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Abstract

Non-uniformed 3D sparse data, e.g., point clouds or vox-
els in different spatial positions, make contribution to the
task of 3D object detection in different ways. Existing ba-
sic components in sparse convolutional networks (Sparse
CNNs) process all sparse data, regardless of regular or sub-
manifold sparse convolution. In this paper, we introduce
two new modules to enhance the capability of Sparse CNNs,
both are based on making feature sparsity learnable with
position-wise importance prediction. They are focal sparse
convolution (Focals Conv) and its multi-modal variant of
focal sparse convolution with fusion, or Focals Conv-F for
short. The new modules can readily substitute their plain
counterparts in existing Sparse CNNs and be jointly trained
in an end-to-end fashion. For the first time, we show that
spatially learnable sparsity in sparse convolution is essen-
tial for sophisticated 3D object detection. Extensive experi-
ments on the KITTI, nuScenes and Waymo benchmarks val-
idate the effectiveness of our approach. Without bells and
whistles, our results outperform all existing single-model
entries on the nuScenes test benchmark. Code and models
are at github.com/dvlab-research/FocalsConv.

1. Introduction
A key challenge in 3D object detection is to learn ef-

fective representations from the unstructured and sparse
3D geometric data such as point clouds. In general, there
are two ways for this job. The first is to process point
clouds [37,51] directly, based on PointNet++ [33] networks.
However, the neighbour sampling and grouping operations
are time-consuming. This makes it improper for large-scale
autonomous driving scenes that require real-time efficiency.
The The second is to convert point clouds into voxelizations
and apply 3D sparse convolutional neural networks (Sparse
CNNs) for feature extraction [11, 36]. 3D Sparse CNNs
resemble 2D CNNs in structures, including several feature
stages and down-sampling operations. They typically con-
sist of regular and submanifold sparse convolutions [15].

Yukang’s work was done during internship in MEGVII Technology.

Although regular and submanifold sparse convolutions
have been widely used, they have respective limitations.
Regular sparse convolution dilates all sparse features. It
inevitably burdens models with considerable computations.
That is why backbone networks commonly limit its usage
only in down-sampling layers [36, 48]. In addition, detec-
tors aim to distinguish target objects from massive back-
ground features. But regular sparse convolution reduces the
sparsity sharply and blurs feature distinctions.

On the other hand, submanifold sparse convolutions
avoid the computation issue by restricting the output fea-
ture positions to the input. But it misses necessary informa-
tion flow, especially for the spatially disconnected features.
The above issues on regular and submanifold sparse con-
volutions limit Sparse CNNs to achieve high representation
capability and efficiency. We illustrate the submanifold and
regular sparse convolutional operations in Fig. 1.

These limitations originate from the conventional con-
volution pattern: all input features are treated equally in
the convolution process. It is natural for 2D CNNs, and
yet is improper for 3D sparse features. 2D convolution
is designed for structured data. All pixels in the same
layer typically share receptive field sizes. But 3D sparse
data is with varying sparsity and importance in space. It
is not optimal to handle non-uniform data with uniform
treatment. In terms of sparsity, upon the distance to LI-
DAR sensors, objects present large sparsity variance. In
terms of importance, the contribution of features varies
with different locations for 3D object detection, e.g., fore-
ground or background. Although 3D object detection is
achieved [11, 36, 37, 53], state-of-the-art methods still rely
on RoI (region-of-interest) feature extraction. It corre-
sponds to the idea that we should shoot arrows at the target
in the feature extraction of 3D detectors.

In this paper, we propose a general format of sparse con-
volution by relaxing the conceptual difference between reg-
ular and submanifold ones. We introduce two new modules
that improve the representation capacity of Sparse CNNs
for 3D object detection. The first is focal sparse convolu-
tion (Focals Conv). It predicts cubic importance maps for
the output pattern of convolutions. Features predicted as
important ones are dilated into a deformable output shape,
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Figure 1. Process of different sparse convolution types. Submanifold sparse convolution fixes the output position identical to input. It
maintains efficiency but disables information flow between disconnected features. Regular sparse convolution dilates all input features to
its kernel-size neighbors. It encourages information communication with expensive computation, as it seriously increases feature density.
The proposed focal sparse convolution dynamically determines which input features deserve dilation and dynamic output shapes, using
predicted cubic importance. Input and Output are illustrated in 2D features for simplification. This figure is best viewed in color.

as shown in Fig 1. The importance is learned via an addi-
tional convolutional layer, dynamically conditioned on the
input features. This module increases the ratio of valuable
information among all features. The second is its multi-
modal improved version of Focal sparse Convolution with
Fusion (named as Focals Conv-F). Upon the LIDAR-only
Focals Conv, we enhance importance prediction with RGB
features fused, as image features typically contain rich ap-
pearance information and large receptive fields.

