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Abstract

Synthesis of ergodic, stationary visual patterns is widely
applicable in texturing, shape modeling, and digital con-
tent creation. The wide applicability of this technique thus
requires the pattern synthesis approaches to be scalable, di-
verse, and authentic. In this paper, we propose an exemplar-
based visual pattern synthesis framework that aims to model
the inner statistics of visual patterns and generate new, ver-
satile patterns that meet the aforementioned requirements.
To this end, we propose an implicit network based on gen-
erative adversarial network (GAN) and periodic encoding,
thus calling our network the Implicit Periodic Field Net-
work (IPFN). The design of IPFN ensures scalability: the
implicit formulation directly maps the input coordinates to
features, which enables synthesis of arbitrary size and is
computationally efficient for 3D shape synthesis. Learn-
ing with a periodic encoding scheme encourages diversity:
the network is constrained to model the inner statistics of
the exemplar based on spatial latent codes in a periodic
field. Coupled with continuously designed GAN training
procedures, IPFN is shown to synthesize tileable patterns
with smooth transitions and local variations. Last but not
least, thanks to both the adversarial training technique and
the encoded Fourier features, IPFN learns high-frequency
functions that produce authentic, high-quality results. To
validate our approach, we present novel experimental re-
sults on various applications in 2D texture synthesis and
3D shape synthesis.

1. Introduction
The synthesis of visual patterns, may that be a wooden

texture for painting, or a simulation of natural cave systems,
is a technique that is applied ubiquitously in computer-aided
design and digital content creation. Visual patterns can be
understood as arts, shapes, or natural textures following cer-
tain geometric structures. In an application context, let us
start by defining several characteristics that are desirable for

an algorithm that generates visual patterns:

• Authenticity. Probably the most prioritized quality of
synthesized visual patterns is its visual quality. When
patterns are synthesized from an exemplar, the quality
is determined by whether they faithfully recreate the
source pattern.

• Diversity. It would be undesirable for a synthesizer to
only copy patterns from the source. Diversity is thus an
equally important measurement that evaluates whether
the synthesized patterns vary from the source and each
other. We strive to achieve two different levels of di-
versity: the patterns should be diversified both within
a generated sample and across samples.

• Scalability. As patterns are usually demanded at dif-
ferent and potentially large scales for many practical
applications, we want a scalable synthesizer to be able
to efficiently generate patterns of arbitrary size. Scala-
bility is particularly valuable when it comes to the syn-
thesis of 3D models, as the extra dimension translates
to a much larger amount of computations.

A scalable design choice leads us to formulate the syn-
thesis problem as generating patterns from a continuous,
real coordinate space. This is generally known as the im-
plicit formulation, where a nonlinear function maps points
defined in R2 or R3 to features that represent the synthe-
sized subjects. In particular, the implicit function has been
shown to be an efficient representation for synthesizing 3D
volumes [12, 22, 24].

Patterns that scale well to an infinitely large space, in
general, possess a stationary property - a shift-invariant
structure that can be expanded by tiling or stacking blocks
of elements. We therefore develop our method by pivot-
ing on the fact that many types of natural and artistic pat-
terns can be analyzed and recreated in a stationary frame-
work. The goal of synthesizing an authentic and diverse

3708



stationary pattern from an exemplar, however, requires care-
ful modeling that is compatible with the underlying struc-
ture of the pattern.

Generative adversarial networks (GAN) [9] is one of the
most promising techniques so far to model data distribution
in an unsupervised manner and has been frequently adapted
to convolutional models that synthesize visually authentic
images [2, 14, 31, 32, 37, 42]. How would a GAN gener-
ator be leveraged to modeling stationary pattern? As all
stationary patterns contain a repeating structure with local
variations that “vivifies” its appearance, in an ideal situa-
tion, a stationary pattern can be modeled by a discrete ran-
dom field, where each random variable is associated with
a patch of the basic element. Thus a natural GAN for-
mulation models image patches with a spatially defined la-
tent field [2, 14]. In a convolutional framework, however,
problems arise when fake samples generated from a dis-
crete noise image are discriminated from randomly sampled
patches from a real image. The first problem is that the sam-
pled patch does not necessarily agree with the scale of the
repeating structure. The second problem is that the sam-
pled patch can be arbitrarily shifted from the center of a sta-
tionary element. A typical deconvolutional network [6, 39]
that upsamples from an evenly-spaced noise image may not
sufficiently address the previously mentioned problems. To
study their effects we designed a convolutional network fol-
lowing the DCGAN architecture [29] to synthesize a hon-
eycomb pattern from a 2 × 2 noise map, which is trained
against random patches sampled from a source image. The
comparison between its result and that synthesized by our
generator network that is trained with an identical discrim-
inator is shown in Figure. 1. We found that the noise map
does not capture well the honeycomb structure as seams and
intercepting elements are visible from the synthesized im-
age.

