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Abstract

Despite an increased demand for valuable data, the pri-
vacy concerns associated with sensitive datasets present a
barrier to data sharing. One may use differentially private
generative models to generate synthetic data. Unfortunately,
generators are typically restricted to generating images of
low-resolutions due to the limitation of noisy gradients. Here,
we propose DPGEN, a network model designed to synthe-
size high-resolution natural images while satisfying differ-
ential privacy. In particular, we propose an energy-guided
network trained on sanitized data to indicate the direction of
the true data distribution via Langevin Markov chain Monte
Carlo (MCMC) sampling method. In contrast to the state-of-
the-art methods that can process only low-resolution images
(e.g., MNIST and Fashion-MNIST), DPGEN can generate
differentially private synthetic images with resolutions up to
128 x 128 with superior visual quality and data utility. Our
code is available at https://github.com/chiamuyu/DPGEN

1. Introduction

Image synthesis (e.g., through generative adversarial net-
works (GANSs) [16]) with differential privacy (DP) [12] can
be a solution to enable data release without compromis-
ing privacy. For example, differentially private GANs (DP-
GANG5) [6, 47] are generally trained using differentially pri-
vate stochastic gradient descent (DPSGD) [ 1] that perturbs
the gradients in each iteration and provides an alternative to
direct data release. In particular, generators from DPGANs
can be made public; users can then generate synthetic data
for their downstream tasks. Nevertheless, GANs have been
known to be considerably difficult to train [ 18, 37, 44]. The
situation becomes even worse when noise is introduced in
DPSGD. Hence, generators are typically restricted to gen-
erating images of resolutions as low as 32 x 32, and are
unsuitable for practical applications of image synthesis.

Difficulty in Generating High-Resolution Images
from DPGAN. The gradient instability caused by inter-
active training from the minimax optimization of GANs
is a major concern in the synthesis of high-resolution im-
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ages [14, 24, 25, 26]. Nonetheless, despite various difficul-
ties in the training of GANSs, currently GANSs can generate
photo-realistic image of resolutions up to 1024 x 1024. Thus,
a straightforward design of DPGANs would be applying DP
to the state-of-the-art (SOTA) GANs. However, because of
the increased batch size and model complexity, such a naive
combination and therefore the use of DPSGD lead to four se-
rious problems. 1) Training Inefficiency: Although larger
batch sizes improve training stability, they also lead to a sig-
nificant degradation in training efficiency (10x slower) [7]
due to the per-sample gradient modification, which requires
backpropagation be performed on each example in a training
batch. 2) Difficulty in Tuning Hyperparameters: Due to
the complexity of neural network (NN) architectures (e.g.,
skip connection and attention layers), accurate estimation of
global sensitivity is infeasible. This implies the occurrence
of either information loss or an excessive noise scale during
gradient clipping in DPSGD. 3) Large Noise Magnitude:
The increased number of dimensions required by layers in
NN to accommodate high-resolution data leads to a catas-
trophic amount of noise. 4) The Damage of Visual Quality
from Direction of Noisy Gradient: Despite the perceptual
loss used in the backpropagation, the noisy gradient affected
by the DP noise may dramatically deviate from the direc-
tion supposed to move forward, resulting in a synthesis of
perceptually awful images.

In summary, when DPSGD is applied to train GANS,
the techniques used by GANs for high-resolution image
synthesis instead amplify the drawbacks of DPSGD.

Key Insights. The synthesis of perceptually realistic
images in a DP manner is very challenging. Notably, our
result is in possession of the following novelty.

From the perspective of gradient updates in the param-
eter space, DP noise in DPSGD completely destroys the
gradients; this severely degrades the training stability. To
tackle the aforementioned problems 1)~4) simultaneously,
we abandon DPSGD and take a fundamentally different ap-
proach. We instead use a sampling method on the training
data. More specifically, we discretize the movement direc-
tions (in terms of MCMC described later) and randomize the
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true directions (toward perceptually realistic images) through
a fixed number of carefully chosen images in a pixel space
where perceptually realistic images can be easily defined to
maximize training stability while preserving DP. In this way,
we are guaranteed to generate perceptually realistic images
and at the same time have the features preserved.

Overview of Proposed Method. Here, we propose a
framework using the Markov chain Monte Carlo (MCMC)
sampling method [55] to synthesize images, wherein the
movement directions are guided by an energy-based network.
Note that as drawing random samples takes considerable
time, sampling methods such as Langevin MCMC [17, 43] or
Hamiltonian Monte Carlo [1 1, 39] are often used to increase
efficiency. To enable the above framework to satisty DP, we
propose a Differentially Private Generative Energy-guided
Network (DPGEN) architecture for high-resolution image
synthesis. In particular, an energy-guided network trained
from DP-sanitized data helps indicate routes to sampling
perceptually realistic images with high utility.