The proposed modules are novel in two aspects. First,
Focals Conv presents a dynamic mechanism for learning
spatial sparsity of features. It makes the learning pro-
cess concentrated on the more valuable foreground data.
With the down-sampling operations, valuable information
increases in stages. Meanwhile, the large amount of back-
ground voxels are removed. Fig. 2 illustrates the learnable
feature sparsity, including the common, crowded, and re-
mote objects, where Focals Conv enriches the learned voxel
features on the foreground without redundant voxels added
in other areas. Second, both modules are lightweight. The
importance prediction involves small overhead parameters
and computation, as measured in Tab. 1. The RGB feature
extraction of Focals Conv-F involves only several layers,
instead of heady 2D detection or segmentation models [43].

The proposed modules of Focals Conv and Focals Conv-
F can readily replace their original counterparts in sparse
CNNs. To demonstrate the effectiveness, we build the
backbone networks on existing 3D object detection frame-
works [11,36,53]. Our method enables non-trivial enhance-
ment with small model complexity overhead on both the
KITTI [14] and nuScenes [2] benchmarks. These results
manifest that learnable sparsity with focal points is essen-
tial. Without bells and whistles, our approach outperforms
state-of-the-art ones on the nuScenes test split [2].

Convolutional dynamic mechanism adapts the opera-
tions conditioned on input data, e.g., deformable convolu-

tions [10, 64] and dynamic convolutions [7, 49]. The key
difference is that our approach makes use of the intrinsic
sparsity of data. It promotes feature learning to be con-
centrated on more valuable information. We deem the non-
uniform property as a great benefit. We discuss the relations
and differences to previous literature in Sec. 2.

2. Related Work

2.1. Convolutional Dynamic Mechanism

Dynamic mechanisms have been widely studied in
CNNs, due to their advantages of high accuracy and easy
adaption in scenarios. We discuss two kinds of related
methods, i.e., kernel shape adaption [10, 41, 64], and input
attention mask [34, 42, 45].

Kernel shape adaption. Kernel shape adaption meth-
ods [8, 10, 13, 64] adapt the effective receptive fields of net-
works. Deformable convolution [10] predicts offsets for
feature sampling. Its variant [64] introduces an additional
attention mask to modulate features. For 3D feature learn-
ing, KPConv [41] learns local offsets for kernel points.
MinkowskiNet [8] generalizes sparse convolution to arbi-
trary kernel shape. Overall, these methods modify the input
feature sampling process.

Deformable PV-RCNN [1] applies offset prediction for
feature sampling in 3D object detection. In contrast, focal
sparse convolution improves the output feature spatial spar-
sity and makes it learned, helpful for 3D object detection.

Attention mask on input. Methods of [39, 42, 45, 50] seek
spatial-wise sparsity for efficient inference. These methods
receive dense images and prune unimportant pixels based
on attention masks. These methods aim to sparsify dense
data while we make use of intrinsic data sparsity. Although
SBNet [34] also utilizes the sparse property, it limits appli-
cation to 2D BEV (bird-eye-views) images, and shares the
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Figure 2. Illustrations on learnable feature sparsity. We project the 3D voxel centers from the backbone output onto 2D image planes.
These cases include common, crowded, and remote objects. Left: plain Sparse CNN. Right: focal sparse CNN. Focal sparse convolution
adaptively densifies object features without introducing redundant background features. This figure is best viewed in color and by zoom-in.

static masks over all layers in the network. In contrast, our
improved convolution is more adaptive and is applicable to
related tasks, e.g., 3D instance segmentation [9].

2.2. 3D Object Detection

LIDAR-only detectors. 3D object detection frameworks
usually resemble 2D detectors, e.g., the R-CNN fam-
ily [11, 28, 36, 37] and the SSD family [17, 51, 60, 61].
The main difference on 2D detectors lies in input en-
coders. VoxelNet [62] encodes voxel features using Point-
Net [32] and applies a RPN (region proposal network) [35].
SECOND [48] uses accelerated sparse convolutions and
improves efficiency from VoxelNet [62]. VoTr [29] ap-
plies transformer architectures to voxels. Various detec-
tors [11, 36, 53] have been presented based on feature en-
coders. We validate the proposed approach on backbones of
frameworks of [11, 36, 53] on multiple datasets [2, 14, 40].

Completion-based detectors. Completion-based meth-
ods [16, 23, 46, 58] form another line of efforts in enrich-
ing foreground information. We focus on feature learning
instead of point completion. PC-RGNN [58] has a point
completion module by a graph neural network. SIENet [23]
builds upon PCN [56] for point completion in a two-
stage framework. The completion process relies on the
prior generated proposals. GSDN [16] expands all features
first through transposed convolutions and then by pruning.
SPG [46] designs a semantic point generation module for
domain adaption 3D object detection. It is applied during
data preprocessing, complicating the detection pipelines.

