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Abstract

In this paper, we study the problem of stereo matching
from a pair of images with different resolutions, e.g., those
acquired with a tele-wide camera system. Due to the dif-
ficulty of obtaining ground-truth disparity labels in diverse
real-world systems, we start from an unsupervised learn-
ing perspective. However, resolution asymmetry caused by
unknown degradations between two views hinders the effec-
tiveness of the generally assumed photometric consistency.
To overcome this challenge, we propose to impose the con-
sistency between two views in a feature space instead of
the image space, named feature-metric consistency. Inter-
estingly, we find that, although a stereo matching network
trained with the photometric loss is not optimal, its feature
extractor can produce degradation-agnostic and matching-
specific features. These features can then be utilized to for-
mulate a feature-metric loss to avoid the photometric incon-
sistency. Moreover, we introduce a self-boosting strategy to
optimize the feature extractor progressively, which further
strengthens the feature-metric consistency. Experiments on
both simulated datasets with various degradations and a
self-collected real-world dataset validate the superior per-
formance of the proposed method over existing solutions.

1. Introduction
Tele-wide camera systems consisting of two (or more)

lenses with different focal lengths are widely deployed in
smartphones nowadays. This kind of systems usually gen-
erates a pair (or a set) of images with different resolutions at
one shot, which enables a number of desirable applications,
such as continuous optical zoom [29] and image quality en-
hancement [37, 41, 43]. For these applications, correspon-
dence estimation from resolution-asymmetric stereo images
is a key step, which is typically conducted by conventional
symmetric stereo matching algorithms (e.g., SGM [13]) to-
gether with image upsampling [29]. However, this straight-
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Figure 1. The common assumption of photometric consistency
(i.e., IL[pL]=IR[pR]) in symmetric stereo is violated in resolution-
asymmetric stereo (represented by dense and sparse grids). To
avoid such photometric inconsistency (i.e., IL[pL] ̸=Ir↑[pr↑]), we
establish the feature-metric consistency, which ensures that the
pixels (e.g., pL and pr↑), recording the light rays (red arrows)
emitted from the same scene point (e.g., P), have the same fea-
ture representation (i.e., FL[pL]=Fr↑[pr↑]).

forward solution is vulnerable to the artifacts introduced by
upsampling, especially when the upsampling scale is large.

Asymmetric stereo matching has been studied in litera-
ture under several specific contexts, e.g., radiometric vari-
ation [15] and modality difference [49]. In this paper, we
focus on the resolution-asymmetric setting, which is practi-
cal yet has rarely been investigated explicitly. As a recent
related work, Liu et al. propose a unified network for visu-
ally imbalanced stereo matching that addresses monocular
blur and noise [25]. Despite of its inspiring idea, this fully
supervised approach requires not only the ground-truth dis-
parity and the high-quality version of the degraded view as
labels but also the explicit degradation [3,7,17,42,44] form
to learn the parameters of the network, making it difficult
to be applicable in diverse real-world systems where the su-
pervision information is seldom available. Therefore, we
turn to the direction of unsupervised learning.

For unsupervised stereo matching, the most widely
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adopted assumption is photometric consistency [50]. Under
this assumption, the corresponding pixels in two views (e.g.,
pL and pR in Fig. 1(a)), which record the light rays emitted
from the same scene point (e.g., P), should have the same
intensity or color (i.e., IL[pL]=IR[pR]). Unfortunately, this
assumption is violated for a resolution-asymmetric stereo
pair, where the low-resolution (LR) view is degraded by
an unknown downsampling kernel compared to the high-
resolution (HR) view. In other words, the corresponding
pixels in the asymmetric stereo pair (e.g., pL and pr↑

1 in
Fig. 1(b)) may not have the same intensity or color (i.e.,
IL[pL ]̸=Ir↑[pr↑]). Such photometric inconsistency will re-
sult in difficulties for correspondence learning. A possi-
ble solution for remedy is to restore the LR view to an HR
one by super-resolution (SR) techniques [10, 26, 48]. How-
ever, existing SR methods are mostly degradation-specific
and suffer from performance drops if the real degradation
is different from the assumed one (for non-blind SR) or not
inside the assumed range (for blind SR) [4,6,23,47]. There-
fore, the effectiveness of SR methods to make up the pho-
tometric inconsistency will be hindered in practice.