In general, DPGEN aims to privatize Langevin MCMC.
The process flow of DPGEN is illustrated in Figure 1. More
specifically, we privatize training images such that the san-
itized data can be used to train an energy-guided network
involved in the Langevin MCMC sampler. Note that all im-
ages in the sanitized dataset are visibly degraded by noise,
but preserves the information about the directions of the
training images. As a result, the energy-guided network
trained on the sanitized dataset in a non-DP manner can
synthesize perceptually realistic images by leveraging the
directional information hidden in the sanitized dataset.

Contributions. The contributions are summarized below.

(a) We propose DPGEN, an instantiation of DP variant
of EBM (described in Section 3), that synthesizes high-
resolution images (up to 128 x 128 resolutions) in an e-DP
manner, in contrast to the other DPSGD-assisted GAN-based
(e, 0)-DP approaches. In fact, DPGEN can achieve the best
of both worlds; i.e., it is able to synthesize perceptually real-
istic images that can well preserve the features such that the
downstream classification task has high accuracy.

(b) Through extensive evaluations on various datasets, we
demonstrate that DPGEN significantly improves the sample
quality of synthetic images over SOTA approaches.

2. Related Work

Differentially Private Generative Models. [53, 54, 58]
develop early-stage DPGANSs for image synthesis according
to DPSGD. As the quality of generated synthetic images
is highly related to the noise scale in DPSGD, all of them
reduce the sensitivity and thus, the noise scale, by tuning
the clipping bound of the gradient norm. [23, 34] follow
the PATE framework [40, 41] to derive a private genera-
tive model. [36, 46] calculate the clipping bound via adap-

tive clipping and moments accountants [1]. GS-WGAN [6]
adopts a WGAN [2] whose 1-Lipschitz property naturally
bounds the sensitivity, having a better control of noise mag-
nitude. DP-MEREF [19] synthesizes images by taking ad-
vantage of random feature representations of kernel mean
embeddings. P3GM [45], a variant of private variational
autoencoder with two-phased training, has more tolerance to
the noise. Very recently, through the gradient compression,
Datalens [50] reduces the noise scale. Based on an optimal
transport-based generative model, DP-Sinkhorn [5] learns
the data distribution by minimizing the Sinkhorn divergence.

Theoretical Treatments and Other Improvements. [4,

] reduce the computation time required for each sample
of gradients by replacing the auto-differentiation used in the
gradient clipping from reverse-mode to forward-mode, thus
allowing for a larger batch-size during the training stage.
[38, 56] project the gradients to a predefined subspace so as
to have a better control of the sensitivity of gradient calcula-
tion and therefore lower noise scale. [9] argues that current
DPGANSs overestimate the privacy loss, because the inter-
mediate results of each training iteration are unknown to the
adversary in most cases. [51, 59] assume that the elements in
a dataset could be sampled uniformly, thus obtaining greater
privacy through sub-sampling and privacy amplification by
shuffling. [42] proposes tempered sigmoid activations as
an alternative activation function to bound the sensitivity.
Conversely, [8, 48] improve the utility of the models trained
using DPSGD from manually designed features. [32] estab-
lishes a theoretical foundation for the employment of warm
start, a popular technique designed to improve the utility
of DPGAN:S. [15] applies randomized response (RR) to the
case where the objective function can be nonconvex.

3. Background

Energy-based Model (EBM) [10, 29]. Given the un-
derlying data distribution p(z) of a dataset, we aim to fit
p(z) with a probability density model gg(z) = e~V¢(®) / Zy,
which is called the energy distribution. Here, Uy is the en-
ergy function parameterized by 6, and Zy = [ e Uo(@) qy
denotes the normalization constant (i.e., the partition func-
tion). After normalization, gg(x) is a probability density
function (PDF).

In the estimation of parameter 6, the evaluation of
Zy involves integration, which is difficult to calculate ex-
plicitly. Generally, the maximum likelihood estimation
(MLE) is used to estimate 6 from p(z). The log like-
lihood K.,z [log go()] is expected to be maximized,
which is equivalent to minimizing a loss function L(x;6) =
Eyrp(a) [—10g go()]. From [27], we know Vg log g () =
—VoUy(z) + Epgy(z) [VoUs()] and derive the gradient
of the loss function as
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Figure 1. An overview of how DPGEN works.
VoL(x;0) = Epop(a) [VoUs(2)] — Bpmgy () [VoUo(z)] . (1)

Therefore, the parameters 6 can be updated by gradient
descent 0 <— 0 + v - Vo L(x;0).