Multi modal fusion. Multi-modal fusion methods [19, 25,
55] use more information than LIDAR-only ones. The
KITTI [14] benchmark had been dominated by LIDAR-
only methods until PointPainting [43] was proposed. It
decorates raw point clouds with the corresponding image
segmentation scores. PointAugmenting [44] further re-
places the segmentation model with an 2D object detection
one [12]. They are both decoration-based methods, which
require image feature extraction on off-the-shelf 2D net-
works, before feeding into 3D detectors. Although promis-
ing results are achieved by these methods, the overall in-
ference pipelines are complicated. Our multi-modal focal

sparse convolution differs from the above methods in two
aspects. First, we only require several jointly trained layers
for image feature extraction, rather than the heavy segmen-
tation or detection models. Second, we only strengthen the
predicted important features, instead of the uniform deco-
ration [43, 44] for all LIDAR features.

3. Focal Sparse Convolutional Networks

In this section, we first review the formulation of sparse
convolution in Sec. 3.1. Then, the proposed focal sparse
convolution and its multi-modal extension will be elabo-
rated in Sec. 3.2 and Sec. 3.3. We finally introduce the re-
sulting focal sparse convolutional networks in Sec. 3.4.

3.1. Review of Sparse Convolution

Given an input feature xp with number of cin chan-
nels at position p in the d dimensional spatial space, we
process this feature by a convolution with kernel weights
w ∈ RKd×cin×cout . For example, in the 3D coordinate
space, w contains cin × cout spatial kernels with size 3 and
|Kd| = 33. The convolution process is represented as

yp =
∑
k∈Kd

wk · xp̄k
, (1)

where k enumerates all discrete locations in the kernel space
Kd. p̄k = p+k is the corresponding location around center
p, where k is an offset distance from p.

This formulation accommodates most types of convolu-
tions with simple modifications. When p ∈ Z, the common
convolution for dense input data is yielded. When p̄k is
added with a learned offset ∆p̄k, it includes the kernel shape
adaption methods, e.g., deformable convolutions [10, 64].
Further, if W equals to a weighted sum

∑
αiW

i, it gener-
alizes to weight attention, e.g., dynamic convolution [7,49].
Finally, when attention masks are multiplied to the input
feature map x, this formulation makes input attention mask
methods [34, 45].

For sparse input data, the feature position p does not be-
long to the dense discrete space Z. The input and output
feature spatial space is relaxed to Pin and Pout, respectively.
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Figure 3. Framework of focal sparse convolution and its multi-modal extension. An additional branch predicts a cubic importance map for
each input sparse feature, which determines the output feature positions. In the multi-modal version, the additional branch takes fusion of
LIDAR and RGB features for better prediction. Output sparse features predicted as important are also fused with the RGB features.

The formulation is converted to

yp∈Pout
=

∑
k∈Kd(p,Pin)

wk · xp̄k
, (2)

where Kd(p, Pin) is a subset of Kd, leaving out the empty
position. It is conditioned on the position p and input feature
space Pin as

Kd(p, Pin) = {k | p+ k ∈ Pin, k ∈ Kd}. (3)

If Pout includes a union of all dilated positions around Pin

within Kd neighbours, this process is formulated as

Pout =
⋃

p∈Pin

P (p,Kd), (4)

where
P (p,Kd) = {p+ k | k ∈ Kd}. (5)

On this condition, the formulation becomes regular sparse
convolution. It acts at all positions where any voxels exist in
its kernel space. It does not skip any information gathering
in the total spatial space.

This strategy involves two drawbacks. (i) It introduces
considerable computation cost. The number of sparse fea-
tures is doubled or even tripled, increasing burden for fol-
lowing layers. (ii) We empirically find that continuously
increasing the number of sparse features may harm 3D ob-
ject detection (Tab. 2). Crowded and unpromising candi-
date features may blur the valuable information. It degrades
foreground features and further declines the feature discrim-
ination capacity of 3D object detectors.

When Pin = Pout, submanifold sparse convolution [15]
is yielded. It happens only when the kernel centers locate at
the input, restricting the active positions to input sets. This
setting avoids the computation burden, but abandons neces-
sary information flow between disconnected features. Note

that the flow is common in the irregular point cloud data.
Thus, effective receptive field sizes are constrained by the
feature disconnection, which degrade the model capability.

3.2. Focal Sparse Convolution

Regardless of regular or submanifold sparse convolution,
output positions Pout are static across all p ∈ Pin, which
is undesirable. In contrast, we perform adaptive determi-
nation of sparsity or receptive field sizes in a fine-grained
manner. We relax output positions Pout to be dynamically
determined by the sparse features. We illustrate this pro-
posed process in Fig. 3 (via solid lines).

