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Abstract

Label-to-image translation models generate images from
semantic label maps. Existing models depend on large vol-
umes of pixel-level annotated samples. When given new
training samples annotated with novel semantic classes, the
models should be trained from scratch with both learned
and new classes. This hinders their practical applications
and motivates us to introduce an incremental learning strat-
egy to the label-to-image translation scenario. In this pa-
per, we introduce a few-shot incremental learning method
for label-to-image translation. It learns new classes one
by one from a few samples of each class. We propose
to adopt semantically-adaptive convolution filters and nor-
malization. When incrementally trained on a novel seman-
tic class, the model only learns a few extra parameters of
class-specific modulation. Such design avoids catastrophic
forgetting of already-learned semantic classes and enables
label-to-image translation of scenes with increasingly rich
content. Furthermore, to facilitate few-shot learning, we
propose a modulation transfer strategy for better initializa-
tion. Extensive experiments show that our method outper-
forms existing related methods in most cases and achieves
zero forgetting.

1. Introduction

In this work, we consider the task of generating images
from semantic label maps. Semantic maps depict the lay-
outs and semantic classes of images, which can be regarded
as human doodles. Existing works have made great progress
in generation spatial alignment [36], diversity [45], fine de-
tails [47], and style controls [62]. Nevertheless, these ap-
proaches still suffer from two issues. Firstly, they require
a vast quantity of labeled data in training. However, manu-
ally labeling data is a costly and complicated process, and
thus semantically fine-annotated data is often expensive to
acquire. Secondly, existing label-to-image translation mod-
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Figure 1. An illustration of our proposed FILIT. FILIT is ca-
pable of continually learning novel semantic classes from a few
samples, without forgetting old semantic classes. In this example,
the model starts with a version that can depict images consisting
of the sky, mountain, tree, dirt, and river (FILIT0). When given
a few unseen images labeled with a new semantic class “cloud”,
the model incrementally learns to depict clouds without forget-
ting learned classes (FILIT1). Similarly, given other new images
labeled with “elephant”, the model incrementally learns to gener-
ate elephants by the river (FILIT2). Therefore, as incrementally
learning on new labeled images, FILIT can generate scenes with
increasingly rich content. Best viewed magnified on the screen.

els require that training samples of all classes are prepared
beforehand and learned at once. However, in practice, a
trained translation model is often expected to perform new
image generation tasks by learning novel semantic classes.
A naive approach to achieve this is to retrain the model on
all the old and new data, which is both time-consuming
and computationally expensive. Therefore, it is necessary
to equip a label-to-image translation model with the ability
to learn new semantic classes flexibly without retraining.
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Humans can incrementally learn a large number of
different tasks without forgetting already-acquired knowl-
edge [31]. To imitate the human learning process, incre-
mental learning [35] has been proposed. It aims at con-
tinuously updating a trained model with samples from new
tasks. A long-standing problem in incremental learning is
how to prevent “catastrophic forgetting” [10, 30]. To ad-
dress this problem, methods based on regularization [1, 24,
43, 54], rehearsal [4, 27, 38] and expansion [23, 53] are pro-
posed. To alleviate the dependency on the amount of data
for new tasks, advanced methods are proposed to solve few-
shot incremental learning problems [11, 21, 29, 61]. No-
tably, recent efforts have demonstrated that generative mod-
els could also incrementally learn a sequence of datasets
to generate different images. The method of memory re-
play [50] treats generated data from previous tasks as parts
of training samples in new tasks. LifelongGAN [57] em-
ploys knowledge distillation for conditional image genera-
tion. PiggybackGAN [55] factorizes previously learned fil-
ters into a set of piggyback filters to perform new tasks.

Inspired by the above works, we propose a Few-shot
Incremental learning method for Label-to-Image Transla-
tion (FILIT). It enables a pre-trained translation model to
learn novel semantic classes from a few samples incre-
mentally (Fig. 1). To achieve this, we adopt semantically-
adaptive normalization and convolution filters in the genera-
tor (Sec. 3.2), which customizes convolution filters and nor-
malization for each pixel of input feature according to the
pixel’s semantic class. When learning a new task, the model
only learns a few modulation parameters for base convolu-
tion and normalization (Sec. 3.3). In addition, we propose
a modulation transfer strategy to accelerate the convergence
of modulation parameters for a new class (Sec. 3.4).