To overcome the above challenge, we propose to solve
resolution-asymmetric stereo matching from a new per-
spective by imposing the consistency of two views in a
feature space instead of the image space, named feature-
metric consistency. Interestingly, we find that, although a
stereo matching network trained with the photometric loss
is not optimal, its feature extractor can produce degradation-
agnostic (i.e., robustness to the degradation between IL
and Ir↑) and matching-specific features for correspond-
ing asymmetric pixels (i.e., FL[pL]=Fr↑[pr↑] in Fig. 1(b)).
These features can then be utilized to formulate a feature-
metric loss to avoid the photometric inconsistency. More-
over, by finetuning the stereo matching network using the
feature-metric loss, we can optimize the feature extractor
to capture more consistent properties from the stereo pair,
strengthening the feature-metric consistency. To this end,
we introduce a self-boosting strategy to optimize the fea-
ture extractor progressively. Specifically, we use the fea-
ture extractor learned from the previous stage to form a new
feature-metric loss for the current stage. In this way, our
method remains effective even for large degradations.

To quantitatively evaluate the performance of our
method, we simulate four resolution-asymmetric stereo
datasets, two from the widely used stereo datasets Middle-
bury [14] and KITTI2015 [28] and two from the light field
datasets Inria SLFD [32] and HCI [16] with a narrow base-
line between two views which is closer to the configura-
tion on smartphones. The LR view is generated under vari-
ous degradations from its original HR version. To evaluate
our method in real-world scenarios, we collect a resolution-
asymmetric stereo dataset with the tele-wide camera system

1↑ denotes upsampling.

equipped on a Huawei P30 smartphone. Experimental re-
sults on both simulated and real-world datasets demonstrate
that our method outperforms existing as well as potential
solutions by a large margin.

Contributions of this paper are summarized as follows:
• The first unsupervised learning method for correspon-

dence estimation from resolution-asymmetric stereo.
• An effective and efficient realization of feature-metric

consistency to avoid photometric inconsistency caused by
unknown degradations.

• A self-boosting strategy to strengthen feature-metric con-
sistency by progressive loss update.

• Distinct performance improvements over comparison
methods on both simulated and real-world datasets.

2. Related Work
Stereo Matching. Stereo matching, symmetric by default,
has been extensively studied as a classical computer vision
task for decades [13, 31]. Recently, deep learning based
stereo matching methods have notably surpassed conven-
tional algorithms. According to whether or not ground-truth
disparity maps are required as labels, these methods can be
divided into supervised [5, 8, 18, 20, 27] and unsupervised
[2,39,50,51] categories. In many real-world systems where
the labels are not readily available, unsupervised methods
enable learning without ground-truth information, most of
which exploit the assumption of photometric consistency to
formulate a photometric loss [9, 30, 36, 39, 50, 52]. How-
ever, this assumption will be violated when stereo images
become asymmetric.
Asymmetric Stereo Matching. Several kinds of asym-
metry have been considered in literature for stereo match-
ing, including radiometric variation [15], modality differ-
ence [49], and visual quality imbalance [25]. To estimate
correspondence from stereo images with radiometric varia-
tion, different robust matching costs are proposed, such as
mutual information measure [11] and adaptive normalized
cross-correlation [12]. For cross-modal stereo [40, 45, 49],
images from two different modalities are normalized to a
single one to make up the photometric inconsistency, e.g.,
through deep transformation networks [21, 49]. Recently,
stereo matching with visual imbalance (monocular blur and
noise) is addressed by integrating a view synthesis network
and a stereo reconstruction network, which requires the
ground-truth disparity, the high-quality version of the de-
graded view, and the explicit degradation form for supervi-
sion [25]. Resolution asymmetry can be regarded as a cer-
tain kind of visual imbalance, but such a supervised solution
is difficult to be applicable in diverse real-world systems.
Feature-metric Learning. For geometry tasks, there are
several pioneering works to utilize deep features as the met-
ric of unsupervised learning. Specifically, Zhang et al. im-
prove the performance of monocular depth estimation by
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integrating the photometric loss and a feature-metric loss
based on pre-trained features [46]. Different from [46], Shu
et al. learn customized features with an auto-encoder and
two regularizing losses [34], while Spencer et al. learn fea-
tures with the contrastive loss [35]. For domain adaptation,
Liu et al. propose to penalize the matching error of a stereo
network in the feature space of a domain translation net-
work [24]. Inspired by the above works, for the first time,
we introduce the concept of feature-metric consistency to
the new task of resolution-asymmetric stereo matching.

3. Preliminary
A pair of resolution-asymmetric stereo images consists

of an HR view and an LR view. Without loss of general-
ity, we take the left view IL ∈ RH×W as the HR view and
the right view Ir ∈ RH

s ×W
s as the LR view, where s is an

asymmetric factor. To align their resolutions, Ir is upsam-
pled with a classical interpolation algorithm (e.g., bicubic),
denoted as Ir↑ ∈ RH×W . Despite being upsampled, the
high-frequency information in Ir↑ is absent, and thus the
stereo pair IL and Ir↑ is still asymmetric.