Connecting GANs to EBM. Notably, VyL(x;0) is the
same as the loss function used in WGAN [2]. In evaluating
Eyrgo(z) [VoUg ()] in Eq. (1), it is necessary to sample
from the energy distribution gg(z). However, the sampling
process must compute the intractable integration term Zy
in gg(z). To avoid calculating Zy, GAN can be seen as a
special case of EBM, where x is sampled by a generator
G, (z) in GAN with z following Gaussian distribution and
with p as parameters, instead of being sampled from gy [27].
Moreover, if Uy is a function that satisfies the 1-Lipschitz,
then the parameterized function Uy in Eq. (1) can be con-
sidered as a discriminator. Because two parameters 6 and
© need to be estimated, this leads to min-max optimization
and suffers from instability and difficulties in training.

Differential Privacy (DP) [12]. A randomized mecha-
nism M is (e, §)-DP, if

PriM(X) € O] <e®-PriM(X)€O]+4d (2
holds for any adjacent datasets X and X’ that differ from
each other with only one training example. Here, ¢ is the
upper bound on the privacy loss corresponding to M, and §
is the probability of violating the DP constraint. In practice,
a randomized response (RR) enables a function to satisfy
(e,0)-DP (or e-DP for brevity). Notably, DP is featured
by the sequential composition, parallel composition, and
post-processing properties. More details can be found in the
Supplementary Material.

4. Our Solution: DPGEN

The detailed description of DPGEN is shown in Algo-
rithm 1 in the Supplementary Material. In the following, we
present a simplified version of DPGEN.

= NN —
i V. loggo (=)

@ NN ., l
A V., log gy (=)

(b) Given a well-trained NN, the direc-
tion of movement required by Langevin
MCMC to generate images (™) can be
predicted by the NN.

(a) Given a random initial image x(0>,
one uses the direction V,, log qg(x(t))
to move forward, and obtains the sam-
pled image (T after updating T steps.

Figure 2. Procedures for generating images via Langevin MCMC.

4.1. Generating Images via Langevin MCMC

Recall that DPGAN can be seen as a combination of
GANs and DPSGD, and the generator G, in DPGAN acts as
a publishable image sampler to generate images. By contrast,
in our DPGEN, we choose to use Langevin MCMC as an
image sampler to generate the images via

2
%Vm log qe (oc(t)) +&9 t=0,...,T—1,
(3)

where £ denotes the step size. As the initial image () is
given randomly by the user and is independent of the train-
ing data, our contribution is to propose a DP mechanism to
privatize the implied energy function V, log gy (x), which
provides the direction of the movement toward a perceptu-
ally realistic image in MCMC. Here, gy () = e~ U0(*) /7,
is the parameterized energy distribution, the noise z(*) ~
N(0,02I), and the distribution of 2(7) converges to the en-
ergy distribution gg(x) as the step T — oo and step size
& — 0. Compared to GANSs that need to interactively train
two parameters, using Langevin MCMC to sample the image
x requires only a single parameter 6 to be trained. Moreover,
Langevin MCMC is an efficient image sampler that does not

O O
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need to calculate the intractable Zy, indicated as

Vazlogge(z) = —VaUg(x) — Velog Zg = —V,Ug(z). (4)
————

=0

Thus, the image generation in Eq. (3) is guided by the direc-
tion V1) Up (")) from the parameterized energy function
Up. Moreover, one can model the direction V, Uy () via the
neural network, and the Fisher divergence Dp serves as loss
function to optimize the parameters ¢ formulated below:
D (p(@)a0(2) = Earpioy | 5 1V logp(a) — Vs logas() 2]

®
Since the first-order gradient function of log-PDF (i.e.,
Eq. (4)) is called score, Eq. (5) is also known as the score-
matching method [22].

The procedure for generating images is shown in Figure 2,
where the user can initialize a random image (%) by setting
each pixel as Gaussian noise. Subsequently, the image z(7)
is generated by iterating 7" steps in the direction predicted by
the neural network (NN). Note the privacy is not considered
here and will be introduced in Section 4.2.