Experimental results show FILIT effectively learns new
classes and successfully achieves zero forgetting of learned
classes (Sec. 5.1). Ablation studies exemplify the efficacy
of the semantically-adaptive design and transfer strategy
(Sec. 5.2), and the required number of the extra parameters
is low (Sec. 5.3). Further experiments show that a trained
FILIT model can even continually learn semantic classes
from datasets in other domains (Sec. 5.4).

Real label-to-image applications require massive classes
to train the model, but it is infeasible to collect data of all
classes at once. With FILIT, we provide a set of classes for
basic creation with the pre-trained model and allow users to
incrementally add new classes with a few labeled images.
Such design places a low data annotation burden on users.
Our contributions are three-fold: 1) We present a few-shot
incremental learning method for label-to-image translation.
It enables the flexible addition of novel classes. To the best
of our knowledge, we are the first to target this problem. 2)
We propose to adopt semantically-adaptive filters and nor-
malization in the model. The model learns new classes with

only a few extra parameters and avoids forgetting. 3) We
propose a modulation transfer strategy to accelerate the con-
vergence of incremental learning.

2. Related Work
Incremental Learning of Generative Models. Incre-

mental learning generally involves training a model on a se-
quence of classes (tasks). Its main challenge is how to avoid
catastrophic forgetting when learning novel tasks [30]. To
address the problem, reply-based methods [2, 4, 28, 38] re-
tain old knowledge by rehearsing on previous training data.
Regularization-based methods [1, 5, 20, 54] constrain the
changes of models by penalizing the drifting of impor-
tant parameters or using distillation losses [9, 24, 32, 43].
Expansion-based methods [23, 52, 53] add additional task-
specific components as new tasks arrive.

Pioneering works on incremental generative models are
relatively less. Seff et al. [41] incorporate the idea of
Elastic Weight Consolidation (EWC) into the training of
GANs. Wu et al. [50] explore the idea of memory replay
in label-conditioned image generation. GANmemory [8]
proposes to train sequential modulation parameters for full
connected layers and convolution layers to form sequen-
tial targeted generative models. LifelongGAN [57] uses
distillation losses to retain learned knowledge. Piggyback-
GAN [55] maintains a filter bank trained on different tasks.
Hyper-LifelongGAN [56] utilizes hypernetworks to gener-
ate dynamic base filters for new tasks.

Few-Shot Incremental Learning. Challenges of incre-
mental learning become tougher when novel tasks contain
very few training samples. TOPIC [48] first proposes to use
a neural gas network to achieve few-shot class-incremental
learning (FSCIL) in classification tasks. Following the FS-
CIL setting, later works propose strategies such as vector
quantization [6] and calibrated classifiers [21] to improve
classification performance. ONCE [37] and iMTFA [11] in-
troduce the idea of few-shot incremental learning to object
detection and instance segmentation.

Label-to-image Translation. Generating images con-
ditioned on semantic maps, where each pixel is as-
signed a category label, is called label-to-image transla-
tion. Pix2pix [16] first adopts conditional GANs [33] to
achieve universal image translation tasks. Pix2pixHD [49]
extends it with a coarse-to-fine generator and a multi-scale
discriminator to generate images with high-resolution. Ad-
ditionally, spatially-adaptive normalization [36], spatially-
varying conditional convolution kernels [25] and class-
adaptive normalization [46] are proposed to avoid seman-
tic information being washed away. Above label-to-image
translation models depend on large-scale data for training,
and do not support continually learning novel classes from
new datasets. To this end, we introduce the few-shot incre-
mental learning scheme into label-to-image translation.

3698



<latexit sha1_base64="SpUu8KAaRkQIN0sknxg2XDL5GVU="></latexit>M
<latexit sha1_base64="SpUu8KAaRkQIN0sknxg2XDL5GVU="></latexit>M

<latexit sha1_base64="SpUu8KAaRkQIN0sknxg2XDL5GVU="></latexit>M

{“sky, road, tree, ŏ”} {“bus”} {“ship”} {“hovel”}

…

Phase 1: Large-scale Pre-training Phase 2: Few-shot Incremental Learning
<latexit sha1_base64="25Zt9hMMUkwTVDf9Fmu65ZdLYt8="></latexit>D1