Though various techniques have been proposed in the
past to address the aforementioned issues (e.g. [2, 14]), in
this paper, we consider a more natural way to model sta-
tionary patterns with an implicit periodic generator. The
core of the formulation is to match the repeatable structure
of a stationary pattern to the period of a learnable continu-
ous periodic function. Instead of modeling the pattern with
a discrete noise tensor, we define latent variables in a contin-
uous space, where the extent of each latent factor is learned
to match with the extent of the repeating elements. The ben-
efits of this design align well with the desirable character-
istics for visual pattern synthesis: 1) learned periodicity of
the implicit field encourages latent factors to model the sta-
tionary variations observed from the exemplar pattern; 2) a
continuous representation provides flexibility during train-
ing to learn a distribution from randomly shifted patches
cropped from the exemplar; 3) a Fourier encoding scheme
learns high-frequency details from the exemplar. This al-

Figure 1. Comparison between synthesized honeycomb from a DCGAN
convolution generator and the periodic MLP generator. Seams and inter-
cepting patterns are visible in the former result due to difficulty for the
convolution generator to capture the repeating structure.

lows our model to synthesize visually authentic results, and
4) multilayer perceptron (MLP) that implicitly takes coor-
dinates as input scales well to the generation of 3D shapes
when compared to 3D convolution. Based on these design
choices, we term our network the Implicit Periodic Field
Network (IPFN).

We validate our proposed design by showing various ap-
plications in texture image synthesis and 3D volume syn-
thesis in Section. 4. Specifically, besides synthesizing sta-
tionary patterns, we design a conditional formulation of our
model to tackle the synthesis of directional patterns and to
provide application in controllable shape generation. An
ablation study is also conducted to verify the effectiveness
of our design choices.

2. Related Work

Pattern Synthesis 2D visual patterns are generally re-
ferred to as “texture” due to their prevalent applications
in computer-aided design. Well-known early attempts to
synthesize texture derive patterns from smoothly interpo-
lated noise [25, 26, 36] and create aesthetically pleasing
materials that display a high level of randomness. [12, 27]
are two recent works related to us that utilize randomness
from a continuously-defined Perlin noise [25] to synthesize
exemplar-based textures in an implicit field. Their works
demonstrate the advantage of smooth noise field and im-
plicit formulation in efficiently and diversely generating a
3D texture field. However, just like their procedural prece-
dence, these methods have been shown to be limited in syn-
thesizing patterns that are more complicated in structures
(e.g. bricks, rocky surface) [27].

Later works in traditional image synthesis are gener-
ally divided into pixel-based method (e.g. [8, 35]), patch-
based method (e.g. [7, 16, 18]) and optimization-based
method (e.g. [16, 17]) and have shared with us important
considerations for recreating new patterns from an exem-
plar. For instance, synthesis on a patch level encourages
preservation of fine local details, and the efforts are focused
on ”quilting” the discontinuity between patches [7, 18]
and encouraging global similarity [16]. Early statistical
model [8,28] utilizes a random field representation that cap-
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tures variations in stationary patterns and synthesizes a vari-
ety of new patterns under the Julesz’ conjecture. Our work
is inspired by key ideas from the traditional modeling of
stationary textures, while we strive to unify authenticity, di-
versity, and scalability with a neural representation to over-
come limitations that existed in the traditional approaches.