In our formulation, output positions Pout generalize to
a union of all important positions with their dilated area
and other unimportant positions. The dilated areas are de-
formable and dynamic to input positions. Eq. (5) becomes

Pout =

 ⋃
p∈Pim

P (p,Kd
im(p))

 ∪ Pin/im. (6)

We factorize this process into three steps: (i) cubic impor-
tance prediction, (ii) important input selection, and (iii) dy-
namic output shape generation.

Cubic importance prediction. A cubic importance map
Ip involves importance for candidate output features around
the input feature at position p. Each cubic importance map
shares the same shape Kd with the main processing convo-
lution kernel weight, e.g., k3 = 3×3×3 with the kernel size
3. It is predicted by an additional submanifold sparse con-
volution with a sigmoid function. The latter steps depend
on the predicted cubic importance maps.

Important input selection. In Eq. (5), Pim is a subset of
Pin. It contains the positions of relatively important input
features. We select Pim as

Pim = {p | Ip0 ≥ τ, p ∈ Pin}, (7)
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where Ip0 is the center of the cubic importance map at po-
sition p. And τ is a pre-defined threshold (Tab. 3 and 6).
Our formulation becomes the regular or submanifold sparse
convolution when τ is 0 or 1 respectively.

Dynamic output shape generation. Features in Pim is di-
lated to a dynamic shape. The output around p is deter-
mined by the dynamic output shape Kd

im(p). Note that our
deformable output shapes are pruned inside the original di-
lation without offsets. It is computed similarly to Eq. (7) as

Kd
im(p) = {k | p+ k ∈ Pin, I

p
k ≥ τ, k ∈ Kd}. (8)

We analyze the dynamic output shape in Tab. 2. For the
remaining unimportant features, their output positions are
fixed as input, i.e., submanifold. We found that directly re-
moving them or using a fully dynamic manner without pre-
serving them makes the training process unstable.

Supervision manners. In 3D object detection, we have a
prior knowledge that foreground objects are more valuable
information. Based on this prior, we apply focal loss [26]
as an objective loss function to supervise the importance
prediction. We construct the objective targets for the centers
of feature voxels inside 3D ground-truth boxes. We keep its
loss weight as 1 for the generality of our modules.

Additional supervision comes from multiplying the pre-
dicted cubic importance maps to output features as atten-
tion. It makes the importance prediction branch differen-
tiable naturally. It shares motivation with the kernel weight
sparsification methods [27] in the area of model compres-
sion. We empirically show that this attention manner bene-
fits the performance for minor classes, e.g., Pedestrian and
Cyclist on KITTI (investigated in Tab. 4).

3.3. Fusion Focal Sparse Convolution

We provide a multi-modal version of focal sparse convo-
lution, as illustrated in Fig. 3 (via dashed lines). This exten-
sion is conceptually simple but effective. We extract RGB
features from images and align LIDAR features to them.
The extracted features are fused to input and important out-
put sparse features in focal sparse convolution.

Feature extraction. The fusion module is lightweight. It
contains a conv-bn-relu layer and a max-pooling layer. It
down-samples the input image to 1/4 resolutions. It is
followed by 3 conv-bn-relu layers with residual connec-
tion [18]. The channel number is then reduced to be con-
sistent with that of sparse features, with an MLP layer. This
facilitates a simple summation of multi-modal features.

Feature alignment. A common issue during fusion is mis-
alignment in the 3D-to-2D projection. Point cloud data
is commonly processed by transformation and augmenta-
tion. Transformations include flip, re-scale, rotation, trans-
lation. The typical augmentation is ground-truth sam-

pling [48], copying paste objects from other scenes. For
these invertible transformations, we reverse the coordinates
of sparse features with the recorded transformation parame-
ters [44,57]. For ground-truth sampling, we copy the corre-
sponding 2D objects onto images. Rather than using an ad-
ditional segmentation model or mask annotations [57], we
directly crop objects in bounding boxes for simplification.

Fusion manners. The aligned RGB features are directly
fused to sparse features in summation, as they share the
same channel numbers. Although other fusion methods,
e.g., concatenation or cross-attention, can be used, we
choose the most concise summation for efficiency. The
aligned RGB features are fused with sparse features twice
in this module. It is first fused to input features for cubic
importance prediction. Then we fuse RGB features only to
important output sparse features, i.e., the first part in Eq. (5),
instead of all of them (investigated in Tab. 10).

Overall, the multi-modal layers are lightweight in terms
of parameters and fusion strtegies. They are jointly trained
with detectors. It provides an efficient and economical so-
lution for the fusion module in 3D object detection.