<latexit sha1_base64="1KsQ8r4uf3GyROkXA+W3889jzjU="></latexit>D2
<latexit sha1_base64="Cxt5n0YluamCVhlL1PM+/J4nOn8="></latexit>D0

<latexit sha1_base64="0yXw6vZdeJu9Wnkw9V3xwPjvbTQ="></latexit>DT

…
sky

road
tree

bus
ship

⋮

⋮

sky
road
tree

⋮

sky
road
tree

bus
⋮

⋮

<latexit sha1_base64="c6iVDkTNS4HWf0oBsFmlVdn6bpU="></latexit>

G
<latexit sha1_base64="SpUu8KAaRkQIN0sknxg2XDL5GVU="></latexit>M

Modulation parameters

Modulation parameters
Modulation parameters

Modulation parameters

sky
road
tree

bus
ship

hovel

⋮

⋮

⋮

…

…

…

Figure 2. The overall scheme of our proposed FILIT. It contains two training phases: the large-scale training phase and the few-shot
incremental learning phase. In the incremental learning phase, FILIT only learns class-specific modulation parameters for normalization
and convolution without changing other parameters of the pre-trained generator.

3. Method

3.1. Problem Formulation

We consider the problem that a label-to-image trans-
lation model continually learns new semantic mappings
from a sequence of labeled training sets {D0,D1, · · · ,DT }.
Each training set contains a set of realistic images and
their semantic label maps. Each dataset Dt contains a
novel semantic class which is unseen in previous datasets
{D0,D1, · · · ,Dt−1} for t ≥ 1. When given Dt, the model
is expected to learn the new semantic mapping while main-
tain the translation abilities learned from previous datasets.

Incremental learning in label-to-image translation is
different from incremental learning among individual
tasks [8]. To learn among individual tasks, a model is
equipped with multiple task-specific modules updated in
the training. After training, the model loads the associated
module to compose a target generative model for one spe-
cific task [8]. Namely, the model only performs a solitary
task at once, such as learning to generate flowers or cats.
However, in label-to-image translation, more than one se-
mantic class is generated jointly [16, 36]. The model per-
forms multiple tasks (classes) simultaneously, such as learn-
ing to depict cats playing before flowers.

Therefore, there are three main requirements of the de-
fined task. Firstly, label-to-image translation requires the
model to generate multiple already-learned semantic classes
in a scene, instead of switching between individual tasks.
Secondly, incremental learning requires the classes to be
learned one by one incrementally rather than being jointly
trained or trained from scratch and the model should not for-
get learned classes in the process. Thirdly, in the few-shot
incremental learning, the number of samples to train a new
class is limited, for example, only 20 samples.

3.2. Method Overview

We propose a few-shot incremental learning method
for label-to-image translation (FILIT). We design a
semantically-adaptive generator on top of CLADE [46].
The generator stacks ResNet blocks [13] with normaliza-
tion, convolution, and LeakyReLU. Particularly, the nor-
malization and convolution layers are semantically-adaptive
to introduce semantic information. Both normalization and
convolution have class-specific modulation parameters for
each semantic class to facilitate incremental learning.

The generator is trained adversarially with a U-Net dis-
criminator [39, 40]. It is an encoder-decoder network and
performs a pixel-wise (N + 1)-class classification task.
Specifically, (N +1) is the number of output channel in the
last layer of the discriminator. N is the number of semantic
classes needs to be predicted in real images. Pixels in gener-
ated images are always classified as the extra one class (fake
pixels). The discriminator provides spatial and semantical
information back to the generator. The pixel-wise classifi-
cation is suitable for incremental learning. When learning
a novel class, the discriminator extends one more output
channel in the last layer to discriminate the new class.

We adopt a two-phase pipeline scheme to train the model
(Fig. 2). The scheme consists of a large-scale pre-training
phase and a few-shot incremental learning phase. When ini-
tially trained onD0, FILIT jointly learns all the base seman-
tic classes with a large number of training samples. When
continually trained on {D1,D2, · · · ,DT }, FILIT incremen-
tally learns the novel semantic classes with a few samples,
while keeping the memory of previous classes.

