
batch step instead of back-propagation:

θ′t ← mθ′t + (1−m)θt (2)

Nearest-neighbor soft voting The intuition of soft voting
[33] is shown in the feature space of Fig. 2 (a): the current
classifier makes incorrect decisions for some target samples
due to domain shift; however, by aggregating knowledge
of nearby points we can get a more informed estimate, po-
tentially recovering the correct label. The memory queue
Qw effectively represents our estimate of the evolving target
feature space. Therefore, we use the feature vector w of the
weakly-augmented image tw(xt) to retrieve its N nearest
neighbors from Qw based on the cosine distance between w
and the entire set of features {w′j}Mj=1 stored by Qw. We
perform a soft voting among these N neighbors by averag-
ing their probabilities:

p̂(i,c) =
1

N

∑
j∈Ii

p′(j,c) (3)

where Ii is the indices of the N nearest neighbors of
w in the memory queue Qw. After the voting, we get a
less noisy estimate of the categorical probability for target
sample, upon which we decide the pseudo label:

ŷi = argmax
c

p̂(i,c) (4)
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Figure 2. Framework of our contrastive test-time adaptation approach (AdaContrast): In the beginning of adapation, the model and
momentum model are initialized by source model. A target image is transformed by one weak and two strong augmentations. (a) The
weakly-augmented image is encoded into feature vector w that is used to find nearest neighbors based on cosine distance from the target
feature space, which is maintained as a memory queue. The associated probabilities are averaged followed by an argmax to get the refined
pseudo label ŷ for self-training and contrastive learning. (b) Two strongly augmented versions of the image are encoded into query and key
features q, k for momentum contrast [6, 17], which is applied jointly with self-training. No projection heads are used; current pseudo label
and historical pseudo labels are used to exclude same-class negative pairs. (c) The pseudo label ŷ obtained from the weakly-augmented
image is also used to supervise predictions for the strongly-augmented image, enforcing the weak-strong consistency in the self-training.
Diversity regularization is also posed on the same predictions. Note that the queues used for nearest neighbors search and contrastive
learning are separate, which are updated (not illustrated here) with w and k, respectively.

The obtained pseudo labels will be used in the joint opti-
mization of contrastive learning and self-training, shown in
Fig. 2 (b) and (c).

3.2. Joint self-supervised contrastive learning

Taking inspirations from existing self-supervised con-
trastive learning works [4, 7, 15, 17] which exploit pair-
wise information with contrastive objectives, we apply self-
supervised contrastive learning on target data jointly with
self-training during test-time adaptation, as illustrated in
Fig. 2 (b). In particular, we design our contrastive task
following the shared instance-discrimination principle: fea-
tures of different views of the same image (positive pairs)
are pulled closer while features of different images (nega-
tive pairs) are pushed away. Different image views are ob-
tained by augmentation: as shown in Fig. 2 on the left, given
a target image xt, we randomly draw two strong augmen-
tations ts, t′s from the same distribution Ts and augment xt

into two versions ts(xt), t
′
s(xt). More specifically, we use

MoCo [17] as our prototype and introduce several key mod-
ifications, which we elaborate next.

Encoder initialization by source Instead of training the
image encoder from scratch for a large number of epochs
(usually hundreds) as needed by representation learning
[4, 15, 17], we reuse the target encoder ft which is initial-

ized with source model weights. We adopt the momen-
tum encoder f ′

t from MoCo as well and initialize it with
source weights. We note that this momentum encoder is
in fact the same one used for updating memory queue Qw

in Sec. 3.1, here reused for producing contrastive features.
By reusing knowledge contained in the source weights θs,
the contrastive learning starts from an informative feature
space, therefore requires very few epochs to converge.