4.2, Privatizing Langevin MCMC Sampler

Consider {x;}I", as the sensitive dataset. The goal of
privatizing Langevin MCMC is to enable the release model
(that is, Eq. (4)) to generate images through Eq. (3), with-
out causing privacy leakage. Our key idea is that Langevin
MCMC can be related to DP through score matching. More
specifically, as long as V log p(z) in Eq. (5) can be priva-
tized by the DP mechanism, the trained model satisfies DP
according to the post-processing property of DP. We achieve
the privatization of Langevin MCMC sampler through the
following three steps (S1)~(S3), as illustrated in Figure 1.

(S1) Gaussian Noise Addition f(-): Score matching as
shown in Eq. (5) cannot be applied directly to our case be-
cause it requires the data distribution p(x) to be differentiable
everywhere. However, this is impractical for images because
the pixel values of digital images are discrete. To alleviate
this problem, we calculate the noisy images {Z;}7*, with
Z; = f(x;) = x; + z;, where z; is sampled from Gaussian
distribution A/(0,02I). We particularly note that such a
noise addition is not for privacy. By doing so, we can derive
p (Z|x) and joint probability p(x, &) = p (&|z) p(x). Then,
we follow [49] to derive the objective function as

- - 1 - -
D (o) 00(@)) = By |5 IV 08(@) = Vo a0 )]
= Byta) 3 IV 0gp(& | 2) = V2 logan(@)]?] + comsant. )

As p(Z|z) follows a Gaussian distribution, we can derive
V.logp(z | x) = (¥ — x)/0>. Such a gradient d = (7 —
x) /a2, interpreted as the recovery direction, indicates how
the noisy image Z is transformed or “moves” toward the
training image x. Here, we in fact consider an NN with the
output V, log ¢¢(Z) and use this NN output to guide MCMC.

In this sense, we rewrite the objective function of the NN as

- 2
(1021) -V log qa(T) ] .
7

In other words, Eq. (7) shows how the NN learns to move
forward from the noisy image Z to the source image .

(S2) RR Mechanism H(-): With the observation that
the recovery direction d = (Z — x)/o? used for training the
above NN may leak privacy, it must be privatized. After a
proper privatization, one can ensure that the NN does not
reveal the true position of x during the training. Hence,
the NN can be released to the public, because it would be
difficult for the adversary to determine if x was included in
the training data.

We turn to consider how to privatize d. In the non-private
setting, Z; is supposed to point to ;. However, in the private
setting, with the randomized response (RR) as the privatiza-
tion method H (+), Z; is designed to point to one of its k neat-
est neighbors with certain probability; i.e., 2" = {x7}™,
with 7 = H(Z;), where z! represents the RR result of ;.
In particular, H(Z;) obeys the following formulation:

1
0;0) = SEpa)Brn(o,021) {

€

e
k1T
Pr[H(%;) =w] = 1 » (8)
W

where X £ {z; : max(#; — z;)/o; < B,j € [m]} and
|X| =k > 2 (k items are sampled according to Lemma 5 of
the Supplementary Material if | X | > k). k is a hyperparam-
eter to be determined manually and we exmaine the impact
of k£ on the visual quality and data utility in Section 5.3.
Our objective function in Eq. (7) calculates the pixel-wise
difference between Z and x. Though working in the original
image space, the objective function in our design still has
a theoretical support; it is extended from Fisher divergence
in Eq. (5), and also has robustness to the noise [35]. Over-
all, given x;, we can privatize z; through M (z;), where
M=E (Hof).

(S3) Training a Releasable NN Model with D: Let
D £ {(%;,d;)}™,, where di = (%; — a¥)/02, be a pri-
vatized dataset. We sample the training batches from D to
train an NN for guiding the MCMC. In a nutshell, the NN
trained from D satisfies DP because the NN training can be
seen as post-processing, given that D is the RR result. Over-
all, DPGEN can be formally proved e-DP in Theorem 1.

Theorem 1. DPGEN satisfies e-DP.

5. Experiments

In this section, we demonstrate the capability of DPGEN
for privately synthesizing high-resolution natural images.

Datasets. We conducted our experiments on im-
age datasets, including MNIST [28], Fashion-MNIST[52],
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CelebA [33], and LSUN [57]. We created CelebA-Gender
and CelebA-Hair datasets based on CelebA. The former is a
binary classification dataset with gender as the label, while
the latter is the dataset with hair color (black/blonde/brown)
as the label. We created LSUN-bedroom by picking bed-
room images from LSUN. All experiments were conducted
using eight NVIDIA V100 GPUs, each with 32 GB RAM.