3.1. Learning with Photometric Consistency

Given a stereo pair IL and Ir↑ as input, an unsupervised
stereo matching network Φ(·; θ) aims to predict a dispar-
ity map for IL, denoted as dL = Φ(IL, Ir↑; θ), under the
assumption of photometric consistency between the corre-
sponding pixels in two views (denoted as pL and pr↑), i.e.,

IL[pL] = Ir↑[pr↑]. (1)

If the disparity dL[pL] between pL and pr↑ is accurately
estimated, IL[pL] in the left view can be well reconstructed
by warping Ir↑[pr↑] in the right view with this disparity as

Ir↑→L[pL] = Ir↑[pL − dL[pL]]. (2)

Therefore, the photometric loss is formulated as the re-
construction error between IL and its reconstructed version
Ir↑→L, typically in the form of a weighted combination of
L1 and SSIM distance, i.e.,

Lpm = ∥IL − Ir↑→L∥1 + α(1− SSIM(IL, Ir↑→L)), (3)

where α is a weighting factor.

3.2. Challenge and Motivation

Intuitively, resolution asymmetry challenges unsuper-
vised stereo matching in twofold: (i) It may be more diffi-
cult for the feature extractor of the network to extract sym-
metric features from the asymmetric input, and (ii) the pho-
tometric loss may lose efficacy as Eq. (1) does not hold for
asymmetric stereo. We conduct a series of experiments to
verify the influence of these two factors. In the experiments,
the ground-truth HR version IR of the right view is assumed
to be available. Therefore, we can control the symmetry
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Figure 2. Illustration of four unsupervised stereo matching settings
trained with photometric consistency.

Table 1. 3PE (%) results of different unsupervised stereo matching
settings on the Inria SLFD dataset.

Setting
Asymmetric Factor s

2 4 6 8
Asy Input Asy Loss (S1) 7.28 12.56 22.72 27.93
Sym Input Asy Loss (S2) 7.22 10.01 16.31 21.93
Asy Input Sym Loss (S3) 6.38 6.39 6.58 7.52
Sym Input Sym Loss (S4) 6.32

(Sym) or asymmetry (Asy) of the images input to the fea-
ture extractor to ablate factor (i) and control the symmetry
or asymmetry of the images used to compute the photomet-
ric loss to ablate factor (ii).

As shown in Fig. 2, a total of four settings of unsuper-
vised stereo matching are evaluated, among which only the
first one (S1) can be achieved in practice and the rest ones
(S2, S3, and S4) can be regarded as “ideal cases” since the
HR right view is used. We select two views of each scene
from the Inria SLFD dataset [32] as the HR left and right
views, i.e., IL and IR. The LR right view Ir is simulated
from IR with bicubic downsampling under four asymmetric
factors (s = 2, 4, 6, 8). We adopt the popular PSMNet [5]
as the backbone network Φ(·; θ) and the photometric loss
Lpm is computed following Eq. (3) with α = 3. A standard
stereo matching metric, 3-Pixel-Error (3PE) [28], is used
to evaluate the performance of different settings (see more
implementation details in Sec. 5).

As can be seen from Table 1, when the images input to
the feature extractor change from asymmetric to symmetric
(S1 to S2), the performance improvements are rather limited
(e.g., 2.55% when s = 4). In contrast, when the images used
to compute the photometric loss change from asymmetric to
symmetric (S1 to S3), the results see a large improvement
(e.g., 6.24% when s = 4), which are even close to the upper
bound (S4). It is worth emphasizing that, for S1 and S3,
the disparity maps used to warp the right view are from the
same input and the same network. This phenomenon can
be observed under all asymmetric factors. It clearly demon-
strates that, for resolution-asymmetric stereo matching, the
asymmetry during loss computation has a dominant influ-
ence rather than the asymmetry of the input.

A possible solution to make up the photometric inconsis-
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tency is to restore the LR right view Ir↑ through SR tech-
niques to approach IR. However, for diverse real-world sys-
tems, neither the realistic pair of (Ir↑, IR) nor the explicit
degradation from IR to Ir↑ can be easily available to train
SR models. Therefore, this solution may perform decently
on properly simulated data but lose efficacy in practice. In
view of the results in Table 1, we propose to conquer the
challenge of “asymmetric loss” from a new perspective, by
projecting IL and Ir↑ to a feature space that is agnostic to
degradation and specific for matching. On the one hand,
a degradation-agnostic space can establish another kind of
consistency (i.e., feature-metric consistency) to avoid the
photometric inconsistency. On the other hand, a matching-
specific space can assign different values to pixels belong-
ing to different scene points and thus is suitable for penal-
izing incorrect matchings. Now the remaining question is:
how to learn the desirable feature space?