Exclusion of same-class negative pairs The two versions
of the target image is encoded into query and key features
q = ft(ts(xt)), k = f ′

t(t
′
s(xt)), respectively. A memory

queue Qs of length P storing features {kj}Pj=1 is in turn
updated by k. The InfoNCE loss applied in MoCo strives to
minimize the cosine distance between q and k while maxi-
mizing the cosine distances between q and every kj in Qs.
Instead, we argue that not pushing away same-class pairs
helps learn better semantically meaningful clusters. Specif-
ically, we augment the memory queue Qs by also storing
pseudo labels {ŷj}Pj=1 associated with past key features, to
exclude same-class pairs from all negative pairs:

Lctr
t = LInfoNCE = − log

exp q · k+/τ∑
j∈Nq

q · kj/τ
(5)

Nq = {j|1 ≤ j ≤ P, j ∈ Z, ŷ ̸= ŷj} ∪ {0} (6)
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Joint optimization with self-training While existing
self-supervised contrastive learning works [4,15,17] intend
to learn transferrable features in a large-scale pre-training
stage which is followed by transferring to specific down-
stream tasks, AdaContrast jointly optimizes the contrastive
objective together with self-training in the test-time adapta-
tion phase. Specifically, the modified InfoNCE term Eq. (5)
is combined with the self-training loss in a multi-task fash-
ion (see Eq. (10)). The contrastive learning facilitates self-
training with better representation, which in turn benefits
from the prior brought by more accurate pseudo labels.

3.3. Additional regularization

Weak-strong consistency Inspired by FixMatch [48], we
use the pseudo label ŷ obtained from the weakly-augmented
target image to “supervise” the model’s prediction for the
strongly-augmented version as shown in Fig. 2 (c). There
are several important distinctions: 1) we do not have access
to any ground truth labels, 2) we refine the pseudo labels be-
fore using them, 3) we do not apply any confidence thresh-
olding, and 4) our model starts from source initialization.
The regularization is reflected in the standard cross entropy
loss:

Lce
t = −Ext∈Xt

C∑
c=1

ŷc log pcq (7)

where pq = σ(gt(ts(xt))) are the predicted probabilities
for the strongly-augmented query image ts(xt).

Diversity regularization While the online pseudo label
refinement introduced in Sec. 3.1 effectively reduces noises
in pseudo labels brought by domain shift, they are still not
ideal as the ground truth labels. To prevent the model from
blindly trusting the false labels during the adaptation, we
use a regularization term in the loss function to encourage
class diversification:

Ldiv
t = Ext∈Xt

C∑
c=1

p̄cq log p̄
c
q (8)

p̄q = Ext∈Xt
σ(gt(ts(xt))) (9)

This concludes the overall loss function used for training
shown in Eq. (10). We set γ1 = γ2 = γ3 = 1.0 without
any tuning for all experiments, showing the merit of hyper-
parameter insensitivity:

Lt = γ1L
ce
t + γ2L

ctr
t + γ3L

div
t (10)

4. Experiments
We conduct experiments of closed-set adaptation on ma-

jor benchmarks. In the following, we first compare the pro-

posed AdaContrast with the previous state-of-the-art algo-
rithms. Then, we discuss several desirable test-time prop-
erties of AdaContrast, followed by ablation and analysis of
the important design elements that brought the gains.

4.1. Experimental setup

Datasets and Metrics: We use VisDA-C [40] and
DomainNet-126 [39] for evaluating our method and com-
parison. Please see the supplemental material for a detailed
description for the datasets. It is worth to know that since
the original DomainNet has noisy labels, we follow the au-
thors’ followup work [45] to use a subset of it that contains
126 classes from 4 domains (Real, Sketch, Clipart, Paint-
ing), which we refer to as DomainNet-126. We follow [45]
to evaluate the methods on 7 domain shifts constructed from
the 4 domains, and report top-1 accuracy under each do-
main shift as well as the 7-shift average (denoted Avg.). For
VisDA-C we compare the per-class top-1 accuracies, their
average (denoted Avg.), and the overall top-1 accuracy (de-
noted Acc.).
Model Architecture Our method assumes a general
method architecture with a feature encoder followed by a
classifier. For comparison purpose, we choose ResNet-
18/50/101 models [18] as our backbones in different exper-
iments. We follow SHOT [28] to add a 256-dimensional
bottleneck consisting of a fully-connected layer followed
by a BatchNorm layer [20] after the backbone, and apply
WeightNorm [47] on the classifier. Since a lower dimen-
sional bottleneck is applied, we drop the original projection
heads from MoCo [6,17] without seeing performance drop.
Baselines We compare our method with both classical un-
supervised domain adaptation (UDA) baselines and source-
free/test-time adaptation baselines. For UDA methods we
compare to DANN [12], CDAN [32], CDAN+BSP [8],
CAN [22], SWD [25], and MCC [21]. It is worth not-
ing that all UDA methods have access to source data dur-
ing adaptation. For TTA methods we compare to MA [27],
BAIT [57], TENT [56], SHOT [28], On-target [55] as rep-
resentative methods based on image generation, class proto-
types, entropy minimization, pseudo labeling, and the com-
bination of contrastive feature and pseudo labeling. For
MCC1, SHOT, and TENT we run the code released by the
authors; for other baselines we cite their numbers.
Implementation We use Pytorch [38] for all implementa-
tion. For source training we initialize the ResNet back-
bone with ImageNet-1K [11] pre-trained weights in the Py-
torch model zoo. We follow [28] to randomly split the
source data into 9:1 ratio where 90% is used to train the
source model and 10% is used for validation. Source train-
ing has 10, 60 epochs for VisDA-C and DomainNet-126 re-
spectively. For target training we use only 15 epochs for
all datasets unless otherwise noted. For all experiments,