3.4. Focal Sparse Convolutional Networks

Both focal sparse convolution and its multi-modal ex-
tension can readily replace their counterparts in the back-
bone networks of 3D detectors. During training, we do not
use any special initialization or learning rate settings for the
introduced modules. The importance prediction branch is
trained via back-propagation through the attention multipli-
cation and objective loss function as introduced in Sec. 3.2.

The backbone networks in 3D object detectors [11, 36,
53] typically consist of one stem layer and 4 stages. Each
stage, except the first one, includes a regular sparse con-
volution with down-sampling and two submanifold blocks.
In the first stage, there are one [11, 36] or two [53] sparse
convolutional layers. By default, each sparse convolution is
followed by batch normalization [20] and ReLU activation.

We validate focal sparse convolution on the backbone
networks of existing 3D detectors [11, 36, 53]. We directly
apply focal sparse convolution at the last layer of certain
stages. We analyze the stages for using our focal sparse
convolution in experiments (ablated in Tab. 5 and 10).

4. Experiments
We conduct ablations and comparisons for Focals Conv

and its multi-modal variant. More experiments, such as re-
sults on Waymo [40], are in the supplementary material.

4.1. Setup and Implementation

KITTI. The KITTI dataset [14] consists of 7,481 samples
and 7,518 testing samples. The training samples are split
into a train set with 3,717 samples and a val set with 3,769
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Table 1. Improvements on PV-RCNN in AP3D(R40) on KITTI val.

Method #Params Runtime Easy Mod. Hard
PV-RCNN [36] – – 92.57 84.83 82.69
PV-RCNN ◦ 13.16M 103ms 92.10 84.36 82.48
Focals Conv 13.44M 112ms 92.32 85.19 82.62
Focals Conv-F 13.70M 125ms 92.26 85.32 82.95
◦ These results are evaluated on the official released model.

samples. Models are commonly evaluated in terms of the
mean Average Precision (mAP) metric. mAP is calculated
with recall 40 positions (R40). We perform ablation studies
with AP3D (R40) on the val split. We conduct main com-
parisons with AP3D (R40) on test split and AP3D (R11) on
the val split. For the optional multi-modal settings, RGB
features are extracted from single front-view for fusion.

nuScenes. The nuScenes [2] is a large-scale dataset, which
contains 1,000 driving sequences in total. It is split into
700 scenes for training, 150 scenes for validation, and 150
scenes for testing. It is collected using a 32-beam synced
LIDAR and 6 cameras with the complete 360o environment
coverage. In evaluation, the main metrics are mAP and
nuScenes detection score (NDS). In terms of multi-modal
experiments, we use images of 6 views for fusion. For ab-
lation study, models are trained on 1

4 training data and eval-
uated on the entire validation set, i.e., nuScenes 1

4 split.

Implementation details. In experiments, we validate our
modules on state-of-the-art frameworks of PV-RCNN [36],
Voxel R-CNN [11] on KITTI [14], and CenterPoint [53] on
nuScenes [2]. In LIDAR-only experiments, we apply Fo-
cals Conv in the first three stages of backbone networks. In
multi-modal cases, we apply Focals Conv-F only in the first
stage of the backbone network, for affordable memory and
inference cost. We set the importance threshold τ to 0.5.
We keep other settings intact. More experimental details
are provided in the supplementary material.

4.2. Ablation Studies

Improvements on KITTI. We first evaluate our methods
over PV-RCNN [36] in Tab. 1, as it is a high-performance,
multi-class, and open-sourced framework. In Tab. 1, the
1st and 2nd lines show the reported results [36] and results
tested from the released model. We take the latter as the
baseline. Focal S-Conv and Focals Conv-F achieve non-
trivial improvement over this strong baseline.
Dynamic output shape. In Focals Conv, the output shape
from every single voxel is dynamically determined by the
predicted importance maps. We ablate this by fixing output
shapes as regular dilation, without any other change. Tab. 2
shows that dilating all sparse features is harmful. It dramat-
ically increases the number of unpromising voxel features.

Table 2. Ablations on dynamic shape in AP3D (R40) on KITTI val.

Method
Dynamic

shape
Car Ped. Cyc.

Easy Mod. Hard Mod. Mod.
Baseline – 92.10 84.36 82.48 54.49 70.38

Focals Conv ✗ 91.10 84.02 82.22 57.62 69.82
✓ 92.32 85.19 82.62 61.61 72.76

Table 3. Ablations on input selection in AP3D (R40) on KITTI val.

Method
Important
selection

Car Ped. Cyc.
Easy Mod. Hard Mod. Mod.

Baseline – 92.10 84.36 82.48 54.49 70.38

Focals Conv ✗ 91.36 82.77 82.12 57.86 71.77
✓ 92.32 85.19 82.62 61.61 72.76

Table 4. Ablations on supervisions in AP3D (R40) on KITTI val.