Baselines. The baseline methods in our consideration
are DP-DCGAN (DCGAN trained by the built-in DPSGD
in Opacus), GS-WGAN [6], DP-MEREF [19], P3GM [45],
DatalLens [50], and G-PATE [34]. The implementation of
DP-DCGAN relies on Opacus, a Facebook-supported library
that enables the training of PyTorch models with DP. The
implementation of the GS-WGAN, DP-MEREF, Datal ens,
and P3GM were all based on their official source codes.

We made necessary modifications such as batch size and
image size to provide experiment results in different settings.
In particular, for DP-DCGAN, we only modified the training
data without changing any network architecture and training
parameters from Opacus. On the other hand, as the official
source codes of GS-WGAN and DP-MEREF can only run at a
low-resolution image, we changed the network architecture
(e.g., increasing the convolution channels) to acquire more
patterns to improve the training stability for 32 x 32 and
64 x 64 resolutions. Due to the implementation difficulty,
G-PATE results are directly excerpted from [34].

Evaluation Metrics. We demonstrate the capability of
DPGEN in generating high-resolution images through (a)
visual quality, (b) perceptual metrics, and (c) downstream
classification accuracy. In particular, we first display the
images of synthesized samples for visual quality compari-
son. Second, we evaluate the quality of synthesized samples
by considering two metrics: inception score (IS) [44] and
Frechet inception distance (FID) [20]. These two methods
are standard in the generative model literature to evaluate
the visual quality of generated images. Third, we consider a
case, where we train a classifier with the synthesized sam-
ples. The testing accuracy of the classifier on real test dataset
can be an indicator for the utility of the synthesized samples
in the downstream classification tasks. The architecture of
the classifier used in our experiment is the same as the one
used in DataLens [50]', and is shown in Figure 10 in the
Supplementary Material.

Warm Start. Warm start is a technique used by DPGANs
to improve their utility; this is done by initializing model
parameters via pre-training them with a dataset whose distri-
bution is similar to that of the sensitive dataset. In practice,
two types of warm start method have been developed. (1)
Public Dataset: External public dataset are preferable, if
available. (2) Dataset Partitioning: The sensitive dataset is
partitioned into two parts (e.g., the ratio of 2 : 98 in [58]),
where the smaller part serves to perform the pre-training.

'We found the classifier architecture from the official code for [50].

It would be difficult to obtain the corresponding external
available dataset for a highly sensitive dataset in the former
case. By contrast, the privacy of a certain proportion of the
processed images is sacrificed in the latter case because those
images are trained in their raw form. Our results are gener-
ated by DPGEN without warm start, but we will examine
the impact of warm start on DPGEN in Section 5.3.

(a)DP -DCGAN, 32x 32,1 = 31, 791 (b) DP- DCGAN 64x64,1 = 31,791.

eors

(c) GS-WGAN, 32 x 32, I = 20, 000. (d) GS-WGAN, 64 x 64, I = 20, 000.

& 27105 TR

(e) DP-MEREF, 32 x 32, I = 63,600. (f) DP-MERF, 64 x 64 I = 63, 600.

PRADAI

(2) P3GM, 32 x 32, I = 16, 280.

(h) P3GM, 64 x 64, I = 16, 280.

(i) DataLens, 32 x 32, I = 135, 000. (j) DataLens, 64 x 64, I = 135, 000.
Figure 3. Synthesized samples by DP-DCGAN, GS-WGAN, DP-
MEREF, P3GM, and Datal.ens on CelebA at 32 x 32 and 64 x 64
resolutions. The ¢ = 10* for the first four methods on CelebA
(grayscale) and € = 10 for DataLens on CelebA (colorful). Batch
size B = 256. I denotes the number of training iterations.

Our Results. Below we first demonstrate the difficulty
of prior work in synthesizing high-resolution natural images.
Then, we show that DPGEN is capable of synthesizing
natural images with resolutions of up to 128 x 128. Finally,
we examine the influence of hyperparameters on DPGEN.

5.1. Images Synthesis from Prior Work

Prior Work with Large Batch Size. As the increased
batch size may improve training stability, we adopted prior
work to synthesize high-resolution images by significantly
enlarging the batch size to up to 256. In particular, as shown
in Figure 3, one can observe that even with a large ¢, neither
could generate facial structures to meet a decent visual qual-
ity even in the case of batch size 256. Note that the images
synthesized by Datalens in Figures 3i~3j have poor visual
quality, which is slightly worse’ than but is still roughly
consistent with the results reported in [50]. From Figure 3,
we demonstrate that increasing batch size (i.e., the use of
more GPUs) cannot be a cure for DP complex image syn-
thesis. Though ¢ = 10* implies almost zero noise, auxiliary

2We derive the results in Figures 3i~3j by running the official code. The
difference might come from different number of training iterations.
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steps (e.g., gradient clipping) associated with DPGANS still
exist. Thus, the failure to synthesize images of acceptable
visual quality in Figure 3 also provides an evidence that the
baselines, in their design of network structure, cannot learn
the distribution implicit in high-resolution images well.