1for DomainNet; VisDA-C numbers are cited
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Table 1. Classification accuracy (%) on VisDA-C train → val. All methods use ResNet-101 backbone except the on-target rows, which
use ResNet-18 as student network. Bold is the highest; underline is the second highest. The proposed AdaContrast surpasses the previous
state-of-the-art by 3.8% Avg. When applying an extra knowledge distillation stage following [55], we achieve the highest 87.2% with a
small ResNet-18 backbone. AdaContrast also achieves competitive performance of 78.7% Avg. when used in online adaptation setting.

Method source-free plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.
DANN [12] no 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN [32] no 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9

CDAN+BSP [8] no 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
CAN [22] no 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
SWD [25] no 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MCC [21] no 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

Source only - 57.2 11.1 42.4 66.9 55.0 4.4 81.1 27.3 57.9 29.4 86.7 5.8 43.8
MA [27] yes 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6

BAIT [57] yes 93.7 83.2 84.5 65.0 92.9 95.4 88.1 80.8 90.0 89.0 84.0 45.3 82.7
SHOT [28] yes 95.3 87.5 78.7 55.6 94.1 94.2 81.4 80.0 91.8 90.7 86.5 59.8 83.0

+ On-target [55] yes 96.0 89.5 84.3 67.2 95.9 94.2 91.0 81.5 93.8 89.9 89.1 58.2 85.9
AdaContrast (Ours) yes 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8

+ On-target [55] yes 97.2 87.0 86.7 81.7 95.5 91.6 93.5 86.6 95.3 90.9 92.8 47.9 87.2
AdaContrast (Ours, online) yes 95.0 68.0 82.7 69.6 94.3 80.8 90.3 79.6 90.6 69.7 87.6 36.0 78.7

Table 2. Classification accuracy (%) on 7 domain shifts of DomainNet-126. All methods use ResNet-50 backbone. Bold is the highest. The
proposed AdaContrast achieves the highest average performance, and on 4 domain shifts. Its performance under online test-time adaptation
setting also reaches a competitive number at 62.6%.

Method Source-free R→C R→P P→C C→S S→P R→S P→R Avg.
MCC [21] no 44.8 65.7 41.9 34.9 47.3 35.3 72.4 48.9

Source only - 55.5 62.7 53.0 46.9 50.1 46.3 75.0 55.6
TENT [56] yes 58.5 65.7 57.9 48.5 52.4 54.0 67.0 57.7
SHOT [28] yes 67.7 68.4 66.9 60.1 66.1 59.9 80.8 67.1

AdaContrast (Ours) yes 70.2 69.8 68.6 58.0 65.9 61.5 80.5 67.8
AdaContrast (Ours, online) yes 61.1 66.9 60.8 53.4 62.7 54.5 78.9 62.6

we use SGD optimizer with momentum 0.9 and weight de-
cay 1e-4, and cosine annealing on the learning rate, decay-
ing from initial value to zero based on the training progress:
η = η0 · 0.5(cos (a · π/2) + 1). The newly added bottle-
neck and classifier layers have learning rate 10 times of the
backbone. The initial learning rate for the backbone is set
to 2e-4. Batch size is set to 128.