4. Resolution-asymmetric Stereo Matching

4.1. Feature Space Investigation

Recalling the results in Table 1, it reveals that the fea-
ture extractor of a stereo matching network trained under
the setting of S3 performs well in extracting symmetric fea-
tures from the asymmetric input. Although S3 is not at-
tainable in practice, it suggests a potential substitute, i.e.,
the feature extractor of S1 that takes the same input, for
obtaining the desirable feature space. To validate this spec-
ulation, we conduct another series of experiments. Besides
S1, we investigate two other representative feature spaces
used for geometry tasks: 1) a feature network trained with
the Contrastive Loss (denoted as CL) as in [35], and 2) the
encoder of an Auto-Encoder network (denoted as AE) as
in [34]. Details of these two networks are provided in the
supplement. All the above networks are pre-trained on the
Inria SLFD dataset with s = 4. Additionally, we also in-
clude the original image space for comparison.

We evaluate the degradation-agnostic property of differ-
ent spaces by computing the PSNR metric between the fea-
ture maps extracted from IR and its degraded version Ir↑ by
the corresponding networks. The PSNR in the image space
is computed based on pixel intensities. Note that the values
in different spaces are normalized to [0, 1] to make the com-
parison of PSNR results meaningful. On the other hand, for
the matching-specific property, we perform matching be-
tween the feature maps extracted from IL and Ir↑ directly in
different spaces. Specifically, we formulate a matching cost
by computing the euclidean distance of two feature vectors
at a given disparity. Then a disparity map is obtained by
selecting the minimal matching cost at each location fol-
lowing the Winner-Takes-All strategy. For the image space,
we perform matching on a 5×5 patch basis. The 3PE metric
is then used to evaluate the obtained disparity map.

Table 2. Evaluation of the degradation-agnostic property in PSNR
(dB) and the matching-specific property in 3PE (%) of different
spaces on the Inria SLFD dataset.

Image CL AE S1
PSNR ↑ 24.65 44.18 23.23 28.00
3PE ↓ 55.3 68.90 39.22 20.91

Table 2 gives the PSNR and 3PE results of different
spaces. Although CL presents the highest PSNR value, it
performs worst in terms of 3PE. In other words, CL is most
degradation-agnostic but least matching-specific, which can
be attributed to the blur feature maps extracted by the fea-
ture network. AE can learn relatively discriminative fea-
tures for matching thanks to the regularization losses, but it
does not impose the consistency between the feature maps
of IR and Ir↑, resulting in the lowest PSNR value. Com-
pared with the image space where the photometric consis-
tency is damaged by the degradation, the feature space of S1
can assign more consistent features for IR and Ir↑ (with a
notably higher PSNR value). Meanwhile, this feature space
is more discriminative for performing matching between IL
and Ir↑ than others (with the best 3PE result). In conclu-
sion, we verify that the feature extractor of a stereo match-
ing network can approach the desirable feature space, even
trained with the “asymmetric loss”. More analysis on this
part and the visualization of different feature maps are pro-
vided in the supplement.

4.2. Learning with Feature-metric Consistency

Fig. 3 illustrates our proposed method for resolution-
asymmetric stereo matching, which follows the typical
pipeline of unsupervised learning as described in Sec. 3.1.
Note that the focus of this work is not to design a specific
stereo matching network but to realize the feature-metric
consistency to avoid the photometric inconsistency. There-
fore, we adopt the popular PSMNet [5] as the backbone of
the stereo matching network, which can be readily replaced
by other embodiments (see Sec. 5.3 for the embodiment of
iResNet [22]).

As illustrated in Fig. 3(a), the stereo matching network
Φ(·; θF , θM ) is comprised of a feature extractor ΦF (·; θF )
and a matching module ΦM (·; θM ). Given a stereo pair
IL and Ir↑, ΦF (·; θF ) extracts degradation-agnostic and
matching-specific features FL = ΦF (IL; θF ) and Fr↑ =
ΦF (Ir↑; θF ), which are supposed to be consistent at corre-
sponding asymmetric pixels (pL and pr↑), i.e.,

FL[pL] = Fr↑[pr↑]. (4)

Then, the features FL and Fr↑ are concatenated into a cost
volume that is regularized by ΦM (·; θM ) to regress a dis-
parity map dL.

