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Abstract

Locating 3D objects from a single RGB image via
Perspective-n-Points (PnP) is a long-standing problem in
computer vision. Driven by end-to-end deep learning, re-
cent studies suggest interpreting PnP as a differentiable
layer, so that 2D-3D point correspondences can be partly
learned by backpropagating the gradient w.r.t. object pose.
Yet, learning the entire set of unrestricted 2D-3D points
from scratch fails to converge with existing approaches,
since the deterministic pose is inherently non-differentiable.
In this paper, we propose the EPro-PnP, a probabilistic PnP
layer for general end-to-end pose estimation, which out-
puts a distribution of pose on the SE(3) manifold, essen-
tially bringing categorical Softmax to the continuous do-
main. The 2D-3D coordinates and corresponding weights
are treated as intermediate variables learned by minimiz-
ing the KL divergence between the predicted and target
pose distribution. The underlying principle unifies the ex-
isting approaches and resembles the attention mechanism.
EPro-PnP significantly outperforms competitive baselines,
closing the gap between PnP-based method and the task-
specific leaders on the LineMOD 6DoF pose estimation and
nuScenes 3D object detection benchmarks.3

1. Introduction

Estimating the pose (i.e., position and orientation) of 3D
objects from a single RGB image is an important task in
computer vision. This field is often subdivided into spe-
cific tasks, e.g., 6DoF pose estimation for robot manipula-
tion and 3D object detection for autonomous driving. Al-
though they share the same fundamentals of pose estima-
tion, the different nature of the data leads to biased choice
of methods. Top performers [29, 42, 44] on the 3D object
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Figure 1. EPro-PnP is a general solution to end-to-end 2D-3D
correspondence learning. In this paper, we present two distinct
networks trained with EPro-PnP: (a) an off-the-shelf dense cor-
respondence network whose potential is unleashed by end-to-end
training, (b) a novel deformable correspondence network that ex-
plores new possibilities of fully learnable 2D-3D points.

detection benchmarks [6, 14] fall into the category of direct
4DoF pose prediction, leveraging the advances in end-to-
end deep learning. On the other hand, the 6DoF pose esti-
mation benchmark [19] is largely dominated by geometry-
based methods [20, 46], which exploit the provided 3D
object models and achieve a stable generalization perfor-
mance. However, it is quite challenging to bring together
the best of both worlds, i.e., training a geometric model to
learn the object pose in an end-to-end manner.

There has been recent proposals for an end-to-end frame-
work based on the Perspective-n-Points (PnP) approach [2,
4, 7, 10]. The PnP algorithm itself solves the pose from a
set of 3D points in object space and their corresponding
2D projections in image space, leaving the problem of con-
structing these correspondences. Vanilla correspondence
learning [9, 23, 24, 30, 30–32, 35, 40, 46] leverages the ge-
ometric prior to build surrogate loss functions, forcing the
network to learn a set of pre-defined correspondences. End-
to-end correspondence learning [2, 4, 7, 10] interprets the
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PnP as a differentiable layer and employs pose-driven loss
function, so that gradient of the pose error can be backprop-
agated to the 2D-3D correspondences.

However, existing work on differentiable PnP learns
only a portion of the correspondences (either 2D co-
ordinates [10], 3D coordinates [2, 4] or corresponding
weights [7]), assuming other components are given a priori.
This raises an important question: why not learn the entire
set of points and weights altogether in an end-to-end man-
ner? The simple answer is: the solution of the PnP prob-
lem is inherently non-differentiable at some points, causing
training difficulties and convergence issues. More specifi-
cally, a PnP problem can have ambiguous solutions [27,33],
which makes backpropagation unstable.

To overcome the above limitations, we propose a gener-
alized end-to-end probabilistic PnP (EPro-PnP) approach
that enables learning the weighted 2D-3D point correspon-
dences entirely from scratch (Figure 1). The main idea
is straightforward: deterministic pose is non-differentiable,
but the probability density of pose is apparently differen-
tiable, just like categorical classification scores. Therefore,
we interpret the output of PnP as a probabilistic distribution
parameterized by the learnable 2D-3D correspondences.
During training, the Kullback-Leibler (KL) divergence be-
tween the predicted and target pose distributions is com-
puted as the loss function, which is numerically tractable
by efficient Monte Carlo pose sampling.

As a general approach, EPro-PnP inherently unifies ex-
isting correspondence learning techniques (Section 3.1).
Moreover, just like the attention mechanism [38], the corre-
sponding weights can be trained to automatically focus on
important point pairs, allowing the networks to be designed
with inspiration from attention-related work [8, 43, 48].