3.3. Semantically-Adaptive Normalization and
Convolution

In this part, we introduce the design of the nor-
malization and convolution layer in a basic block of
the generator. We maintain a modulation parameter
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Figure 3. The basic block of the proposed FILIT. It consists of semantically-adaptive normalization and convolution. We maintain a
modulation parameter bank {γnorm , βnorm , γconv , βconv , bconv} to modulate normalization and convolution for different semantic classes.
γnorm and βnorm are class-specific scale and shift parameters of all classes to modulate the normalization layer. γconv , βconv and bconv are
class-specific scale, shift and bias parameters to modulate the convolution layer. s© is the Guided Sampling operation. � is the Hadamard
product and ⊗ is the outer product operation.

bank {γnorm , βnorm , γconv , βconv , bconv} in each block to
produce semantically-adaptive filters and normalization.
Specifically, γnorm and βnorm are class-adaptive scale and
shift parameters of all classes to modulate the normalization
layer. Similarly, γconv , βconv and bconv are class-adaptive
scale, shift and bias parameters to modulate the convolution
layer (Fig. 3). In particular, γnorm consists of N vectors
of size Cin to modulate N semantic classes, where Cin de-
notes the number of channels in the layer. Other modulation
parameters share the same structure.

Let f ∈ RCin×H×W be the input feature of a normal-
ization layer, and y ∈ LH×W be the semantic map of f .
H and W are the height and width of the feature map.
L is the set of semantic classes. The feature f is firstly
normalized and then modulated with class-specific scale
and shift parameters. The scale and shift are obtained by
Guided Sampling [46]. Specifically, we sample the class-
specific parameters from γnorm and βnorm for each pixel
fi,j (0 ≤ i < H, 0 ≤ j < W ) according to its semantic
class yi,j . Thus, we obtain the dense modulation parameters
γ′norm , β

′
norm ∈ RCin×H×W for f . The whole normaliza-

tion can be formulated as

f̂c,i,j = (γ′norm)c,i,j
fc,i,j − µc

σc
+ (β′norm)c,i,j (1)

f̂c,i,j is the normalized pixel. µc and σc are the mean and
standard deviation of f in the channel c for 0 ≤ c < C.

Next, f̂ is fed into the convolution layer. To reduce com-
putation cost, we use depthwise separable convolution [15],
which contains a depthwise convolution and a pointwise
convolution. The semantically-adaptive modulation is op-
erated on the depthwise convolution. The filter in the depth-
wise convolution layer is denoted as F ∈ RCin×sw×sh , and
the bias as b ∈ RCin . sw and sh are the width and height of
the filter. First, we also adopt Guided Sampling operation

to get dense modulation parameters γ′conv , β
′
conv , b

′
conv ∈

RCin×H×W . Then, we modulate the depthwise filters as

F̂ = γ′conv ⊗
F − µ(F)
σ(F) + β′conv

b̂ = b+ b′conv

(2)

Here F̂ ∈ RCin×H×W×sw×sh is the spatial class-specific
filter, and b̂ ∈ RCin×H×W is the class-specific bias.
µ(F) ∈ RCin and σ(F) ∈ RCin denote the channel-wise
mean and standard deviation of F , respectively. ⊗ is the
outer product operation. The filter is normalized along the
spatial footprint [8] to remove base style information to fa-
cilitate learning unseen semantic classes. To equip the filter
with the target styles of pixels’ classes, our modulation ap-
plies a scale γ′conv and a shift β′conv to the base filter. The
scale and shift introduce more flexibilities to the adapted fil-
ter compared with scaling the filter only [58]. Finally, the
bias in the convolution is also modulated spatially in our
design. Thus, we customize a filter for each pixel in the
feature map determined by the pixel’s semantic class.

To implement convolution, we use F̂ to execute
Multiply-Add operations on patches of the input feature
map f̂ ∈ RCin×H×W . The convolution operation on each
patch can be formulated as

ˆ̂
fc,i,j =

sw∑

u=0

sh∑

v=0

f̂c,i+u,j+vF̂c,i,j,u,v + b̂c,i,j (3)

Why should we design semantically-adaptive architec-
ture to perform pixel-wise modulation? Such design is to
meet discussed requirements at the end of Sec. 3.1. Firstly,
our design can perform pixel-wise modulation on the fea-
ture according to its semantic map without switching and
thus can generate images with multiple classes simultane-
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ously. Secondly, the modulation bank to parameterize se-
mantic classes is separated from the base network. As a re-
sult, the model only learns new modulation parameters for
an unseen class in incremental learning. At the same time,
because the base network and the learned part of the mod-
ulation bank are fixed, the model does not forget learned
classes. Thirdly, the design facilitates few-shot incremen-
tal learning. The number of new modulation parameters to
learn is low, while the base network contains universal vi-
sual information in the trained data.