According to the investigation in Sec. 4.1, we propose
to use the feature extractor of the stereo matching network
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Figure 3. The proposed resolution-asymmetric stereo matching method. (a) The feature extractor ΦF of a stereo matching network Φ is
utilized to establish the feature-metric consistency and formulate a feature-metric loss Lfm. (b) A self-boosting strategy is introduced to
progressively strengthen the feature-metric consistency and continuously boost the network Φ. Specifically, Φk−1

F obtained in the previous
stage formulates Lk−1

fm to train Φk in the current stage, and the initial Φ0
F is trained with the photometric loss Lpm.

itself to produce the desirable feature space for computing a
feature-metric loss. Specifically, after obtaining the warped
left view Ir↑→L with dL, the feature extractor ΦF (·; θF ) is
used to project IL and Ir↑→L to the feature space, produc-
ing FL and Fr↑→L = ΦF (Ir↑→L; θF ). Since FL should
be well reconstructed by Fr↑→L if dL is estimated accu-
rately, we can formulate the feature-metric loss with the re-
construction error similar to the photometric loss Lpm in
Eq. (3), denoted as

Lfm = ∥FL − Fr↑→L∥1+α(1−SSIM(FL, Fr↑→L)). (5)

4.3. Self-boosting Strategy
As demonstrated in Sec. 4.1, even when the stereo

matching network Φ(·; θF , θM ) trained with the photomet-
ric loss Lpm, its feature extractor ΦF (·; θF ) can approach
the desirable feature space. Nonetheless, when the network
is trained by a more accurate loss (e.g., Lfm), the cor-
responding ΦF (·; θF ) extracts more degradation-agnostic
and matching-specific features, which can be utilized to
strengthen the feature-metric consistency and formulate a
better Lfm. In return, a better Lfm can further boost
Φ(·; θF , θM ). To this end, we propose a self-boosting strat-
egy to progressively optimize the feature extractor and con-
tinuously boost the network.

Fig. 3(b) illustrates the training process of our method.
Given a resolution-asymmetric stereo dataset, we first use
Lpm to train a stereo matching network Φ(·; θ0F , θ0M ) (short
as Φ0), whose feature extractor Φ0

F formulates a feature-
metric loss L0

fm. Then, L0
fm is utilized to finetune a new

stereo matching network Φ1 which is initialized as Φ0. Dur-
ing the finetuning of Φ1, the feature extractor for computing
L0
fm is fixed. After finetuning, a boosted feature extractor

Φ1
F formulates a better feature-metric loss L1

fm, which is
utilized in the next training stage. Following this way, we
iteratively finetune Φk with the progressively boosted Lk−1

fm

(k = 1,...,K). Note that we only formulate a new training
loss Lk

fm when the network Φk converges with respect to

Table 3. Validation of the self-boosting strategy on the Inria SLFD
dataset. The 3PE (%) metric is evaluated.

Asymmetric
Factor s

Stage Number k
0 1 2 3

4 12.56 9.22 7.80 7.70
6 21.47 13.92 10.54 9.88
8 27.93 18.47 14.30 13.30

Lk−1
fm , since altering the loss space frequently could make

the training process unstable. With this self-boosting strat-
egy, we can obtain continuously optimized networks with
progressively strengthened feature-metric consistency. The
detailed algorithm is provided in the supplement.

To validate the proposed strategy, we evaluate the perfor-
mance of the stereo matching networks at different stages
on the Inria SLFD dataset with s = 4. As can be seen in
Table 3, the network is progressively improved with the in-
crease of stages. It reflects that the feature extractor used
in the next stage is boosted and the feature-metric consis-
tency is strengthened. Moreover, with such a strategy, our
method remains effective for large degradations. We vali-
date this claim with two larger asymmetric factors (s = 6,
8). As shown in Table 3, the performance of the initial net-
work (k = 0) significantly deteriorates due to the more se-
vere photometric inconsistency when the asymmetric factor
increases. However, the network finally reaches decent per-
formance, thanks to the self-boosting strategy.

5. Experiments on Simulated Datasets
5.1. Datasets and Evaluation Metrics

To quantitatively evaluate the performance of our
method, we simulate four resolution-asymmetric stereo
datasets, two from the widely used stereo datasets Middle-
bury [14] and KITTI2015 [28] and two from the light field
datasets Inria SLFD [32] and HCI [16] with a narrow base-
line between two views which is closer to the configura-
tion on smartphones. To mimic the diverse degradations
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Table 4. Comparison of different methods on four resolution-asymmetric stereo datasets simulated with an asymmetric factor of 4 and
under various degradations. The 3PE (%) / EPE metrics are evaluated. For SR solutions, the results marked gray denote their assumed
degradations are inconsistent with the actual ones. The best results are highlighted with bold fonts.