To summarize, our main contributions are as follows:

• We propose the EPro-PnP, a probabilistic PnP layer for
general end-to-end pose estimation via learnable 2D-
3D correspondences.

• We demonstrate that EPro-PnP can easily reach top-
tier performance for 6DoF pose estimation by simply
inserting it into the CDPN [24] framework.

• We demonstrate the flexibility of EPro-PnP by propos-
ing deformable correspondence learning for accurate
3D object detection, where the entire 2D-3D corre-
spondences are learned from scratch.

2. Related Work

Geometry-Based Object Pose Estimation In general,
geometry-based methods exploit the points, edges or other
types of representation that are subject to the projection
constraints under the perspective camera. Then, the pose
can be solved by optimization. A large body of work uti-
lizes point representation, which can be categorized into

sparse keypoints and dense correspondences. BB8 [32] and
RTM3D [23] locate the corners of the 3D bounding box as
keypoints, while PVNet [31] defines the keypoints by far-
thest point sampling and Deep MANTA [9] by handcrafted
templates. On the other hand, dense correspondence meth-
ods [11, 24, 30, 40, 46] predict pixel-wise 3D coordinates
within a cropped 2D region. Most existing geometry-based
methods follow a two-stage strategy, where the intermediate
representations (i.e., 2D-3D correspondences) are learned
with a surrogate loss function, which is sub-optimal com-
pared to end-to-end learning.

End-to-End Correspondence Learning To mitigate the
limitation of surrogate correspondence learning, end-to-end
approaches have been proposed to backpropagate the gradi-
ent from pose to intermediate representation. By differen-
tiating the PnP operation, Brachmann and Rother [4] pro-
pose a dense correspondence network where 3D points are
learnable, BPnP [10] predicts 2D keypoint locations, and
BlindPnP [7] learns the corresponding weight matrix given
a set of unordered 2D/3D points. Beyond point correspon-
dence, RePOSE [20] proposes a feature-metric correspon-
dence network trained in a similar end-to-end fashion. The
above methods are all coupled with surrogate regulariza-
tion loss, otherwise convergence is not guaranteed due to
the non-differentiable nature of deterministic pose. Under
the probabilistic framework, these methods can be regarded
as a Laplace approximation approach (Section 3.1) or a lo-
cal regularization technique (Section 3.4).

Probabilistic Deep Learning Probabilistic methods ac-
count for uncertainty in the model and the data, known re-
spectively as epistemic and aleatoric uncertainty [21]. The
latter involves interpreting the prediction as learnable prob-
abilistic distributions. Discrete categorical distribution via
Softmax has been widely adopted as a smooth approxima-
tion of one-hot arg max for end-to-end classification. This
inspired works such as DSAC [2], a smooth RANSAC with
a finite hypothesis pool. Meanwhile, simple parametric dis-
tributions (e.g., normal distribution) are often used in pre-
dicting continuous variables [11,15,18,21,22,45], and mix-
ture distributions can be employed to further capture ambi-
guity [1,3,26], e.g., ambiguous 6DoF pose [5]. In this paper,
we propose yet a unique contribution: backpropagating a
complicated continuous distribution derived from a nested
optimization layer (the PnP layer), essentially making the
continuous counterpart of Softmax tractable.

3. Generalized End-to-End Probabilistic PnP
3.1. Overview

Given an object proposal, our goal is to predict a set
X =

{
x3D
i , x

2D
i , w

2D
i

∣∣ i = 1 · · ·N
}

of N corresponding
points, with 3D object coordinates x3D

i ∈ R3, 2D image
coordinates x2D

i ∈ R2, and 2D weights w2D
i ∈ R2

+, from
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which a weighted PnP problem can be formulated to esti-
mate the object pose relative to the camera.

The essence of a PnP layer is searching for an optimal
pose y (expanded as rotation matrix R and translation vec-
tor t) that minimizes the cumulative squared weighted re-
projection error:

arg min
y

1

2

N∑
i=1

∥∥w2D
i ◦

(
π(Rx3D

i + t)− x2D
i

)︸ ︷︷ ︸
fi(y)∈R2

∥∥2, (1)

where π(·) is the projection function with camera intrinsics
involved, ◦ stands for element-wise product, and fi(y) com-
pactly denotes the weighted reprojection error.