3.4. Training

Training phase 1: Large-scale Pre-training. This pre-
training phase is similar to conventional methods, which
are trained on a large-scale dataset [40]. The pre-training
dataset D0 consists of base semantic classes with a reason-
ably large amount of training samples. Images of all classes
are merged for pre-training. G0 and D0 denote the genera-
tor and discriminator in the pre-training phase, and they are
optimized by:

argmin
G

max
D
Lfull ≡ LGAN +λvggLvgg +λconLcon (4)

LGAN , Lvgg and Lcon denote adversarial loss [40], percep-
tual loss [17] and consistency loss [40], respectively. The
consistency loss is used to encourage the discriminator to
focus on differences in characteristics between classes in
generated and real images.

Training phase 2: Few-shot Incremental Learning.
In this step, we conduct incremental learning on datasets
{D1,D2, · · · ,DT } to progressively learn a sequence of new
semantic classes unseen in the pre-training phase. The gen-
erator and the discriminator for incremental learning is ini-
tialized by the trained G0 and D0. When learning a new
class, the trained G0 only learns the new class’s modulation
parameters and other parameters of the generator are fixed
to avoid forgetting. The number of parameters required to
learn for a new class is only Cin × 5 for each block.

To accelerate the convergence of incremental learning,
we propose a modulation transfer technique. It initializes
the modulation parameters of novel classes by transferring
modulations of learned similar classes. The assumption be-
hind is that semantic classes with perceptually similar vi-
sual appearances have modulation parameters close to each
other [42]. To seek similar learned classes for a new class,
we utilize the encoder of the pre-trained discriminator to ex-
tract hidden features for both the new and learned classes.
Recall that our discriminator is a U-Net [39], and its hidden
features summarize patch-wise semantic information.

Formally, we divide pixels in the hidden features accord-
ing to their spatial labels. Such extraction is performed over
images in the pre-trained datasetD0 and the new datasetDt.
Thus, we obtain a set of features for each semantic class.

Assuming each set of features subjects to a Gaussian distri-
bution, we use L2 Wasserstein distance [12] to estimate the
similarity. The modulation parameters of the new class is
initialized as a linear combination of those modulations of
the three closest classes. Finally, the model is also trained
with Eq. (4) in the incremental learning.

Training details. We use the ADAM optimizer [19] with
β1 = 0, β2 = 0.999. The learning rates are set to 0.0001 for
the generator and 0.0004 for the discriminator, respectively.
We set the loss weight λvgg = 10 and λcon = 10. We
resize images to 256 × 256 for training. In the incremental
learning, the encoder of discriminator is fixed. Both the
generator and the discriminator are trained for 100 epochs
for each novel class.

4. Experimental Setup
4.1. Dataset

We conduct experiments on the following datasets.
ADE20K [59] consists of 20,210 training and 2,000 val-

idation images annotated with 151 semantic classes. We
split the whole dataset into 21 sub-datasets with D0 for pre-
training and {D1,D2, · · · ,D20} for incremental learning.
D0 contains 20,712 images with 131 semantic classes. Each
dataset Dt(1 ≤ t ≤ 20) for incremental learning contains
an unseen class inDt−1. Dt is further divided into a support
dataset and a query dataset: the support dataset is used for
learning the new task with 20 images, and the query dataset
is used for testing. There are 1098 testing images for 20
tasks in total.

COCO-Stuff [3] consists of 123,287 images annotated
with 172 semantic classes, and is also divided into 21 sub-
datasets. The pre-training dataset D0 contains 107,928 im-
ages with 152 classes. The support dataset of Dt contains
50 images. There are 14,359 testing images for 20 tasks.

The 20 semantic classes for incremental training in
ADE20K and COCO-Stuff are those having the least num-
ber of samples in the original dataset. Models are trained on
the support datasets of Task 1 to 20 sequentially. After Task
20, models are tested on all the query datasets jointly.

4.2. Baselines

We compare FILIT with incremental learning models for
conditional image generation and FILIT’s variants.

• LifelongGAN [57] introduces knowledge distillation
losses into BicycleGAN [60] to perform conditional
image generation in the incremental learning setting.
We reproduce LifelongGAN for our experiments.