Method
Inria SLFD Middlebury

BIC IG AG IG JPEG AG JPEG BIC IG AG IG JPEG AG JPEG
SGM 12.41/1.849 16.88/2.316 14.85/2.127 16.93/2.318 14.94/2.134 8.87/1.535 11.70/1.822 10.35/1.696 11.94/1.844 10.60/1.713

BaseNet 12.56/1.680 16.75/2.158 15.27/1.996 16.42/2.029 13.40/1.844 8.72/1.363 9.50/1.482 8.89/1.416 10.27/1.613 8.61/1.414
RCAN+BaseNet 8.89/1.287 14.40/1.842 12.34/1.604 13.94/1.796 12.01/1.612 6.76/1.189 9.14/1.425 7.86/1.287 9.46/1.442 8.72/1.381
DAN+BaseNet 9.91/1.374 10.99/1.464 10.51/1.464 12.97/1.785 11.56/1.583 6.90/1.187 6.70/1.204 7.18/1.231 8.95/1.450 8.35/1.344
BaseNet+CL 12.97/1.700 16.74/2.186 17.36/2.089 17.46/2.236 18.08/2.263 8.13/1.430 11.25/1.649 11.62/1.679 12.45/1.817 10.06/1.631
BaseNet+AE 10.47/1.478 15.17/1.984 13.63/1.840 15.14/1.947 14.29/1.927 6.95/1.244 8.47/1.384 7.80/1.356 9.47/1.459 8.06/1.358

Ours 7.70/1.148 9.01/1.337 8.44/1.249 9.65/1.418 8.47/1.288 5.78/1.088 6.52/1.178 6.38/1.172 7.04/1.204 7.05/1.203
HCI KITTI2015

SGM 7.04/1.093 9.85/1.426 8.50/1.273 10.02/1.425 8.62/1.278 30.71/4.001 38.90/5.043 36.01/4.659 39.04/5.040 36.14/4.660
BaseNet 5.95/0.891 9.91/1.213 8.03/1.068 9.82/1.189 7.88/1.083 11.32/2.014 17.37/2.531 13.85/2.243 15.31/2.311 14.66/2.314

RCAN+BaseNet 5.34/0.717 7.23/0.994 6.62/0.893 8.18/1.054 7.70/1.052 9.94/1.846 13.30/2.141 10.98/1.937 13.31/2.162 11.95/2.052
DAN+BaseNet 5.48/0.715 5.32/0.781 6.23/0.830 7.86/0.988 6.56/0.984 10.06/1.938 10.31/1.856 10.31/1.892 12.71/2.089 11.39/1.973
BaseNet+CL 7.80/0.990 8.68/1.124 8.74/1.144 9.35/1.223 8.29/1.137 17.04/2.472 31.03/3.388 20.00/2.676 21.12/2.733 22.30/2.902
BaseNet+AE 5.13/0.818 6.30/1.018 5.51/0.922 7.15/1.079 5.56/0.973 10.53/1.911 15.25/2.316 13.25/2.102 15.05/2.219 13.42/2.122

Ours 4.08/0.637 4.56/0.701 4.21/0.670 4.58/0.719 4.35/0.709 8.66/1.801 10.08/1.901 9.70/1.848 10.62/1.948 9.82/1.874

in real-world systems, we perform five different degrada-
tion operations to synthesize the LR view, including bicu-
bic downsampling (BIC), Isotropic/Anisotropic Gaussian
kernel downsampling (IG/AG), and Isotropic/Anisotropic
Gaussian kernel downsampling with JPEG compression
(IG JPEG/AG JPEG). Details of training/testing division of
each dataset and generation of different Gaussian kernels
are provided in the supplement. For performance evalua-
tion, we adopt two standard metrics for stereo matching,
3-Pixel-Error (3PE) [28] and End-Point-Error (EPE) [27].
3PE is the percentage of the predicted disparities whose er-
rors are more than 3 pixels and 5% of their ground-truth
disparities, while EPE is the average absolute difference be-
tween the estimated and ground-truth disparities.

5.2. Comparison Methods

For comparison, we adopt a classical stereo matching
method Semi-Global Matching (SGM) [13] and several un-
supervised methods that can be divided into two categories.
The first category includes three solutions using the pho-
tometric loss. Besides the baseline unsupervised network
trained under the setting of S1 (denoted as BaseNet) as men-
tioned in Sec. 3.2, we further use the state-of-the-art non-
blind SR method RCAN [48] and blind SR method DAN
[26] to super-resolve the LR view as pre-processing, de-
noted as RCAN+BaseNet and DAN+BaseNet, respectively.
The RCAN model is trained under the BIC degradation on a
large-scale dataset DIV2K [1] for SR, while the DAN model
is trained under a set of degradations including BIC, IG, and
AG on DIV2K. The second category includes two feature-
metric learning methods [34, 35] that also adopt the base-
line network but impose feature-metric consistency in re-
spective feature spaces as mentioned in Sec. 4.1, denoted
as BaseNet+CL and BaseNet+AE, respectively. Note that,
unless SR models are used, bicubic interpolation is applied

to upsample the LR view.
The backbone network of all learning-based solutions is

the popular PSMNet [5]. The network is optimized with
the ADAM solver (β1=0.9, β1=0.999). We set the learning
rate as 0.001. The smoothness constraint on disparity is
enforced by the weighted smoothness loss [19], i.e.,