DP Version of SOTA GANSs. The 64 x 64 images gen-
erated by the DP version of BigGAN [3] and PGGAN [25]
(termed as DP-BigGAN and DP-PGGAN) can be found
in Figure 4. When implementing DP-BigGAN and DP-
PGGAN, we conducted DPSGD and moments accoun-
tant [1]. We trained DP-BigGAN with 16, 000 iterations and
trained DP-PGGAN with 150, 000 iterations. One can see
that the images generated by DP-PGGAN and DP-BigGAN
have disastrous visual quality, which justifies our claim in
Section | that DPGANSs from a simple combination of DP
and SOTA GANs may be an awful design.

2150 e N

(a) DP-BigGAN wnh B = 1000 and (b) DP-PGGAN with B = 200 and
(7.2 x 10%,107° (4.6 x 10%,107°)-DP.

Figure 4. DP- BlgGAN and DP-PGGAN. B denotes batch size.

5.2. Images Synthesis from DPGEN

Visual Quality. We first present the visual quality evalua-
tion results in Figure 5 and Figure 6, where all of the images
were synthesized by DPGEN without warm start. Compared
to the images with 64 x 64 resolution (¢ = 10* and batch
size= 256) in the rightmost column of Figure 3, the synthe-
sis results of DPGEN shown in Figures 5a and 5b on images
of 64 x 64 resolution (¢ = 5 and 10, and batch size= 192)
appear significantly more realistic and exhibit a much more
realistic facial structure. In addition, even with the consider-
ation of images with a resolution of 128 x 128, DPGEN still
successfully learns the facial distribution; thus, Figures 5d
and 5e show the facial structures preserved. Similar argu-
ments apply to the experiment results for LSUN-bedroom
in Figure 6. Notably, the comparisons between Figures 5a
and 5b, Figures 5d and Se, and Figures 6a and 6b show that
raising € from 5 to 10 helps preserve the color saturation. By
comparing Figures 5e and 6e, we find the latter has worse
quality. This can be attributed to the fact that human faces
are easier to synthesize but complex scenes with various

interactions among multiple objects are naturally more dif-
ficult to synthesize [13, 21]. Similar arguments apply to

Figures 5a and 6a, 5b and 6b, and 5d and 6d.

(d) 128 x128,k=10,e=5 (€) 128 x128,k=10,e=10 (f) 128 X 128, original

Figure 5. Synthesized samples by DPGEN on the CelebA. The
DPGEN results for 64 x 64 images are derived by training 15, 000
iterations and the DPGEN results for 128 x 128 images are derived
by training 30, 000 iterations.

(f) 128 x 128, original.

(d) 128 x128,k=10,e=5. (e) 128 x128,k=10,e=10.

Figure 6. Synthesized samples by DPGEN on LSUN-bedroom.
The DPGEN results for 64 x 64 images are derived by training
20, 000 iterations and the DPGEN results for 128 x 128 images
are derived by training 40, 000 iterations.

Perceptual Metrics. We present the quantitative results

CelebA LSUN
Distance Resolution e=5 e=10 =20 £ =00 e=5 e=10 e=20 £=00
IS 1 64 x 64 1.3320 1.4880 1.5916 1.6591 2.3839 24411 2.4868 2.4891
128 x 128 1.1764 1.2529 1.4503 1.5289 2.4182 2.6278 2.6553 3.4744
FID | 64 x 64 70.4802 559153 53.4606 50.6617 88.7134  78.9537 61.0917 43.7117
128 x 128 95.8075 57.6865 55.4168 53.4558 184.1115 98.6378 83.4055 45.2868