4.2. Results

VisDA-C train → val Tab. 1 compares AdaContrast
with state-of-the-art unsupervised domain adaptation and
test-time adaptation methods on VisDA-C’s “train” to “val”
shift. For UDA, our method is on-par with a strong UDA
baseline CAN [22] and significantly outperforms the others
by a large margin, even though we do not utilize source data
at all during test-time adaptation. In the more challenging
TTA setting, we achieve the highest per-class average accu-
racy by a notable margin (+3.8%) upon SHOT. Compared to
on-target adaption which is also built with SHOT, we gain
an extra 0.9% improvement, demonstrating the power of
joint training and online refinement. In addition, when ap-
plying an extra knowledge distillation phase following [55],
we are able to reach 87.2% per-class average with a con-
trastive (MoCo v2 [6]) pre-trained ResNet-18 backbone.

DomainNet-126 seven domain shifts Tab. 2 shows the
comparison between AdaContrast and state-of-the-art UDA
(first section) and TTA (second sections) methods. Without
needing source data during the adaptation AdaContrast out-
performs the UDA method MCC [21] by +18.9% on the av-
eraged performance. When being compared to TTA meth-
ods AdaContrast outperforms TENT by +10.1% on the av-
eraged performance. It achieves the best performance on 4
out of 7 domain shifts as well as the highest averaged per-
formance.

4.3. Analysis and Discussion

AdaContrast has better model calibration than entropy
minimization-based methods. Entropy minimization-
based methods [28, 56] achieved competitive results by ex-
plicitly making the model “certain” on target predictions.
However, one setback of this is that the model calibration
is disrupted due to direct entropy optimization regardless
of true labels. We argue that a good model calibration is
an important property of TTA algorithm in practice because
it provides a measure to help gauge how much we should
trust the adapted model. In Fig. 3, we show the comparison
of model calibration for both SHOT and AdaContrast on
VisDA-C validation split. We follow the practice of network
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Figure 3. Model calibration comparison of SHOT vs. proposed
AdaContrast on VisDA-C validation split after adaptation. The
proposed AdaContrast has much better model calibration metrics.
For ECE (expected calibration error) and MCE (maximum cali-
bration error): lower is better; the more the bars are aligned with
y = x the better.

28 210 212 214 216

Queue Size

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

55.0

75.0

84.4
85.8 86.3 86.6 86.5 86.6 86.7 86.8

64.4

74.5

82.7
84.1 84.4 84.7 84.5 84.5 84.3 84.3

Avg.
Acc.

20 21 22 23 24 25

# Neighbor

83

84

85

86

87

Ac
cu

ra
cy

84.4

86.2

86.8 86.7 86.8 86.7 86.6

82.4

84.0

84.6
84.8

84.5 84.5 84.5

Avg.
Acc.

Figure 4. Ablation on memory queue size M and number of
neighbors N used in soft voting, on VisDA-C. AdaContrast is able
to achieve state-of-the-art performance consistently over a wide
range of choices. Notably, M can be as small as less than 4% of
the full dataset and still maintains on-par performance.

calibration [16] and illustrate reliability diagrams [10, 35].
For each adapted target model, we divide the probability
range [0, 1] into 10 bins and calculate the model’s average
accuracy versus average confidence on target data for each
bin. The more close the model’s bars are to the diagonal
line y = x, the better calibration it has. As shown in Fig. 3,
the bars for SHOT significantly falls below y = x, meaning
its predictions on target data are over-confident, whereas the
curve for AdaContrast aligns much better with y = x. In ad-
dition, we calculate two scalar summary statistic of calibra-
tion [34]: expected calibration error (ECE) and maximum
calibration error (MCE), where the perfectly calibrated clas-
sifier should have both scores as low as zero. Given lower
ECE and MCE indicate better calibration, AdaContrast has
only 0.65% ECE and 8.20% MCE, which decrease by a
factor of 4.5+ compared to the over-confident SHOT with
2.97% ECE and 39.16% MCE, demonstrating the effective-
ness of steering away from entropy minimization.