Eq. (1) formulates a non-linear least squares problem
that may have non-unique solutions, i.e., pose ambigu-
ity [27, 33]. Previous work [4, 7, 10] only backpropagates
through a local solution y∗, which is inherently unstable and
non-differentiable. To construct a differentiable alternative
for end-to-end learning, we model the PnP output as a distri-
bution of pose, which guarantees differentiable probability
density. Consider the cumulative error to be the negative
logarithm of the likelihood function p(X|y) defined as:

p(X|y) = exp−1

2

N∑
i=1

‖fi(y)‖2. (2)

With an additional prior pose distribution p(y), we can de-
rive the posterior pose p(y|X) via the Bayes theorem. Us-
ing an uninformative prior, the posterior density is simpli-
fied to the normalized likelihood:

p(y|X) =
exp− 1

2

∑N
i=1‖fi(y)‖2∫

exp− 1
2

∑N
i=1‖fi(y)‖2 dy

. (3)

Eq. (3) can be interpreted as a continuous counterpart of
categorical Softmax.

KL Loss Function During training, given a target pose
distribution with probability density t(y), the KL diver-
gence DKL(t(y)‖p(y|X)) is minimized as training loss. In-
tuitively, pose ambiguity can be captured by the multiple
modes of p(y|X), and convergence is ensured such that
wrong modes are suppressed by the loss function. Drop-
ping the constant, the KL divergence loss can be written as:

LKL = −
∫
t(y) log p(X|y) dy + log

∫
p(X|y) dy. (4)

We empirically found it effective to set a narrow (Dirac-
like) target distribution centered at the ground truth ygt,
yielding the simplified loss (after substituting Eq. (2)):

LKL =
1

2

N∑
i=1

‖fi(ygt)‖2︸ ︷︷ ︸
Ltgt (reproj. at target pose)

+ log

∫
exp−1

2

N∑
i=1

‖fi(y)‖2 dy︸ ︷︷ ︸
Lpred (reproj. at predicted pose)

.

(5)
The only remaining problem is the integration in the second
term, which is elaborated in Section 3.2.
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Figure 2. Learning a discrete classifier vs. Learning the contin-
uous pose distribution. A discriminative loss function (left) shall
encourage the unnormalized probability for the correct prediction
as well as penalize for the incorrect. A one-sided loss (right) will
degrade the distribution if the model is not well-regularized.

Comparison to Reprojection-Based Method The two
terms in Eq. (5) are concerned with the reprojection errors at
target and predicted pose respectively. The former is often
used as a surrogate loss in previous work [4, 10, 11]. How-
ever, the first term alone cannot handle learning all 2D-3D
points without imposing strict regularization, as the mini-
mization could simply drive all the points to a concentrated
location without pose discrimination. The second term orig-
inates from the normalization factor in Eq. (3), and is crucial
to a discriminative loss function, as shown in Figure 2.

Comparison to Implicit Differentiation Method Exist-
ing work on end-to-end PnP [7,10] derives a single solution
of a particular solver y∗ = PnP(X) via implicit function
theorem [16]. In the probabilistic framework, this is essen-
tially the Laplace method that approximates the posterior
by N (y∗,Σy∗), where both y∗ and Σy∗ can be estimated
by the PnP solver with analytical derivatives [11]. A special
case is that, with Σy∗ simplified to be homogeneous, the ap-
proximated KL divergence can be simplified to the L2 loss
‖y∗ − ygt‖2 used in [7]. However, the Laplace approxima-
tion is inaccurate for non-normal posteriors with ambiguity,
therefore does not guarantee global convergence.

3.2. Monte Carlo Pose Loss

In this section, we introduce a GPU-friendly efficient
Monte Carlo approach to the integration in the proposed
loss function, based on the Adaptive Multiple Importance
Sampling (AMIS) algorithm [12].

Considering q(y) to be the probability density function
of a proposal distribution that approximates the shape of the
integrand exp− 1

2

∑N
i=1‖fi(y)‖2, and yj to be one of theK

samples drawn from q(y), the estimation of the second term
Lpred in Eq. (5) is thus:

Lpred ≈ log
1

K

K∑
j=1

exp− 1
2

∑N
i=1‖fi(yj)‖

2

q(yj)︸ ︷︷ ︸
vj (importance weight)

, (6)

where vj compactly denotes the importance weight at yj .
Eq. (6) gives the vanilla importance sampling, where the
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choice of proposal q(y) strongly affects the numerical sta-
bility. The AMIS algorithm is a better alternative as it iter-
atively adapts the proposal to the integrand.

In brief, AMIS utilizes the sampled importance weights
from past iterations to estimate the new proposal. Then, all
previous samples are re-weighted as being homogeneously
sampled from a mixture of the overall sum of proposals.
Initial proposal can be determined by the mode and covari-
ance of the predicted pose distribution (see supplementary
for details). A pseudo-code is given in Algorithm 1.