Lsm = |∂xdL| e−|∂xIL| + |∂ydL| e−|∂yIL|. (6)

Therefore, the overall loss function of all learning-based so-
lutions can be written as

L = Lpm/fm + λLsm, (7)

where λ is a weighting factor and Lpm/fm is either the pho-
tometric loss for the methods in the first category or the cor-
responding feature-metric loss for the methods in the sec-
ond category and ours. The number of stages K in the self-
boosting strategy is set as 3. The detailed architecture of
the backbone network and the hyper-parameters of differ-
ent methods are provided in the supplement.

5.3. Results

Quantitative Results. Table 4 shows the comparison
results of different methods on four simulated datasets
with an asymmetric factor of 4. Compared with methods
that do not assume specific degradations (SGM, BaseNet,
BaseNet+CL, and BaseNet+AE), our method has a dis-
tinct advantage on all datasets and under all degrada-
tions. Although BaseNet+CL/AE also resorts to the feature-
metric loss, the performance is only comparable or even
inferior to BaseNet. It tells that finding a degradation-
agnostic and matching-specific feature space is non-trivial.
The comparison with the degradation-specific SR solutions
RCAN+BaseNet and DAN+BaseNet should be interpreted
in twofold. On the one hand, when the actual degradations
are consistent with what they assume (BIC for RCAN and
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Figure 4. Disparity maps of two exemplar scenes from the Middlebury and HCI datasets. The first scene (Reindeer) is simulated under the
IG JPEG degradation, while the second scene (Pillows) is simulated under the AG JPEG degradation.

Table 5. Comparison of different methods on datasets simulated
with an asymmetric factor of 8 and under the BIC degradation.

Method Inria SLFD HCI Middlebury KITTI2015
SGM 34.00/3.979 27.57/3.063 24.72/2.609 57.56/8.83

BaseNet 27.93/2.963 23.21/2.164 15.33/2.049 38.88/4.673
RCAN+BaseNet 21.17/2.442 11.54/1.331 11.28/1.729 25.92/3.159

BaseNet+CL 32.49/3.337 15.16/1.589 16.51/2.129 53.28/5.571
BaseNet+AE 27.11/2.847 12.13/1.450 14.30/2.020 30.81/3.299

Ours 13.30/1.763 6.17/1.008 9.90/1.584 19.10/2.545

BIC/IG/AG for DAN), our method has better performance
in most cases yet the improvement is not that large. On
the other hand, when the actual degradations are inconsis-
tent with their assumptions (marked gray in Table 4), our
method notably surpasses these SR solutions. That is to
say, SR solutions will lose efficacy when degradations are
unknown in real-world scenarios.
Visual Results. We provide the visual results of two exem-
plar scenes from the HCI and Middlebury datasets for com-
parison in Fig. 4. As can be seen, our method obtains more
robust results, especially in regions with depth discontinu-
ities. In these regions, correspondence estimation is chal-
lenging for the solutions based on photometric consistency,
since matching ambiguities could not be resolved even with
the help of SR techniques. In contrast, under the feature-
metric consistency imposed in a degradation-agnostic and
matching-specific feature space, our method better reveals
the 3D geometry of testing scenes than BaseNet+CL/AE.
Large Asymmetric Factor. To evaluate the performance
of different methods2 under large degradations, we conduct
experiments on different datasets simulated with an asym-
metric factor of 8 and under the BIC degradation. As can
be seen from Table 5, our method surpasses all compar-
ison methods by a large margin, and the improvement is
even larger compared with the results in Table 4. For meth-
ods using the photometric loss, their performance deterio-
rates further due to the more severe photometric inconsis-

2DAN [26] does not provide the model for scale 8 officially.

Table 6. Comparison with supervised learning on the Middlebury
and KITTI2015 datasets simulated with an asymmetric factor of 4
and under the IG degradation.

Training Testing BaseNet-su BaseNet Ours
Middlebury Middlebury 4.05/0.906 9.50/1.482 6.52/1.178
Middlebury KITTI2015 19.46/3.965 16.98/2.541 13.14/2.280

Table 7. Investigation on the backbone network. * indicates PSM-
Net [5] is replaced by iResNet [22]. Datasets are simulated with
an asymmetric factor of 4 under the BIC degradation.