AdaContrast is insensitive to hyper-parameters choices.
Hyper-parameter sensitivity is often neglected in TTA lit-
erature [23, 28, 56], which we believe is an important as-
pect of TTA algorithms. In Fig. 4, we show that under a

wide range of hyper-parameters choices that are specific to
AdaContrast, the performance is consistently state-of-the-
art on VisDA-C. Specifically, we show performance with
queue size M ∈ {128, 256, · · · , 32768, 55388} and num-
ber of neighbors in soft voting N ∈ {1, 2, 3, 6, 11, 21, 41}.
While we report the strongest results of AdaContrast in
Tab. 1 with memory size M = 55388, queue update, and
N = 11 nearest neighbors for soft voting, as shown in the
plots, we see negligible performance degradation when us-
ing a much smaller M , or varying N , achieving around
84.5% overall accuracy and around 86.7% per-class aver-
aged accuracy consistently. By using as few as M = 512
queue size, we are able to reach state-of-the-art TTA per-
formance at 84.4% per-class average accuray, and on-par
(86.3%) with the full version (M = 55388) performance
when using M = 2048, less than 4% of the full size. In
Tab. 3, we show AdaContrast is insensitive to learning rate
choices as well. With 1x, 3x, 10x the learning rate used
for reporting the main results in Sec. 4.2, AdaContrast con-
sistently achieves state-of-the-art performance on VisDA-C
both VisDA-C and DomainNet-126, whereas performance
of SHOT [28] drops noticeably on DomainNet-126 and sig-
nificantly on VisDA-C.
AdaContrast has strong performance in online test-time
adaptation setting. Since AdaContrast does not rely on
global memory banks or processing the entire dataset before
the adaptation [28], it is naturally suited for online adapta-
tion where target images arrive in a flow of mini-batches
and each image is seen only once. Under this setting, we
do not decay the learning rate and turn off the pseudo label
refinement (note that pseudo labels are still acquired on the
fly for each mini-batch, only that the direct predictions are
used instead) for the first X samples, and turn it on once the
memory queue Qw has accumulated X feature-probability
pairs. We emprically show that with X = 2048 for VisDA-
C (less than 4% of the entire dataset) and X = 1024 (less
than 4% on the entire datasets on average), we are able to
achieve state-of-the-art online adaptation performance by
large margins. AdaContrast achieves 62.6% accuracy av-
eraged on 7 domain shifts in DomainNet-126, surpassing
the UDA method MCC [21] (see Tab. 2) by +13.7%. On
VisDA-C, AdaContrast’s impressive 78.7% overall accu-
racy slightly surpasses the performance of the offline SHOT
[28] by +0.5%, the 78.7% per-class average accuracy sur-
passing 4 UDA methods listed in Tab. 1.

4.4. Ablation studies

In Tab. 4, we start with applying the simplest form of
pseudo labeling (referred as #1), which makes inference on
the entire target dataset at the beginning of each epoch and
takes all predictions as pseudo labels for the epoch. This
achieves 58.5% average accuracy (Avg.) on DomainNet-
126, 55.0% per-class averaged accuracy (Avg.) on VisDA-
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Table 3. Comparison of classification accuracy (%) on
DomainNet-126 and VisDA-C between AdaContrast and SHOT
under 1x, 3x, and 10x learning rate scaling. AdaContrast is less
sensitive to the choice of learning rate, achieving consistently high
performance on both datasets.

Method lr scale DN-126 VisDA-C
Avg. Acc. Avg.

SHOT
[28]

1× 67.1 78.3 83.0
3× 66.4 77.6 82.2
10× 64.7 66.8 72.1

AdaContrast
(Ours)

1× 67.8 84.5 86.8
3× 67.8 84.7 86.8
10× 67.5 85.0 86.6

Table 4. Ablation study of algorithmic components of pro-
posed AdaContrast measured by classification accuracy (%) on
DomainNet-126 under 1x learning rate scaling and VisDA-C un-
der both 1x, 10x learning rate scaling. #0 for source-only base-
line to start with. Online pseudo label refinement Sec. 3.1, joint
contrastive learning Sec. 3.2 and regularzation techniques Sec. 3.3
are able to bring significant performance gain as well as hyper-
parameter insensitivity.