Compared to earlier parametric models, the artificial
neural network is powerful in its generalizability in pat-
tern recognition [11]. Thus neural synthesis of texture im-
ages has marked the advances in recent endeavors. How
does a neural network learn the stylish representation of
a texture without simply reconstructing it? A milestone
that unifies both synthesized quality and sampling power
adversarially trains a generator network and a discrimina-
tor network to learn the mapping from a latent space to
the texture distribution [9]. We are particularly interested
in the generative adversarial networks (GANs) that mod-
els the inner statistics of the exemplars. This is marked by
a patch-based approach that represents an image as a col-
lection of smaller images: [14, 19] formalizes patch-based
synthesis in the GAN setting with the concept of Marko-
vian and spatial GAN. [2] motivated us with its periodic
design in latent codes, which effectively captures station-
ary patterns from an input exemplar. [42] can be seen as a
complement to our design by focusing on addressing non-
stationary texture synthesis by learning to expand an im-
age patch. In addition, [31, 32] present multi-scale, global-
focused approaches to effectively recreate natural images.
While the aforementioned approaches all utilize convolu-
tional designs, our work extends texture synthesis to the
continuous domain with an implicit representation of tex-
tures, as we argue that such representation provides a more
natural and efficient way to synthesize stationary patterns.

The synthesis of 3D shapes is of particular interest in
computer graphics and thus has a rich history. To name a
few, this includes volumetric field design [4, 23, 40], proce-
dural generation [13,21] and 3D texturing [3,41]. However,
very few works have considered the synthesis of 3D pat-
terns with neural networks, with the exception of [12, 27],
which explores the generation of 3D solid textures.

Implicit Network Implicit network refers to multilayer
perceptron that learns a continuous function in real coor-
dinate space. In particular, the implicit network is mainly
utilized in the reconstruction of 3D shapes [20, 24, 30, 33],
where shapes are represented by a distance function, or a
radiance field [22, 38]. We are motivated by the signed dis-
tance representation of shapes and the Fourier encoding ex-
plored in [22,34] in our design of the implicit networks, and
our work adopts these features to a generative setting where
novel 3D patterns are synthesized.

3. Method
Our method is best introduced by expanding from the

Wasserstein GAN value function [10] constructed as the
Earth-Mover distance between the real data distribution
Pdata and the generator distribution Pg:

min
G

max
D

Ex∼Pdata
[log(D(x))]− Ez∼PZ

[log(D(G(z))].

(1)
Our first change of the above objective is to draw real-
valued coordinates c ∈ Rk (k = 2 for image and k = 3
for volume) from a distribution {sc | c ∼ Pc} as input to
the generator, where s is a constant scalar. This underlies
the implicit nature of the generative network, as G learns
a mapping from the real coordinate space in a stochastic
process. Instead of being sampled from a prior distribution
PZ , latent variables are drawn from a random field fz(c)
defined on the real coordinate space. G is therefore a func-
tion of both the coordinates c ∈ Rk and the latent variables
fz(c) ∈ Rd. This updates Eq.1 to

min
G

max
D

Ex∼Pdata
[log(D(x))]−

Ec∼Pc,z∼Pfz(c)
[log(D(G(z, c))].

(2)

In the implementation, our goal is to synthesize color, dis-
tance function, normal vectors, etc. that are defined in a
grid-like structure X : RH×W×C or X : RH×W×D×C and
thus we also sample grid coordinate input C : RH×W×2 or
C : RH×W×D×3 whose center is drawn from a uniform dis-
tribution U(−s, s). The randomness to the grid center po-
sition is critical in encouraging smooth and seamless transi-
tion between blocks of patterns as it models the distribution
of randomly sampled patches from the input pattern.

In the following sections, key modules are discussed in
detail: 1) a deformable periodic encoding of the coordinates
to model stationary patterns; 2) implementation of the latent
random field; 3) a conditional variance of our objective for
the synthesis of directional exemplar and controllability of
the synthesized patterns, and 4) the overall network struc-
ture that completes our pattern synthesis framework.

3.1. Periodic Encoding

As discussed in the introduction, it is critical to repre-
sent stationary patterns from the input by a repeated struc-
ture that avoids simply reconstructing the original exemplar.
Simply mapping spatial coordinates to the visual pattern
does not satisfy this requirement: since each coordinate is
unique in the real-value space, the network would learn to
overfit the coordinates to their associated positions in the
exemplar and therefore fail to capture a repeatable structure.