Choice of Proposal Distribution The proposal distribu-
tions for position and orientation have to be chosen sepa-
rately in a decoupled manner, since the orientation space is
non-Euclidean. For position, we adopt the 3DoF multivari-
ate t-distribution. For 1D yaw-only orientation, we use a
mixture of von Mises and uniform distribution. For 3D ori-
entation represented by unit quaternion, the angular central
Gaussian distribution [37] is adopted.

3.3. Backpropagation

In general, the partial derivatives of the loss function de-
fined in Eq. (5) is:

∂LKL

∂(·)
=

∂

∂(·)
1

2

N∑
i=1

‖fi(ygt)‖2 − E
y∼p(y|X)

∂

∂(·)
1

2

N∑
i=1

‖fi(y)‖2,
(7)

where the first term is the gradient of reprojection errors at
target pose, and the second term is the expected gradient of
reprojection errors over predicted pose distribution, which
is approximated by backpropagating each weighted sample
in the Monte Carlo pose loss.

Balancing Uncertainty and Discrimination Consider
the negative gradient w.r.t. the corresponding weights w2D

i :

− ∂LKL

∂w2D
i

= w2D
i ◦

(
−r◦2i (ygt) + E

y∼p(y|X)
r◦2i (y)

)
, (8)

where ri(y) = π(Rx3D
i + t) − x2D

i (unweighted reprojec-
tion error), and (·)◦2 stands for element-wise square. The
first bracketed term −r◦2i (ygt) with negative sign indicates
that correspondences with large reprojection error (hence
high uncertainty) shall be weighted less. The second term
Ey∼p(y|X) r

◦2
i (y) is relevant to the variance of reprojection

error over the predicted pose. The positive sign indicates
that sensitive correspondences should be weighted more,
because they provide stronger pose discrimination. The fi-
nal gradient is thus a balance between the uncertainty and
discrimination, as shown in Figure 3. Existing work [11,31]
on learning uncertainty-aware correspondences only con-
siders the former, hence lacking the discriminative ability.

3.4. Local Regularization of Derivatives

While the KL divergence is a good metric for the proba-
bilistic distribution, for inference it is still required to es-

Algorithm 1: AMIS-based Monte Carlo pose loss

Input : X = {x3D
i , x

2D
i , w

2D
i }

Output: Lpred
1 y∗,Σy∗ ← PnP(X) // Laplace approximation
2 Fit q1(y) to y∗,Σy∗ // initial proposal
3 for 1 ≤ t ≤ T do
4 Generate K ′ samples ytj=1···K′ from qt(y)

5 for 1 ≤ j ≤ K ′ do
6 P tj ← exp− 1

2

∑N
i=1

∥∥fi(ytj)∥∥2 // eval integrand

7 for 1 ≤ τ ≤ t and 1 ≤ j ≤ K ′ do
8 Qτj ← 1

t

∑t
m=1 qm(yτj ) // eval proposal mix

9 vτj ← P τj /Q
τ
j // importance weight

10 if t < T then
11 Estimate qt+1(y) from all weighted samples

{yτj , vτj | 1 ≤ τ ≤ t, 1 ≤ j ≤ K ′}

12 Lpred ← log 1
TK′

∑T
t=1

∑K′

j=1 v
t
j

corresponding 
weight

input

underlying components

discrimina!on
(pose sensi!vity)

inverse 
uncertainty

Figure 3. The learned corresponding weight can be factorized
into inverse uncertainty and discrimination. Typically, inverse un-
certainty roughly resembles the foreground mask, while discrimi-
nation emphasizes the 3D extremities of the object.

timate the exact pose y∗ by solving the PnP problem in
Eq. (1). The common choice of high precision is to utilize
the iterative PnP solver based on the Levenberg-Marquardt
(LM) algorithm – a robust variant of the Gauss-Newton
(GN) algorithm, which solves the non-linear least squares
by the first and approximated second order derivatives. To
aid derivative-based optimization, we regularize the deriva-
tives of the log density log p(y|X) w.r.t. the pose y, by en-
couraging the LM step ∆y to find the true pose ygt.

To employ the regularization during training, a detached
solution y∗ is obtained first. Then, at y∗, another iteration
step is evaluated via the GN algorithm (which ideally equals
0 if y∗ has converged to the local optimum):

∆y = −(JTJ + εI)−1JTF (y∗), (9)

where F (y∗) =
[
fT
1 (y∗), fT

2 (y∗), · · · , fT
N (y∗)

]T
is the con-

catenated weighted reprojection errors of all points, J =
∂F (y)/ ∂yT

∣∣
y=y∗

is the Jacobian matrix, and ε is a small
value for numerical stability. Note that ∆y is analytically
differentiable. We therefore design the regularization loss
as follows:

Lreg = l(y∗ + ∆y, ygt), (10)
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where l(·, ·) is a distance metric for pose. We adopt smooth
L1 for position and cosine similarity for orientation (see
supplementary materials for details). Note that the gradient
is only backpropagated through ∆y, encouraging the step
to be non-zero if y∗ 6= ygt.