Method Supervision
Car Ped. Cyc.

Easy Mod. Hard Mod. Mod.
Baseline – 92.10 84.36 82.48 54.49 70.38

Focals Conv
Attention 91.81 84.49 82.31 60.64 72.93
Obj. loss 92.39 85.05 82.62 59.27 71.46
Both 92.32 85.19 82.62 61.61 72.76

Table 5. Ablations on use stages in AP3D (R40) on KITTI val.

Method Stages
Car Ped. Cyc.

Easy Mod. Hard Mod. Mod.
Baseline – 92.10 84.36 82.48 54.49 70.38

Focals Conv

(1,) 92.19 84.83 82.43 60.56 72.29
(1, 2) 91.95 84.95 82.67 60.17 72.74
(1, 2, 3) 92.32 85.19 82.62 61.61 72.76
(1, 2, 3, 4) 91.96 84.42 82.31 60.33 72.53

Table 6. Ablations on the importance threshold τ on KITTI val.

Importance Threshold τ 0.1 0.3 0.5 0.7 0.9
AP3D (R40) - Car 84.97 85.09 85.19 84.96 84.68

Importance sampling. Focals Conv selects sparse features
that need dilation with predicted importance. To ablate this
module, we replace the importance selection (the important
input selection step) with a random sample in Tab. 3 without
other changes. It shows that large performance drop occurs
without the guidance of importance. This validates that the
importance prediction is necessary.

Supervision setting. The additional branch in Focals Conv
is supervised by both attention multiplication and the ob-
jective loss. We ablate them in Tab. 4. Only using objec-
tive loss supervision is enough to ensure performance on
Car. However, its performance on minor classes, Ped. and
Cyc., is not optimal. Attention multiplication is beneficial
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Table 7. Comparison on KITTI test split in AP3D (R40) for Car.

Method Fusion Easy Mod. Hard
MV3D [6]

✓

74.97 63.63 54.00
F-PointNet [31] 82.19 69.79 60.59
AVOD-FPN [21] 83.07 71.76 65.73
PointSIFT+SENet [59] 85.99 72.72 64.58
MMF [24] 88.40 77.43 70.22
EPNet [19] 89.81 79.28 74.59
3D-CVF [55] 89.20 80.05 73.11
CLOCs [30] 88.94 80.67 77.15
PointPillars [22]

✗

82.58 74.31 68.99
Point R-CNN [37] 86.96 75.64 70.70
Part-A2 [38] 87.81 78.49 73.51
STD [52] 87.95 79.71 75.09
SA-SSD [17] 88.75 79.79 74.16
PV-RCNN [36] 90.25 81.43 76.82
Pyramid-PV [28] 88.39 82.08 77.49
VoTr-TSD [29] 89.90 82.09 79.14
Voxel R-CNN [11] ✗ 90.90 81.62 77.06
Focals Conv ✗ 90.20 82.12 77.50
Focals Conv-F ✓ 90.55 82.28 77.59

to Ped. and Cyc. We assume that minor classes cannot get
balanced supervision from the objective loss like the long-
tailed distribution. In contrast, attention multiplication is
object-agnostic, relaxing the imbalance to some degree.

Stages for using focal sparse convolution. Tab. 5 shows
results of using Focals Conv in different numbers of stages.
(1) Applying Focals Conv in the first stage, which already
obtains clear improvement. The performance enhances as
the used stage increases until all stages are involved. Since
Focals Conv adjusts output sparsity, it is reasonable to be
used in early stages that make effects on subsequent feature
learning. The spatial feature space in the last stage is down-
sampled to a very limited size, which might not be large
enough for sparsity adaptation. Empirically, usage in the
last layer of the first three stages is the best choice. It is thus
used as the default setting in our experiments.

Importance threshold. We ablate the importance threshold
τ used in Focals Conv in Tab. 6. We run experiments with
this value ranging from 0.1 to 0.9 and interval 0.2, without
other change of settings. The accuracy AP3D (R40) on Car
serves as the metric in this ablation. The performance is
stable as the threshold value τ varies.

Improvements over multi-modal baseline on nuScenes.
We evaluate our multi-modal Focals Conv on the
nuScenes [2] 1/4 dataset. More improvement is presented
in Tab. 9. We build a multi-modal CenterPoint baseline by
fusing image features to the same fusion layer used in our
methods, with the same fusion and feature extraction lay-

Table 8. Comparison on KITTI val split in AP3D (R11) for Car.