Table 1. Perceptual scores of DPGEN with varying resolutions and ¢’s (k = 10).
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| Methods || DP-DCGAN | GS-WGAN [ DP-MERF | P3GM | DataLens | G-PATE [[ DPGEN [ DPGEN |
€ 10% 10% 10% 10% 10 10 10 00
IS 1.00 1.00 1.36 1.37 1.42 1.37 1.48 1.65
FID | 403.94 384.78 327.24 | 435.60 | 320.84 | 305.92 55.91 50.66
Table 2. Comparison of perceptual scores on CelebA 64 x 64.
Methods
DPGEN c DP-DCGAN GS-WGAN DP-MERF  P3GM  Datalens G-PATE ~ DPGEN
Dataset (e = ) (Opacus) (NeurIPS’20) (AISTATS 21) (ICDE"21) (ccs21) (NeurIPS’21) (this paper)
e=1 0.4036 0.1432 0.6367 0.7369 0.7123 0.5880 0.9046
MNIST 09794 1 . _10 0.8011 0.8075 0.6738 0.7981 0.8066 0.8092 0.9357
. e=1 0.1053 0.1661 0.5862 0.7223 0.6478 0.5812 0.8283
Fashion-MNIST | 08794 | __ 4 0.6098 0.6579 0.6162 0.7480  0.7061 0.6934 0.8784
e=1 0.5330 0.5901 0.5936 0.5673 0.6996 0.6702 0.6999
CelebA-Gender | 08914 | __ 0.5211 0.6136 0.6082 0.5884  0.7287 0.6897 0.8835
_ e=1 0.3447 0.4203 0.4413 0.4532 0.6061 0.4985 0.6614
CelebA-Hair 08173 1 10 0.3920 0.5225 0.4489 0.4858 0.6224 0.6217 0.8147

Table 3. Classification accuracy of the models trained on the generated data and tested on real test data under different £’s.

(a) DP-Sinkhorn, (10, 10~5)-DP. (b) DPGEN, k = 10, ¢ = 10.
Figure 7. DP-Sinkhorn and DPGEN on CelebA (resized as 32 x 32).

in Table 1 to show how DPGEN behaves under different
settings. In particular, for each dataset, as € increases, we
have a smaller noise scale, resulting in a higher IS (higher
is better) and lower FID (lower is better). By contrast, as
the resolution increases, the image complexity increases as
well, resulting in a worse FID. Furthermore, in the case of
¢ = 10, the IS and FID of DPGEN synthesized images
are very close to their non-private counterparts. Note that
the complex structure of LSUN leads to a more diverse
synthesized images, resulting in slightly higher IS in 128 x
128 images. As the IS’s in Table 1 are quite low, a more
meaningful comparison would be made between the IS in
Table 1 and real IS because they are upper bounded by the
real world data. The real IS for 64 x 64 CelebA is 2.8618, for
128 x 128 CelebA is 3.3020, for 64 x 64 LSUN is 2.6138,
and for 128 x 128 LSUN is 3.6747. We can see that all of
the IS’s in Table 1 are close to the real IS.

In Table 2, we compare DPGEN with five baselines in
terms of IS and FID on CelebA. Even in a more luxury
setting of ¢ = 10* (except for DataLens with ¢ = 10), the
perceptual scores of images synthesized by five baselines are
inferior to those of images synthesized by DPGEN.

Classification Accuracy. Here, we make a comparison
between DPGEN with e-DP and the other baselines with
(e,8)-DP on four different datasets under the settings of
(¢ =1, = 107°) and (¢ = 10,0 = 10~°). One can see
from Table 3 that DPGEN achieves substantially higher
accuracy than all baseline methods especially when € = 1.
In particular, the accuracy improvement on MNIST (28 x

28, gray) is more than 17%. Even for a high-dimensional
dataset such as CelebA-Hair (64 x 64, color), DPGEN still
has 6% accuracy improvement, compared to the SOTA. In
summary, Table 3 demonstrates the superiority of DPGEN
in preserving the features in sensitive image dataset.

An Extra Comparison to DP-Sinkhorn. A very recent
work, DP-Sinkhorn [5], also claims to be able to synthesize
images by avoiding the training instability of GAN, similar
to DPGEN. Nonetheless, despite a similar motivation, the
design rationale behind DPGEN differs significantly from
and still outperforms DP-Sinkhorn in terms of visual quality,
as shown in Figure 7. In addition, in the case of ¢ = 10,
DPGEN has FID = 55.91 on CelebA (resized as 64 x
64) but DP-Sinkhorn has FID = 168.4. Still in the case
of ¢ = 10, DPGEN has the classification accuracy 0.884
on CelebA-Gender but DP-Sinkhorn has only classification
accuracy 0.758. The above evidences reveal that DPGEN
outperforms DP-Sinkhorn in terms of visual quality. Note
that due to the lack of the official code, DP-Sinkhorn results
are directly excerpted from [5].