Method Inria SLFD HCI Middlebury KITTI2015
BaseNet∗ 18.80/2.411 18.58/1.964 10.92/1.769 17.82/2.549

Ours∗ 9.83/1.407 5.83/0.866 8.39/1.382 10.86/1.960

tency. In contrast, thanks to the self-boosting strategy, our
method progressively strengthens the feature-metric consis-
tency and thus maintains superior performance.
Comparison with Supervised Learning. The focus of this
work is unsupervised learning that does not require ground-
truth disparity labels during training and is more robust to be
deployed in diverse real-world systems. To verify this point,
we also implement a supervised method, which uses the
same backbone network as ours but leverages the ground-
truth disparity to compute a smooth L1 loss [5] (denoted as
BaseNet-su). We conduct experiments on the Middlebury
and KITTI2015 datasets with an asymmetric factor of 4 un-
der the IG degradation. For both datasets, the networks are
trained on Middlebury. Since KITTI2015 consists of street
scenes while Middlebury consists of indoor scenes, these
two datasets have a large domain gap. As shown in Ta-
ble 6, when trained on Middlebury and tested on the same
dataset, BaseNet-su has the best performance, which is rea-
sonable. However, when trained on Middlebury and tested
on KITTI2015, the supervised method loses efficacy and
our method achieves notably better generalization, demon-
strating the robustness of our method in real-world scenar-
ios where the disparity labels are not available for training.
Investigation on the Backbone Network. Besides PSM-
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Figure 5. Disparity maps of two exemplar scenes from the self-collected real-world dataset. The colorbars show the value of disparity.

Net that adopts 3D convolution layers, we also investigate
iResNet [22] as another embodiment of the backbone net-
work of our method, which is purely based on 2D convo-
lution layers. Experiments are conducted under the BIC
degradation with an asymmetric factor of 4. As shown in
Table 7, the iResNet version of our method shows signifi-
cant gains over the baseline network trained with the pho-
tometric loss on all datasets. It demonstrates that the fea-
ture extractor of iResNet also learns degradation-agnostic
and matching-specific features, which can be used to es-
tablish the feature-metric consistency. In other words, the
effectiveness of our method is independent of the backbone
network used.

6. Experiments on a Real-world Dataset
Dataset Preparation. To validate the performance of our
method in real-world systems, we collect a resolution-
asymmetric stereo dataset with real degradations. The
asymmetric stereo pairs are captured with a Huawei P30
smartphone. This smartphone is equipped with a tele-wide
camera system, including a 27mm-equivalent primary lens
and an 80mm-equivalent tele-photo lens. The asymmetric
factor is approximately equal to 3. After camera calibration
and stereo rectification, we capture 30 asymmetric stereo
pairs for indoor and outdoor scenes. We randomly split 5
pairs as the testing set and the others as the training set.
Results. As shown in Fig. 5, our method achieves the best
visual quality in comparison with the competitors. Similar
to the results on simulated datasets, our method estimates
much sharper edges and better separates the objects belong-
ing to different depth levels. This advantage is essential to
downstream applications, such as bokeh [38] and 3D pho-
tography [33]. In contrast, methods using the photometric
loss replicate some undesired textures from input images to
the estimated disparity maps (e.g., the surface of the um-

brella), which is mainly caused by the photometric incon-
sistency during stereo matching. Both SR solutions show
negligible improvements over the baseline network, since
their degradation assumptions deviate from the real ones.
In addition, the other two methods using the feature-metric
loss generate unsatisfactory results due to their incompetent
feature spaces. More results are provided in the supplement.

7. Limitation and Conclusion
Limitation. Besides resolution, there might exist other
kinds of asymmetry (e.g., color and brightness) when cap-
turing stereo images with a tele-wide camera system, due to
the inherent optical differences of two lenses. When collect-
ing the real-world dataset, we manually adjust ISO, expo-
sure time, and white balance of two lenses to mitigate these
issues. Although they can be further alleviated through an
explicit color and brightness correction after global regis-
tration, it remains an open problem whether other kinds of
asymmetry can be directly addressed by extending the pro-
posed method. We will consider it as future work.
Conclusion. In this paper, we reveal the main challenge of
unsupervised correspondence estimation from resolution-
asymmetric stereo images, i.e., the violation of photomet-
ric consistency. To conquer this challenge, we realize the
feature-metric consistency in an effective and efficient way
and introduce a self-boosting strategy to strengthen this
consistency. As validated by comprehensive experiments,
our method demonstrates superior performance in dealing
with various degradations between two views in practice.
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