The benefits of a periodic encoding to the coordinates
are two-fold: Firstly, it disentangles patch-level appear-
ance from their specific position in the exemplar, which
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allows the pattern synthesized by the generator to be
shift-invariant. Secondly, recent advances in implicit net-
work [22,33,34] have found a Fourier feature mapping with
a set of sinusoids effective in learning high-frequency sig-
nals by addressing the “spectral bias” [1] inherent to MLPs.
In our work, we use the following periodic mapping for the
input coordinates:

γ(c) = [cos(20πac), sin(20πac),

· · ·, cos(2iπac), sin(2iπac)],
(3)

where the learnable parameter a ∈ Rk determines the pe-
riod of the encoding. This design allows the network to
learn to match the period of the encoding to the repeatable
structure of the exemplar. It thus provides robustness to the
scale of the patches sampled in training as such scale no
longer dictates the period of the synthesized pattern.

3.2. Latent Random Field

In a generative framework, latent noise sampled from a
prior distribution model the variation in observations. A
noise function that is smoothly defined in the real coordi-
nate space encourages smooth transition between the syn-
thesized patches. In a 2D example, we start with a discrete
random field that maps a uniform grid of coordinates to ran-
dom variables {fz(c) | c : RH×W×2}. Then the discrete
random field is smoothly interpolated to form a smooth la-
tent field (see the visualization in Figure 2). In our imple-
mentation, we used an exponential interpolation:

f(x) =

K∑
i=1

wi(x)fz(ci), wi(x) =
e

||x−ci||2
σ∑K

j=1 e
||x−cj ||2

σ

, (4)

where the latent code at spatial position x is interpolated
from K = 4 latent vectors defined at the grid corners. In
implementation, the discrete grid used to define the random
field has a spacing of 1. To match the extent of a latent factor
with the learned period a, we simply scale the uniform grid
of the discrete random field accordingly.

3.3. Conditional IPFN

Extending our GAN objective to be conditional enables
many practical applications. Assume each input patch is
paired with a guidance factor g, the conditional objective is
simply an extension:

min
G

max
D

Ex∼Pdata
[log(D(x|g))]−

Ec∼Pc,z∼Pfz(c)
[log(D(G(z, c|g))].

(5)

Here we outline two applications in pattern synthesis using
the conditional formulation:

Figure 2. Overview of our network architecture discussed in Sec-
tion 3.4.

• Synthesis of directional pattern: Many natural pat-
terns have a directional distribution that is oftentimes
considered non-stationary. A typical example is a leaf
texture - a midrib defines the major direction that sep-
arates the blade regions by half (see Figure 3). A con-
ditional extension of our model is able to model patch
distribution along a specified direction. For simplic-
ity, we present a 2D formulation that can be easily
extended to 3D. With a user-defined implicit 2D line
equation ax+by+c = 0, the guidance factor is defined
as g(x, y) = ax + by + c. Pixel coordinates (px, py)
from an input texture image with width w and height
h are transformed as (x, y) = (2px

w − 1,
2py

h − 1) to
be normalized to the value range of [−1, 1]. In our ex-
periments we have found it sufficient to condition our
model on the horizontal (y = 0) and vertical direction
(x = 0) for the evaluated exemplars.

• Controlling synthesis of 3D shapes: In the model-
ing of geometric patterns, it is often desirable for the
synthesis algorithm to provide explicit control of cer-
tain geometric properties such as density and orien-
tation. These geometric properties can be calculated
from the exemplar shape. Let g(x) be a shape operator
that defines the geometric property of interest, our con-
ditional model trained with the sample pair (x, g(x))
then learns a probabilistic mapping from a guidance
vector field to the target 3D shape. An intuitive exam-
ple of this application can be found in Section 4.5.