5.3. Influence of Hyperparameters

GS-WGAN | DP-MERF | P3GM | DatalLens | G-PATE | DPGEN
MNIST 0.0972 0.6261 0.0820 0.2344 0.2230 0.8194
FMNIST 0.1000 0.5261 0.1280 0.2226 0.1874 0.7891

Table 4. Classification accuracy of the models under € = 0.2.
Low Privacy Budget. We consider the data utility of

DPGEN under the constraint of low privacy budget (higher
privacy), e = 0.2. Table 4 shows that DPGEN still achieves
the highest accuracy compared to the other baselines, given
such a tight privacy constraint. In contrast to GS-WGAN,
P3GM, and DataLens, DP-MERF and DPGEN do not em-
ploy DPSGD and are the only two with a reasonable ac-
curacy under the stringent privacy constraint. The above
observation also supports our claim in Section 1 that the use
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/ 1 ‘g@
warm-start, iteration=>5,00 w/o, iteration=5,000
(a) Celeba (64 x 64),e = 10

warm-start, iteration=5,000 w/o, iteration=5,000
(c) LSUN-bedroom (64 X 64),e = 10

: = N
w/o, iteration=10,000
x 128),e = 10

warm-start, iteration=10,00
(b) Celeba (128

~ wlo, iteration=20,000

warm-start, iteration=20,000
(d) LSUN-bedroom (128 x 128),e = 10

Figure 8. Warm start helps the image synthesis in DPGEN (2% of images are used by warm start).

CelebA LSUN
Distance  Resolution k=5 k=10 k=20 original k=5 k=10 k=20 original
IS 1 64 x 64 1.2397  1.4880 1.5795 1.6591 2.4241 24411 2.4754 2.4891
128 x 128  1.1410  1.2529 1.2756 1.5289 2.6012 2.6278 2.6792 3.4744
FID | 64 x 64 573246 70.4802 959912  50.6617 79.1352  88.7134  141.4611 437117
128 x 128 61.0865 90.8075 136.4811 53.4558 08.6958 204.1115 279.3343 45.2868

Table 5. Perceptual scores of DPGEN with varying resolutions and k’s (¢ = 5).

of DPSGD in image synthesis may incur too much noise,
breaking the data utility. On the other hand, DPGEN has
the classification accuracy 0.8194 on MNIST and 0.7891 for
Fashion-MNIST in the case of € = 0.2 but DP-Sinkhorn has
only classification accuracy 0.832 on MNIST and 0.709 for
Fashion-MNIST in the case of ¢ = 10. Thus, we believe
that in the extreme case of ¢ = 0.2, DPGEN outperforms
DP-Sinkhorn in terms of data utility.

Warm Start. Recall that the warm start has been widely
adopted to train DPGAN:S, as data utility can be enhanced by
sacrificing the privacy of certain images. Although we have
reported the success of DP image synthesis via DPGEN
in Section 5.2, we also consider whether the warm start
could be applied to DPGEN, a non-DPGAN approach. To
test the capability of the warm start in improving the visual
quality, we trained the DPGEN both with and without warm
start for 5,000 iterations. We confirm from Figure 8§ that
the performance of DPGEN can also be benefited from
the warm start, which helps synthesize more perceptually
realistic images. Note that the results without the warm start
in Figure 8a are derived by training 5, 000 iterations, while
the results (without warm start) in Figure 5b are derived
by training 15,000 iterations. This explains their visual
difference. Similar arguments apply to Figures 5e and 8b,
Figures 6b and 8c, and Figures 6e and 8d.

Impact of i on Perceptual Metrics. The hyperparame-
ter k controls the level of diversity in Eq. (8), which also
affects the privacy-utility tradeoff. Table 5 shows how the
varying k’s affect the perceptual metrics. We can find that

k has only mild impact on both IS and FID for the 64 x 64
case. We also find that IS is increased with an increased k.
This can be attributed to the fact that IS is measured by the
diversity of the generated images. Larger k£ implies more
diversity and in turn better IS. Similar to our discussion on
Table 1, we can see that all of the IS’s in Table 5 are close to
the real IS.

6. Conclusion

We propose DPGEN, a differentially private image gener-
ation method guided by an energy-based model with MCMC
sampling. DPGEN is featured by its e-DP property, in con-
trast to (g, §)-DP for nearly all the other studies. DPGEN
formulates a direction toward a perceptually realistic image,
which serves as a training label for the EBM, and random-
izes these directions. Thus, the trained network can provide
energy-guided directions with DP while generating images
with the Langevin MCMC. As DPGEN is methodologically
distinct in the current landscape of DP generative learning,
such a design without the use of DPSGD may be a direction
that deserves to be investigated. Extensive empirical exper-
iments demonstrate that DPGEN substantially outperform
the prior methods on different image datasets.
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