Method Fusion Easy Mod. Hard
F-PointNet [31]

✓
83.76 70.92 63.65

PointSIFT+SENet [59] 85.62 72.05 64.19
3D-CVF [55] 89.67 79.88 78.47
PointPillars [22]

✗

86.62 76.06 68.91
Point R-CNN [37] 88.88 78.63 77.38
Part-A2 [38] 89.47 79.47 78.54
STD [52] 89.70 79.80 79.30
SA-SSD [17] 90.15 79.91 78.78
Deform. PV-RCNN [1] - 83.30 -
PV-RCNN [36] 89.35 83.69 78.70
VoTr-TSD [29] 89.04 84.04 78.68
Pyramid-PV [28] 89.37 84.38 78.84
Voxel R-CNN [11] ✗ 89.41 84.52 78.93
Focals Conv ✗ 89.52 84.93 79.18
Focals Conv-F ✓ 89.82 85.22 85.19

Table 9. Improvement over multi-modal baseline on nuScenes 1
4

.

#Params Runtime mAP NDS
CenterPoint 9.0M 93ms 56.1 64.2
+ Fusion 9.24M 145ms 59.0 (+2.9) 65.6 (+1.4)

Focals Conv-F 9.25M 159ms 61.7 (+5.6) 67.2 (+2.9)

Table 10. Ablations on use stage and fusion scope on nuScenes 1
4

.

Stage None 1 2 3 4
Scope - None Imp. All Imp. Imp. Imp.
mAP 56.1 58.6 61.7 60.9 60.7 55.0 54.8
NDS 64.2 66.2 67.2 66.4 66.5 63.5 63.3

ers. This multi-modal CenterPoint enhances the LIDAR-
only baseline from 56.1% to 59.0% mAP. Focals Conv-F
improves to 61.7% mAP on this strong baseline.

Use stages and fusion scope for Focals Conv-F. We ab-
late the usage stages and fusion scope for Focals Conv-F
in Tab. 10. Fusion scope is the scope of sparse features to
fuse with RGB features at the output of Focals Conv-F. It
shows that fusion in the early stages is beneficial, and be-
comes adverse in the last two stages. Imp. means only fus-
ing onto important output features (judged by importance
maps). When fusing in the first stage, it is better to fuse on
important features, instead of all of them, making represen-
tation discriminative.

Model complexity and runtime. We report the model
complexity and runtime comparisons in Tab. 1 and 9. The
runtime is evaluated on an NVIDIA 2080Ti GPU. Focals
Conv and its multi-modal variant only add a small overhead
to model parameters and computation, on KITTI [14]. This
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Table 11. Comparison with other methods on nuScenes test split.

Method Fusion mAP NDS Car Truck Bus Trailer C.V. Ped Mot Byc T.C. Bar
PointPillars [22] ✗ 30.5 45.3 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
3DSSD [51] ✗ 42.6 56.4 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
CBGS [63] ✗ 52.8 63.3 81.1 48.5 54.9 42.9 10.5 80.1 51.5 22.3 70.9 65.7
HotSpotNet [5] ✗ 59.3 66.0 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6
CVCNET [4] ✗ 58.2 66.6 82.6 49.5 59.4 51.1 16.2 83.0 61.8 38.8 69.7 69.7
PointPainting [43] ✓ 46.4 58.1 77.9 35.8 36.2 37.3 15.8 73.3 41.5 24.1 62.4 60.2
3DCVF [55] ✓ 52.7 62.3 83.0 45.0 48.8 49.6 15.9 74.2 51.2 30.4 62.9 65.9
FusionPainting [47] ✓ 66.3 70.4 86.3 58.5 66.8 59.4 27.7 87.5 71.2 51.7 84.2 70.2
MVF [54] ✓ 66.4 70.5 86.8 58.5 67.4 57.3 26.1 89.1 70.0 49.3 85.0 74.8
PointAugmenting [44] ✓ 66.8 71.0 87.5 57.3 65.2 60.7 28.0 87.9 74.3 50.9 83.6 72.6
CenterPoint [53] ✗ 58.0 65.5 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9
CenterPoint† ✗ 60.3 67.3 85.2 53.5 63.6 56.0 20.0 84.6 59.5 30.7 78.4 71.1
CenterPoint v2⋆ ✓ 67.1 71.4 87.0 57.3 69.3 60.4 28.8 90.4 71.3 49.0 86.8 71.0
Focals Conv ✗ 63.8 70.0 86.7 56.3 67.7 59.5 23.8 87.5 64.5 36.3 81.4 74.1
Focals Conv-F ✓ 67.8 71.8 86.5 57.5 68.7 60.6 31.2 87.3 76.4 52.5 84.6 72.3
Focals Conv-F † ✓ 68.9 72.8 86.9 59.3 68.7 62.5 32.8 87.8 78.5 53.9 85.5 72.8
Focals Conv-F ‡ ✓ 70.1 73.6 87.5 60.0 69.9 64.0 32.6 89.0 81.1 59.2 85.5 71.8
† Flip testing. ‡ Flip and rotation testing. ⋆ CenterPoint v2 includes PointPainting with Cascade R-CNN [3] and model-ensembling.

indicates that the performance improvement comes from the
model capacity of sparsity learning, instead of increasing
model sizes. On nuScenes [2], the overall runtime rises
from 93 ms to 159 ms. But parameters are still limited. It
is a common limitation in multi-view fusion methods. The
multi-modal baseline also requires 145 ms. The reason is
that there are 6-view images to process per frame.