3.4. Network Structure

The overall structure of IPFN is visualized in Figure 2.
The Generator Network G is a 10-layer MLP with ReLU
activations between layers and a sigmoid function in the
end. A grid of coordinates is sampled based on a randomly
shifted center. The coordinates are then passed to two sep-
arate branches: 1) the periodic encoder, and 2) a projection
on the latent field to obtain a 5-dim latent vector for each
coordinate. The latent codes and the periodically encoded
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coordinates are then concatenated as input to the generator
mlp, which outputs the fake sample. The discriminator D
discriminates between the generated samples and randomly
cropped patches from the real input. We implement D by
following the DCGAN architecture [29] with a stride of 2.
For discriminating 3D volumes, 2D convolution layers are
replaced by 3D convolution.

4. Experiments

We hypothesize that our approach is most suitable for
synthesizing texture patterns and 3D shapes with repeating
structures and local variations in appearance. To this end,
we demonstrate our main results by applying IPFN to the
synthesis of 2D texture images and 3D structured shapes.
In addition, IPFN is adapted to two applications in 3D tex-
turing and shape manipulation. To evaluate the effective-
ness of the proposed techniques, we have also conducted an
ablation study where several key designs are altered.

Evaluation metric While the quality for pattern synthe-
sis is not easily quantifiable, human eyes usually provide
a reasonable qualitative assessment for whether the synthe-
sized patterns capture the aesthetics and structure of the ex-
emplar. In our evaluation, we present comparisons of visual
results that are self-manifesting, since the synthesized pat-
terns bear obvious characteristics of the underlying designs
of the synthesizer. In addition, we have provided quantifi-
able metrics in terms of Single Image Frechét Inception Dis-
tance and inference time and memory.

Implementation details For all of our experiments, the
network is optimized under WGAN loss with gradient
penalty [10]. Adam optimizer [15] is used with a learning
rate of 1e−4 for both the discriminator D and the generator
G. In each iteration, both D and G are updated for 5 steps se-
quentially. Input images and volumes are randomly cropped
to a smaller-scale patch. For positional encoding, we choose
a bandwidth i = 5 as a wider kernel tends to produce sinu-
soidal artifacts, whereas a narrower kernel produces blurry
results. The input coordinates are randomly shifted by an
offset in the range [−4, 4] to accommodate for the chance
that the network may learn an increased period for the peri-
odic encoding. Accordingly, noises are interpolated from a
5× 5 grid (53 for 3D volume) discrete random field, where
the point locations are ranged between [−5, 5]. A single-
exemplar experiment is typically trained for 12,500 itera-
tions with a batch size of 8 and runs on a single Nvidia GTX
1080 GPU, which takes about 6-9 hours to complete. Infer-
ence Time: IPFN only requires 24 milliseconds to generate
a 1024× 1024 image. 3D volumes are generated iteratively
and a large-scale 5123 volume takes only 22.9 seconds to
be generated. Source code will be made publicly available
upon acceptance.

4.1. Texture Pattern Synthesis

Image sources selected from the Oxford Describable
Textures Dataset (DTD) [5] are shown in Figure 3. Specif-
ically, we selected two exemplars with stationary patterns
(top 4 rows in Figure 3) and two exemplars with direc-
tional patterns (bottom 4 rows in Figure 3) to demon-
strate that IPFN synthesizes visually similar patterns in both
cases. During training, images were randomly cropped into
patches of size 128×128. During inference, the synthesized
images were scaled up four times to a size of 512 × 512.
Our results are compared to the three most relevant baseline
generative methods that synthesize texture patterns from a
single image:

• Henzler et al. [12]: A method that similarly utilizes
implicit network and smooth noise field for texture
synthesis. The synthesized results were obtained from
running the officially released code.

• Bergmann et al. [2]: A convolutional method that com-
bines noise with periodic signals to synthesize station-
ary pattern. The synthesized results were obtained
from running the officially released code.

• Zhou et al. [42]: A convolutional image expansion ap-
proach targeted for non-stationary texture synthesis.
Since [42] expands from an image input deterministi-
cally and does not utilize latent code, only one synthe-
sized result is shown per row. The synthesized results
were obtained from the authors.