• PiggybackGAN [55] factorizes filters trained on pre-
vious tasks to learn new tasks, and maintains a task-
specific filter bank to memorize learned tasks. We use
the code from [18] for our experiments.
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Figure 4. Qualitative results on ADE20K dataset. The first two columns show the generative results on Task 0 after pre-training. The
central four columns show the incremental learning results on Task 5, 10, 15 and 20. The last two columns on the right display results of
recalling Task 0 after the incremental learning, and they are to examine catastrophic forgetting.

• FILIT-Oracle is a variant of FILIT trained with
{D0,D1, · · · ,DT } jointly without incremental learn-
ing. This model marks the performance upper bound
that FILIT can achieve in the incremental learning.

• FILIT-SFT (Sequential Fine-Tuning) is another variant
of FILIT. It is also pre-trained on the Task 0, and then it
is fine-tuned in a sequential manner. In the fine-tuning
process, the whole generator is used to learn new tasks,
and the decoder of discriminator is fixed [34].

LifelongGAN and PiggybackGAN are trained with our two-
phase pipeline.

4.3. Metrics

We adopt the evaluation metics from previous works [25,
36,40,46] including mean Intersection-over-Union (mIoU),
pixel accuracy (accu) and Fréchet Inception Distance
(FID) [14]. Particularly, mIoU and accu measure segmenta-

tion accuracy. FID measures the distance between the dis-
tributions of generated images and the distributions of real
images. We use the segmentation model UperNet101 [51]
for ADE20K dataset and DeepLabV2 [7] for COCO-Stuff
dataset. To evaluate the extent of catastrophic forgetting,
we define the forgetting rate of mIoU, accu and FID, de-
noted as FmIoU, Facc and FFID, respectively. Specifically,
after pre-trained on Task 0, we test on the D0 to obtain
(mIoU)0, (accu)0 and (FID)0. Then, after training on Task
1 to Task 20, we test the model on D0 again to obtain
(mIoU)20, (accu)20 and (FID)20. The FmIoU is defined as
|(mIoU)0−(mIoU)20|

(mIoU)0
, and Faccu and FFID are similarly de-

fined. In addition, we use SceneFID [44] to measure the
generative performance of novel classes learned in the in-
cremental learning process. Specifically, given images con-
taining objects of novel classes, we use a ROI operator to
crop these objects out. All cropped objects in real and gen-
erated images are resized and used to calculate SceneFID.
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Figure 5. Qualitative results on COCO-Stuff dataset. The first two columns show the generative results on Task 0 after pre-training. The
central four columns show the incremental learning results on Task 5, 10, 15 and 20. The last two columns on the right display results of
recalling Task 0 after the incremental learning, and they are to examine catastrophic forgetting.

Method ADE20K COCO-Stuff

mIoU↑ accu↑ FID↓ FmIoU↓ Faccu↓ FFID↓ SceneFID↓ mIoU↑ accu↑ FID ↓ FmIoU↓ Faccu↓ FFID↓ SceneFID↓
LifelongGAN 10.0 25.2 170.5 37.7% 32.6% >50% 112.3 2.2 4.8 160.0 >50% >50% >50% 57.3
PiggybackGAN 5.2 15.4 253.9 >50% >50% >50% 153.3 2.6 7.7 208.4 >50% >50% >50% 116.2
FILIT-Oracle 23.5 50.4 74.4 - - - 77.8 18.0 38.0 32.0 - - - 28.8
FILIT-SFT 16.8 40.7 170.2 35.6% 24.4% >50% 147.8 15.0 32.4 64.4 16.3% 13.5% >50% 37.6
FILIT 23.2 49.6 77.1 0% 0% 0% 80.7 18.0 37.9 32.7 0% 0% 0% 22.3

Table 1. Quantitative results on ADE20K and COCO-Stuff. ↑ means a higher value is better, and vice versa. The best and second best
performances are highlighted by using bold and underline, separately.