4.3. Main Results

KITTI. We compare our Focals Conv modules upon Voxel
R-CNN [11] with previous state-of-the-art methods on both
the KITTI test and val split. In Tab. 7, we compare with
both LIDAR-only and multi-modal methods. The original
Voxel R-CNN [11] is comparable to PV-RCNN [36] and
is inferior to Pyramid-PV [28] and VoTr-TSD [29]. Focals
Conv improves it to surpass these two new methods. Us-
ing Focals Conv-F, the multi-modal Voxel R-CNN achieves
82.28% AP3D on the KITTI test split. Tab. 8 shows com-
parisons on KITTI val split in AP3D in recall 11 positions.
Focals Conv and Focals Conv-F enhance this leading result
to 84.93% and 85.22% respectively in Car class.

nuScenes. On the nuScenes dataset, we evaluate our
models on the test server and compare them with both
LIDAR-only and multi-modal methods, as in Tab. 11. Fo-
cals Conv improves CenterPoint [53] by a large margin
to 63.8% mAP. Multi-modal methods present much better
performance than LIDAR-only methods on the nuScenes
dataset. CenterPoint v2⋆ includes PointPainting [43], Cas-
cade R-CNN [3] instance segmentation models pre-trained

on nuImages, and five-model ensembling. As the testing
augmentations are not unified or stated in previous meth-
ods, we provide two results of our final model. Focals
Conv-F achieves 67.8% mAP and 71.8% mAP without any
ensembling or testing augmentation. Focals Conv-F ‡ fur-
ther achieves 70.1% mAP and 73.6% NDS with test-time
augmentations [53]. Both results are better than previously
published ones.

5. Conclusion and Discussion

This paper presents a focal sparse convolution and a
multi-modal extension, which are simple and effective.
They are end-to-end solutions for LIDAR-only and multi-
modal 3D object detection. For the first time, we show that
the learned sparsity with focal points is essential for 3D
object detectors. Notably, focal and fusion sparse CNNs
achieve leading performance on the large-scale nuScenes.

Limitations. In the multi-modal 3D detection that requires
multiple views, e.g., 6 high-resolution images per frame in
nuScenes [2], computation cost increases, although the im-
age branch is already largely simplified.
Boarder Impacts. The proposed method replies on the
sparsity of data distribution. It might reflect biases in data
collection, including the ones of negative societal impacts.
Acknowledgements. This work is in part supported by The
National Key Research and Development Program of China
(No. 2017YFA0700800) and Beijing Academy of Artificial
Intelligence (BAAI).
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modal virtual point 3d detection. In NeurIPS, 2021. 8

[55] Jin Hyeok Yoo, Yecheol Kim, Ji Song Kim, and Jun Won
Choi. 3d-cvf: Generating joint camera and lidar features us-
ing cross-view spatial feature fusion for 3d object detection.
In ECCV, volume 12372, pages 720–736, 2020. 3, 7, 8

[56] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. PCN: point completion network. In 3DV,
pages 728–737, 2018. 3

[57] Wenwei Zhang, Zhe Wang, and Chen Change Loy. Explor-
ing data augmentation for multi-modality 3d object detec-
tion. CoRR, abs/2012.12741, 2021. 5

[58] Yanan Zhang, Di Huang, and Yunhong Wang. PC-RGNN:
point cloud completion and graph neural network for 3d ob-
ject detection. In AAAI, pages 3430–3437, 2021. 3

[59] Xin Zhao, Zhe Liu, Ruolan Hu, and Kaiqi Huang. 3d ob-
ject detection using scale invariant and feature reweighting
networks. In AAAI, pages 9267–9274, 2019. 7

[60] Wu Zheng, Weiliang Tang, Sijin Chen, Li Jiang, and Chi-
Wing Fu. CIA-SSD: confident iou-aware single-stage object
detector from point cloud. In AAAI, pages 3555–3562, 2021.
3

[61] Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. SE-
SSD: self-ensembling single-stage object detector from point
cloud. In CVPR, pages 14494–14503, 2021. 3

[62] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In CVPR, pages
4490–4499, 2018. 3

[63] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and
Gang Yu. Class-balanced grouping and sampling for point
cloud 3d object detection. CoRR, abs/1908.09492, 2019. 8

[64] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets V2: more deformable, better results. In
CVPR, pages 9308–9316, 2019. 2, 3

5437