It is worth noting that this regularization loss is very sim-
ilar to the loss function derived from implicit differentia-
tion [7, 10], and it can be used for training pose refinement
networks within a limited scope [20].

4. Attention-Inspired Correspondence Net-
works

As discussed in Section 3.3, the balance between uncer-
tainty and discrimination enables locating important corre-
spondences in an attention-like manner. This inspires us to
take elements from attention-related work, i.e., the Softmax
layer and the deformable sampling [48].

In this section, we present two networks with EPro-PnP
layer for 6DoF pose estimation and 3D object detection, re-
spectively. For the former, EPro-PnP is incorporated into
the existing dense correspondence architecture [24]. For the
latter, we propose a radical deformable correspondence net-
work to explore the flexibility of EPro-PnP.

4.1. Dense Correspondence Network

For a strict comparison against existing PnP-based pose
estimators, this paper takes the network from CDPN [24] as
a baseline, adding minor modifications to fit the EPro-PnP.

The original CDPN feeds cropped image regions within
the detected 2D boxes into the pose estimation network, to
which two decoupled heads are appended for rotation and
translation respectively. The rotation head is PnP-based
while the translation head uses direct regression. This paper
discards the translation head to focus entirely on PnP.

Modifications are only made to the output layers. As
shown in Figure 4, the original confidence map is expanded
to two-channel XY weights with spatial Softmax and dy-
namic global weight scaling. Inspired by the attention
mechanism [38], the Softmax layer is a vital element for
stable training, as it translates the absolute corresponding
weights into a relative measurement. On the other hand, the
global weight scaling factors represent the global concen-
tration of the predicted pose distribution, ensuring a better
convergence of the KL divergence loss.

The dense correspondence network can be trained solely
with the KL divergence loss LKL to achieve decent perfor-
mance. For top-tier performance, it is still beneficial to uti-
lize additional coordinate regression as intermediate super-
vision, not to stabilize convergence but to introduce the geo-
metric knowledge from the 3D models. Therefore, we keep
the masked coordinate regression loss from CDPN [24] but
leave out its confidence loss. Furthermore, the performance
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(CDPN backbone 

+ rot head)
3D crd map
3x64x64

256x1x1

2x64x64
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softmax

linear, exp
global scale

2x1x1

weight map
2x64x64

pixel crd map
2x64x64

Figure 4. The 6DoF pose estimation network modified from
CDPN [24]. with spatial Softmax and global weight scaling.

can be elevated by imposing the regularization loss Lreg in
Eq. (10).

4.2. Deformable Correspondence Network

Inspired by Deformable DETR [48], we propose a novel
deformable correspondence network for 3D object detec-
tion, in which the entire 2D-3D coordinates and weights are
learned from scratch.

As shown in Figure 5, the deformable correspondence
network is an extension of the FCOS3D [41] framework.
The original FCOS3D is a one-stage detector that directly
regresses the center offset, depth, and yaw orientation of
multiple objects for 4DoF pose estimation. In our adap-
tation, the outputs of the multi-level FCOS head [36] are
modified to generate object queries instead of directly pre-
dicting the pose. Also inspired by Deformable DETR [48],
the appearance and position of a query is disentangled into
the embedding vector and the reference point. A multi-head
deformable attention layer [48] is adopted to sample the
key-value pairs from the dense features, with the value pro-
jected into point-wise features, and meanwhile aggregated
into the object-level features.

The point features are passed into a subnet that predicts
the 3D points and corresponding weights (normalized by
Softmax). Following MonoRUn [11], the 3D points are set
in the normalized object coordinate (NOC) space to handle
categorical objects of various sizes.

The object features are responsible for predicting the
object-level properties: (a) the 3D score (i.e., 3D localiza-
tion confidence), (b) the weight scaling factor (same as in
Section 4.1), (c) the 3D box size for recovering the absolute
scale of the 3D points, and (d) other optional properties (ve-
locity, attribute) required by the nuScenes benchmark [6].

The deformable 2D-3D correspondences can be learned
solely with the KL divergence loss LKL, preferably in con-
junction with the regularization loss Lreg. Other auxiliary
losses can be imposed onto the dense features for enhanced
accuracy. Details are given in supplementary materials.
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Figure 5. The deformable correspondence network based on the FCOS3D [41] detector. Note that the sampled point-wise features are
shared by the point-level subnet and the deformable attention layer that aggregates the features for object-level predictions.