5. Results

5.1. Qualitative and Quantitative Results

Figs. 4 and 5 present generated images on ADE20K and
COCO-Stuff. Our model generates images as visually ap-
pealing as the fully-trained model. Especially, objects of
new semantic classes are harmonious with those of learned
classes, and the learned classes are not forgotten in the in-

cremental learning process. Tab. 1 reports quantitative re-
sults. The reported mIoU, accu and FID reflect generative
performance on incremental learning (Task 1 to Task 20),
and FmIoU, Faccu, and FFID reflect the forgetting rate of
Task 0 after incremental learning. For consistency of met-
rics, we fixed the random seed in testing. In this case, FILIT
achieves 0% forgetting rates. In summary, the results show
that FILIT achieves comparable performance with the full-
trained model and outperforms other compared models.
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Method mIoU↑ accu↑ FID↓ SceneFID↓

FILIT 23.2 49.6 77.1 80.7
w/o adaptive convolution filters 23.0 48.8 81.6 84.0
w/o adaptive normalization 22.5 48.5 83.7 88.4
w/o modulation transfer 23.0 49.4 84.1 87.2

Table 2. Results in the ablation study for 20-task incremental
learning on ADE20K dataset.

Method Task 0 Task 1 Task 20 Additional↓

PiggybackGAN † 7.84M 12.22M 95.44M 4.38M
PiggybackGAN ◦ 13.16M 13.64M 22.32M 0.48M
FILIT 18.99M 19.05M 20.15M 0.06M

Table 3. The numbers of additional parameters when learning a
new semantic class of ADE20K. † means the numbers of Task 0
and Task 1 are from Zhai et al. [56] and the number of Task 20 is
calculated accordingly. ◦ means the numbers are measured in the
implementation of [18].

5.2. Ablation Study

We conduct ablation studies on variants of our proposed
model on ADE20K dataset. Variants include replacing
semantically-adaptive convolution filters with fixed filters,
replacing normalization layers, and no modulation transfer.
Tab. 2 shows semantically-adaptive convolution, normaliza-
tion, and the modulation transfer strategy all contribute to
the improvement of FID and SceneFID, and they have mi-
nor influence on the segmentation performance.

5.3. Model Expansion

FILIT adds class-specific modulation parameters to the
original model when learning a new task, and it belongs to
the expansion-based method. We compare the model ex-
pansion of FILIT with PiggybackGAN [55], which is also
an expansion-based method. As shown in Tab. 3, the ad-
ditional parameters for each subsequent class of FILIT are
only 0.06M. In summary, FILIT requires little amount of
expansion while achieving compelling performance.

5.4. Experiments on Cross-Domain Tasks

To further investigate the generalization ability of FILIT,
we use the model trained on all tasks of ADE20K to contin-
ually learn cross-domain samples from DeepFashion [26]
and CelebAMask-HQ [22] datasets. Specifically, we pick
ten samples from DeepFashion as D21, which contains nine
novel semantic classes. Similarly, ten samples containing
sixteen classes from CelebAMask-HQ are selected to con-
struct D22. As images of DeepFashion and CelebAMask-
HQ are dissimilar from those in ADE20K, we do not use
the modulation transfer strategy in this experiment, and we
train 30,000 epochs for each task. FILIT generates vivid
images of persons and faces (Fig. 6). In particular, after

Recalling Task 0

Ten training samples 
of Task 21

Test labels and generated images of Task 21

Test labels and generated images of Task 22

Ten training samples 
of Task 22

Recalling Task 0

Recalling Task 21

Figure 6. Incremental learning results from DeepFashion and
CelebAMask-HQ dataset in a ten-shot setting. After training on
ten samples from DeepFashion, we recall Task 0 from ADE20K
dataset. After training on another ten samples from CelebAMask-
HQ, we recall Task 0 and Task 21 again. Both recalling experi-
ments show FILIT does not forget learned tasks.

training on Task 21 and Task 22, FILIT still generates high-
quality images of Task 0 in ADE20K without forgetting.

6. Conclusion
In this paper, we propose a novel few-shot incremental

learning method for label-to-image translation (FILIT). It
continually learns new semantic classes with a few sam-
ples without training from scratch. To achieve this, we
adopt semantically-adaptive convolution filters and normal-
ization. It separates class-specific modulation parameters
from the base network to support adding novel classes and
avoid forgetting. To accelerate the convergence of incre-
mental learning, we propose a modulation transfer strat-
egy. Experimental results demonstrate that with a few addi-
tional parameters, FILIT effectively learns new classes from
datasets in the same and other domains while achieves zero
forgetting. FILIT presents new possibilities of practical ap-
plications with label-to-image translation models.
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