Visual inspection is sufficient to show that IPFN pro-
vides promising results. When compared to [12], IPFN syn-
thesized results with obvious structures as noise is not di-
rectly mapped to the output. While [2] synthesizes periodic
samples that display diversity across samples and similarity
to the stationary exemplars, their synthesized patterns lack
variation within the image. In comparison, our synthesized
patterns show a higher level of local variations and adapt
well to the directional cases. [42] has provided the most vi-
sually authentic results among the baselines. However, in
the stationary cases, radial distortion is noticeable near the
boundaries of its synthesized images. Moreover, without re-
quiring image input, IPFN provides a more direct approach
to synthesizing diversified samples from random noise.

honey crosshatch rock leaf
Henzler [12] 332.66 310.49 351.23 225.11
Bergmann [2] 62.75 177.88 120.64 164.37

Zhou [42] 14.54 154.63 118.29 38.13
Ours 10.15 130.83 113.81 103.6

Table 1. SIFID scores between the exemplars and the generated
patterns from ours and different baselines.
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Figure 3. Main results for 2D texture synthesis with comparisons to Henzler et al. [12], Bergmann et al. [2], and Zhou et al. [42] on
synthesizing two stationary patterns (top four rows) and two directional patterns (bottom four rows).

Single Image Frechét Inception Distance (SIFID)
SIFID introduced in [31] is a metric commonly used to
assess the realism of generated images. For the compu-
tation of SIFID, we have used a patch size of 128 × 128
in all experiments, where the synthesized patterns have the
same resolution as the original exemplars. Table 1 shows
the SIFID comparisons between ours and the baselines in
various categories of exemplars. For Zhou et al. [42], only
the generated (expanded) portion of the images were used.
The results show that our method can generate results that
better resemble the distribution of the real texture in the sta-
tionary categories (honey, crosshatch, rock) as our gener-
ated patterns receive lower SIFID scores. For the leaf cate-
gory, a typical directional pattern, Zhou et al. [42] achieves
the best performance as its method specifically targets non-
stationary expansions, while our method still performs bet-

Time (ms) /
memory (GB)

1282 2562 5122 10242

Henzler [12] 218/1.38 278/1.62 328/2.72 458/6.45
Bergmann [2] 7/2.37 13/5.79 42/19.68 115/31.88
Zhou [42] 356/1.20 349/1.34 510/2.00 612/4.66
Ours 8/0.76 11/0.85 15/1.23 24/2.81

Table 2. Comparisons of inference time and inference memory
consumption, measured in milliseconds (ms) / gigabytes (GB),
when patterns of increasing size (top row) are generated.

ter than other baselines that have not taken into considera-
tion the synthesis of non-stationary patterns.

Inference Time and Memory Table 2 measures the in-
ference time and memory consumption of our network com-
pared to the baselines when generating image at different
sizes. Our implicit formulation is shown to be significantly
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more efficient in both time and space without the needs to
rely on computation of pseudo-random noise ( [12]) or con-
volutional operations ( [2, 42]). This validates our claim on
the scalability of our design.

4.2. Ablation Study

Figure 4. Synthesized honeycomb textures for the ablation study.
The blue boxes represent the learned scale of periodic encoding in
ours, where in w/o deformation, the period is default to 1, which
does not match with the repeating structure of the honeycomb pat-
tern and results in visual artifact.

To validate our design choices, we have conducted an ab-
lation study by removing two designs that we consider crit-
ical for our network to be effective. The comparison results
are shown in Figure 4. w/o deformation is a network model
that encodes input coordinates without the learnable param-
eters a described in Section 3.1. w/o shift is a model that
is trained without randomly shifting the input coordinates.
The resulted patterns are indicative of the effects of these
designs: when coordinates are encoded at a fixed scale, the
w/o deformation model generates hexagons that are seem-
ingly glued together as the presumed scale does not match
with the actual period of the repeating structure. The w/o
shift model synthesized distorted patterns as we speculate
that, without the random sampling of the input coordinates,
the network faces difficulty in matching the patch-based pri-
ors of the image patches.