5. Experiments
5.1. Datasets and Metrics

LineMOD Dataset and Metrics The LineMOD
dataset [19] consists of 13 sequences, each containing
about 1.2K images annotated with 6DoF poses of a single
object. Following [3], the images are split into the training
and testing sets, with about 200 images per object for train-
ing. For data augmentation, we use the same synthetic data
as in CDPN [24]. We use two common metrics for evalua-
tion: ADD(-S) and n°, n cm. The ADD measures whether
the average deviation of the transformed model points is
less than a certain fraction of the object’s diameter (e.g.,
ADD-0.1d). For symmetric objects, ADD-S computes
the average distance to the closest model point. n°, n cm
measures the accuracy of pose based on angular/positional
error thresholds. All metrics are presented as percentages.

nuScenes Dataset and Metrics The nuScenes 3D object
detection benchmark [6] provides a large scale of data col-
lected in 1000 scenes. Each scene contains 40 keyframes,
annotated with a total of 1.4M 3D bounding boxes from
10 categories. Each keyframe includes 6 RGB images col-
lected from surrounding cameras. The data is split into
700/150/150 scenes for training/validation/testing. The of-
ficial benchmark evaluates the average precision with true
positives judged by 2D center error on the ground plane.
The mAP metric is computed by averaging over the thresh-
olds of 0.5, 1, 2, 4 meters. Besides, there are 5 true positive
metrics: Average Translation Error (ATE), Average Scale
Error (ASE), Average Orientation Error (AOE), Average
Velocity Error (AVE) and Average Attribute Error (AAE).
Finally, there is a nuScenes detection score (NDS) com-
puted as a weighted average of the above metrics.

5.2. Implementation Details

EPro-PnP Configuration For the PnP formulation in
Eq. (1), in practice the actual reprojection costs are robusti-
fied by the Huber kernel ρ(·):

arg min
y

1

2

N∑
i=1

ρ
(
‖fi(y)‖2

)
. (11)

The Huber kernel with threshold δ is defined as:

ρ(s) =

{
s, s ≤ δ2,
δ(2
√
s− δ), s > δ2.

(12)

We use an adaptive threshold as described in the supplemen-
tary materials. For Monte Carlo pose loss, we set the AMIS
iteration count T to 4 and the number of samples per iter-
ation K ′ to 128. The loss weights are tuned such that LKL
produces roughly the same magnitude of gradient as typi-
cal coordinate regression, while the gradient from Lreg are
kept very low. The weight normalization technique in [11]
is adopted to compute the dynamic loss weight for LKL.

Training the Dense Correspondence Network General
settings are kept the same as in CDPN [24] (with ResNet-
34 [17] as backbone) for strict comparison, except that we
increase the batch size to 32 for less training wall time.
The network is trained for 160 epochs by RMSprop on the
LineMOD dataset [19]. To reduce the Monte Carlo over-
head, 512 points are randomly sampled from the 64×64
dense points to compute LKL.

Training the Deformable Correspondence Network
We adopt the same detector architecture as in FCOS3D [41],
with ResNet-101-DCN [13] as backbone. The network is
trained for 12 epochs by the AdamW [25] optimizer, with
a batch size of 12 images across 4 GPUs on the nuScenes
dataset [6].

5.3. Results on the LineMOD Benchmark

Comparison to the CDPN baseline with Ablations The
contributions of every single modification to CDPN [24] are
revealed in Table 1. From the results it can be observed that:

• The original CDPN heavily relies on direct position
regression, and the performance drops greatly (-17.46)
when reduced to a pure PnP estimator, although the
LM solver partially recovers the mean metric (+6.29).

• Employing EPro-PnP with the KL divergence loss sig-
nificantly improves the metric (+13.84), outperform-
ing CDPN-Full by a clear margin (65.88 vs. 63.21).

• The regularization loss proposed in Eq. (10) further el-
evates the performance (+1.88).
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• Strong improvement (+5.46) is seen when initialized
from A1, because CDPN has been trained with the ex-
tra ground truth of object masks, providing a good ini-
tial state highlighting the foreground.

• Finally, the performance benefits (+0.97) from more
training epochs (160 ep. from A1 + 320 ep.) as equiv-
alent to CDPN-Full [24] (3 stages × 160 ep.).

The results clearly demonstrate that EPro-PnP can unleash
the enormous potential of the classical PnP approach, with-
out any fancy network design or decoupling tricks.

Comparison to the State of the Art As shown in Table 2,
despite modified from the lower baseline, EPro-PnP eas-
ily reaches comparable performance to the top pose refiner
RePOSE [20], which adds extra overhead to the PnP-based
initial estimator PVNet [31]. Among all these entries, EPro-
PnP is the most straightforward as it simply solves the PnP
problem itself, without refinement network [20, 46], disen-
tangled translation [24,39], or multiple representations [35].