# Pseudo
labeling

Online
pl. ref

Joint
ctr. Reg. DN-126 VisDA-C VisDA-C

(lr1x) (lr1x) (lr10x)

0 55.6 43.8 43.8
1 ✓ 58.5 55.0 44.5
2 ✓ ✓ 64.7 86.5 9.9
3 ✓ ✓ ✓ 67.9 85.7 84.3
4 ✓ ✓ ✓ ✓ 67.8 86.8 86.6

C with 1x learning rate, but merely 44.5% Avg. with 10x
learning rate. We note that for VisDA-C we include ex-
priments with 10x learning rate of that used in reporting
the main results in Tab. 1, to emphasize the effect of each
component of AdaContrast under an unfortunate choice of
learning rate, diving deeper into observations from Tab. 3.

Online pseudo label refinement In row #2 we change
the pseudo labeling scheme to the one introduced in 3.1.
Due to having more accurate pseudo labels, the perfor-
mance on DomainNet-126 increases by +6.2% to 64.7%
and significantly by +31.5% to 86.5% on VisDA-C with
1x learning rate. However, switching to the online re-
finement scheme is not trivial, since it is prone to diverge
due to bad hyper-parameter selection and compounding er-
rors. As shown in the VisDA-C 10x learning rate perfor-
mance where the accuracies drop significantly down to near
random (12 classes). However, the cross-entropy loss did
not diverge from our observation, which means the model
severely overfitted to the highly-noisy pseudo labels which
we are unable to know.

Joint self-supervised contrastive learning In row #3
we show results obtained by enabling the joint contrastive
learning introduced in 3.2, which is simply done by setting

γ2 = 1.0 for Lctr
t in Eq. (10). This brings another signifi-

cant performance gain on DomainNet-126, from 64.7% av-
erage accuracy to 67.9%. Notably on VisDA-C with 10x
learning rate, the joint contrastive learning is able to re-
cover the diverged accuracy from 10.0% in row #2 to 84.3%
Avg. This demonstrates the huge potential of our joint con-
trastive learning in stablizing the feature space, therefore
ensuring the model is less susceptible to the compounding
errors in pseudo labels as well as hyper-parameter choices.
It is worth noting that the improvements include gains
from using pseudo labels to exclude same-class negatives
(Sec. 3.2), on top of 67.7% (+0.2%), 83.6% (+2.1%), and
81.5 (+2.8%) for the three entries of DomainNet-126 and
VisDA-C without excluding same-class negatives. This val-
idates the effectiveness of using semantic priors in pseudo
labels to benefit contrastive learning.

Diversity and weak-strong regularization In row #4
and we show the effect of two additional regularization in
Sec. 3.3: the weak-strong consistency and diversity term
Ldiv
t . On DomainNet-126 they keep the model’s high per-

formance around 67.8% consistently, whereas on VisDA-C
with 10x learning rate they bring further improvements: we
get +0.9% gains on per-class average accuracy.

5. Limitations

Domain adaptation methods are foundational, and as
such have as much potential for misuse as they have for
beneficial application. Adaptation methods have the poten-
tial to increase the robustness of models deployed to new
domains, which could amplify the benefits and harms of
larger AI applications. Our method improves model calibra-
tion, which in general provides for more reliable systems;
however this could lead to inappropriate trust in deployed
systems.

6. Conclusion

We introduced AdaContrast, a novel test-time adaptation
approach for closed-set DA in image classification. Ada-
Contrast starts from a pretrained model on the source do-
main and uses contrastive learning along with pseudo label-
ing on the target domain. We proposed an online refinement
scheme that generates pseudo labels in a per-batch basis
and refines the predictions using nearest neighbor soft vot-
ing technique which results in significantly more accurate
pseudo labels. We showed AdaContrast not only surpassed
the existing TTA approaches on major DA benchmarks but
also has several empirical merits: hyper-parameter insensi-
tivity, better model calibration, and no need for global mem-
ory banks, which we believe are all desirable properties of
successful TTA algorithms.
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