4.3. Volumetric Shape Synthesis

For the evaluation on volumetric shape synthesis, We
have obtained two 3D models from turbosquid.com: a
porous structure (Figure 5.a) and a foam structure ((Fig-
ure 5.d). The 3D meshes are preprocessed into signed
distance fields by uniformly sampling points in a volu-
metric grid. For the porous structure, we have sampled
256× 256× 256 points and extracted 64× 64× 64 patches
during training. For the foam structure, we have sampled
200× 200× 128 points and extracted 32× 32× 32 patches
during training. During inference, porous structures are
synthesized at their original resolution, while we scale the
synthesized foam structures to be twice as large as the orig-
inal shape in the XY direction. Figure 5.c and Figure 5.f
show the synthesized shapes. For the porous structures,
both outer structures and interior structures are learned (see
Figure 5.b for zoom-in interior views) and the structures are
diversified both across and within samples. For the foam
structures, we have shown different results by varying the

Figure 5. Main results for 3D volume synthesis. a. Exemplar
porous structure. b. Synthesized structure models interior tunnels.
c. Global views of synthesized porous structures. c. Exemplar
foam structure. e. Two scales of noise fields for the foam structure
synthesis. f. Synthesized foam structures. Larger scale of the
noise field leads to more isotropic foam structures.

Figure 6. IPFN learns multi-channel textures that are applicable
to seamless 3D texturing. The original 3D texture in this example
is not symmetric and therefore visible seams can be found on the
texture-mapped surface and in the closeup view (A in figure). As
synthesized patterns learnt from this exemplar can be tiled in any
direction, the mapped surface (B in surface) is seamless.

extent of the latent random field (see Figure 5.e). A larger-
scale random field encourages the synthesizer to generate
globally varied structures, whereas a smaller scale produces
locally anisotropic structures.
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Figure 7. Synthesized foam structures with controllable density.
a. The grey scale bar controls the synthesized structure from the
highest density (white) to the lowest (black). b. Smooth interpola-
tion of the guidance factor allows us to synthesize a foam structure
with smoothly changing densities.

4.4. Application: Seamless 3D Texturing

Due to the periodic nature of the synthesized patterns,
noise manipulation allows IPFN to create textures that are
mirror-symmetric. This property provides an immediate ap-
plication to seamless 3D texture mapping: in Figure 6, the
original 9-channel texture, composed of color, normal, and
bump maps, is tiled and directly mapped to a planar sur-
face. Due to discrepancies on the edges, as the textures are
wrapped to create the tiled patterns, the mapped surfaces
show visible seams. We recreate this texture through our
network under a constant latent vector (Figure 6 B). When
repeatedly mapped to the surface, the symmetric texture
is seamless while faithfully reflecting the appearance and
structure of the original texture.

4.5. Application: 3D Foam with controllable density

The original foam shape used in our experiment contains
holes of various sizes, which corresponds to the density of
the foam structure. This geometric property g can be easily
approximated with an unsigned distance field representa-
tion. For a patch X ′ of size H ′ ×W ′ ×D′, we estimate its
density by:

g(X ′) =
1

m

H′∑
i=1

W ′∑
j=1

D′∑
k=1

|sdf(Xijk)| (6)

, where m is a normalization factor. Figure 7 shows the syn-
thesized foam structures by gradually increasing the den-
sity factor (Figure 7.a) and by a linearly interpolated density
map ((Figure 7.b).

5. Limitations and Discussions

Figure 8. The examples demonstrating limitations of our network

The main limitation of our method is its emphasis on
modeling stationary patterns. While this is based on our ob-
servation that a broad range of natural patterns is stationary
or directional, our method does not provide a natural way to
address a class of patterns that are radial, which are exem-
plified by web structures and spiral patterns (see the third
column in Figure 8).

While our conditional formulation is in theory compat-
ible with the synthesis of landscape images, experiments
found that the quality of the synthesized landscapes are sub-
par - while the synthesized landscape appears globally sim-
ilar to the exemplar, some local regions contain ”fading-
out” elements that are blended with the background (see
the first two columns in Figure 8). We speculate that this
phenomenon is due to an under-representation of these ele-
ments in the exemplar.

The above limitations have inspired us to consider many
potential improvements of our methods in future works. A
multi-scale synthesis approach marked in [31, 32] strikes
a good balance between learning the distribution of global
structure and local, high-frequency details of an image. Dif-
ferent geometric encoding schemes may also extend our
framework to synthesize beyond stationary patterns. We be-
lieve there are still ample opportunities for the extension of
our methods to a broader range of 3D applications.
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