Comparison to Implicit Differentiation and Reprojec-
tion Learning As shown in Table 3, when the coordinate
regression loss is removed, both implicit differentiation and
reprojection loss fail to learn the pose properly. Yet EPro-
PnP manages to learn the coordinates from scratch, even
outperforming CDPN without translation head (79.46 vs.
74.54). This validates that EPro-PnP can be used as a gen-
eral pose estimator without relying on geometric prior.

Uncertainty and Discrimination In Table 3, Reprojec-
tion vs. Monte Carlo loss can be interpreted as uncer-
tainty alone vs. uncertainty-discrimination balanced. The
results reveal that uncertainty alone exhibits strong perfor-
mance when intermediate coordinate supervision is avail-
able, while discrimination is the key element for learning
correspondences from scratch.

Contribution of End-to-End Weight/Coordinate Learn-
ing As shown in Table 1, detaching the weights from the
end-to-end loss has a stronger impact to the performance
than detaching the coordinates (−8.69 vs. −3.08), stressing
the importance of attention-like end-to-end weight learning.

On the Importance of the Softmax Layer Learning the
corresponding weights without the normalization denomi-
nator of spatial Softmax (so it becomes exponential activa-
tion as in [11]) does not converge, as listed in Table 1.

5.4. Results on the nuScenes Benchmark

We evaluate 3 variants of EPro-PnP: (a) the basic ap-
proach that learns deformable correspondences without ge-
ometric prior (enhanced with regularization), (b) adding co-
ordinate regression loss with sparse ground truth extracted
from the available LiDAR points as in [11], (c) further
adding test-time flip augmentation (TTA) for fair compari-
son against [41,42]. All results on the validation/test sets are

ID Method
ADD(-S)

Mean
0.02d 0.05d 0.1d

A0 CDPN-Full [24] 29.10 69.50 91.03 63.21
A1 CDPN w/o trans. head 15.93 46.79 74.54 45.75 (−17.46)
A2 + Batch=32, LM solver 21.17 55.00 79.96 52.04 (+ 6.29)

B0 Basic EPro-PnP 32.14 72.83 92.66 65.88 (+13.84)
B1 + Regularize derivatives 35.44 74.41 93.43 67.76 (+ 1.88)
B2 + Initialize from A1 42.92 80.98 95.76 73.22 (+ 5.46)
B3 + Long sched. (320 ep.) 44.81 81.96 95.80 74.19 (+ 0.97)

C0 B0 → Detach coords. 29.57 68.61 90.23 62.80 (− 3.08)
C1 B0 → Detach weights 22.99 61.31 87.27 57.19 (− 8.69)

D0 B0 → No Softmax denom. divergence

Table 1. Comparison to the CDPN baseline with Ablation
Studies. Results of CDPN are reproduced with the official code.4

In C0/C1 either component is detached individually from the KL
loss, while adding a surrogate mask regression loss [24] in C1.

Method 2°, 2 cm 5°, 5 cm
ADD(-S)

0.02d 0.05d 0.1d

CDPN [24] - 94.31 - - 89.86
HybridPose [35] - - - - 91.3
GDRNet* [39] 67.1 - 35.6 76.0 93.6
DPOD [46] - - - - 95.15
PVNet-RePOSE [20] - - - - 96.1

EPro-PnP 80.99 98.54 44.81 81.96 95.80

Table 2. Comparison to the state-of-the-art geometric meth-
ods. BPnP [10] is not included as it adopts a different train/test
split. *Although GDRNet [39] only reports the performance in its
ablation section, it is still a fair comparison to our method, since
both use the same baseline (CDPN).

Main Loss
Coord.
Regr. 2° 2 cm 2°, 2 cm

ADD(-S)
0.1d

Implicit diff. [10] divergence
Reprojection [11] 0.32 42.30 0.16 14.56
Monte Carlo (ours) 44.18 81.55 40.96 79.46

Implicit diff. [10] X 56.13 91.13 53.33 88.74
Reprojection [11] X 62.79 92.91 60.65 92.04
Monte Carlo (ours) X 65.75 93.90 63.80 92.66

Table 3. Comparison between loss functions by experiments
conducted on the same dense correspondence network. For im-
plicit differentiation, we minimize the distance metric of pose in
Eq. (10) instead of the reprojection-metric pose loss in BPnP [10].

presented in Table 4 with comparison to other approaches.
From the validation results it can be observed that:

• The basic EPro-PnP significantly outperforms the
FCOS3D [41] baseline (NDS 0.425 vs. 0.372). Al-
though it partially benefits from more parameters from
the correspondence head, there is still good evidence
that: with a proper end-to-end pipeline, PnP can out-
perform direct pose prediction on a large scale of data.

4https://git.io/JXZv6
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Method Data NDS mAP
True positive metrics (lower is better)

mATE mASE mAOE mAVE mAAE

CenterNet [47] Val 0.328 0.306 0.716 0.264 0.609 1.426 0.658
FCOS3D [41] Val 0.372 0.295 0.806 0.268 0.511 1.315 0.170
FCOS3D§† [41] Val 0.415 0.343 0.725 0.263 0.422 1.292 0.153
PGD§ [42] Val 0.422 0.361 0.694 0.265 0.442 1.255 0.185

Basic EPro-PnP Val 0.425 0.349 0.676 0.263 0.363 1.035 0.196
+ coord. regr. Val 0.430 0.352 0.667 0.258 0.337 1.031 0.193
+ TTA§ Val 0.439 0.361 0.653 0.255 0.319 1.008 0.193

MonoDIS [34] Test 0.384 0.304 0.738 0.263 0.546 1.553 0.134
CenterNet [47] Test 0.400 0.338 0.658 0.255 0.629 1.629 0.142
FCOS3D§† [41] Test 0.428 0.358 0.690 0.249 0.452 1.434 0.124
PGD§ [42] Test 0.448 0.386 0.626 0.245 0.451 1.509 0.127

EPro-PnP§ Test 0.453 0.373 0.605 0.243 0.359 1.067 0.124

Table 4. 3D object detection results on the nuScenes benchmark. Methods with
extra pretraining other than ImageNet backbone are not included for comparison.
§ indicates test-time flip augmentation (TTA). † indicates model ensemble.
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Figure 6. Visualization of the predicted pose dis-
tribution. The orientation density is clearly multi-
modal, capturing the pose ambiguity of symmetric
objects (Barrier, Cone) and uncertain observations
(Pedestrian).

• Regarding the mATE and mAOE metrics that reflect
pose accuracy, the basic EPro-PnP already outper-
forms all previous methods, again demonstrating that
EPro-PnP is a better pose estimator. The coordinate
regression loss helps further reducing the orientation
error (mAOE 0.337 vs. 0.363).

• With TTA, EPro-PnP outperforms the state of the art
by a clear margin (NDS 0.439 vs. 0.422) on the valida-
tion set.

On the test data, with the advantage in pose accuracy
(mATE and mAOE), EPro-PnP achieves the highest NDS
score among other task-specific competitors.

5.5. Qualitative Analysis

As illustrated in Figure 7, the dense weight and coor-
dinate maps learned with EPro-PnP generally capture less
details compared to CDPN [24], as a result of higher un-
certainty around sharp edges. Surprisingly, even though the
learned-from-scratch coordinate maps seem to be a mess,
the end-to-end pipeline gains comparable pose accuracy to
the CDPN baseline (79.46 vs. 79.96). When initialized with
pretrained CDPN, EPro-PnP inherits the detailed geomet-
ric profile, therefore confining the active weights within
the foreground region and achieving the overall best per-
formance. Also note that the weight maps of both deriva-
tive regularization and implicit differentiation [10] are more
concentrated, biasing towards discrimination over uncer-
tainty.

Figure 6 shows that the flexibility of EPro-PnP allows
predicting multimodal distributions with strong expressive
power, successfully capturing the orientation ambiguity
without discrete multi-bin classification [28, 41] or compli-
cated mixture model [5]. Owing to the ability to model ori-
entation ambiguity, EPro-PnP outperforms other competi-
tors by a wide margin in terms of the AOE metric in Table 4.

w/o  
crd regr

basic
CDPN

implicit
diff

CDPN
(regr only)

Input

ADD(-S) 0.1d 79.96 79.46 92.66

EPro-PnP

93.43 95.7688.74

+ init from

Figure 7. Visualization of the inferred weight and coordinate
maps on LineMOD test data.

6. Conclusion
This paper proposes the EPro-PnP, which translates the

non-differentiable deterministic PnP operation into a differ-
entiable probabilistic layer, empowering end-to-end 2D-3D
correspondence learning of unprecedented flexibility. The
connections to previous work [4, 7, 10, 11] have been thor-
oughly discussed with theoretical and experimental proofs.
For application, EPro-PnP can inspire novel solutions such
as the deformable correspondence, or it can be simply inte-
grated into existing PnP-based networks. Beyond the PnP
problem, the underlying principles are theoretically gener-
alizable to other learning models with nested optimization
layer, known as declarative networks [16].
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