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Abstract

Prior works on action representation learning mainly fo-
cus on designing various architectures to extract the global
representations for short video clips. In contrast, many
practical applications such as video alignment have strong
demand for learning dense representations for long videos.
In this paper, we introduce a novel contrastive action repre-
sentation learning (CARL) framework to learn frame-wise
action representations, especially for long videos, in a self-
supervised manner. Concretely, we introduce a simple yet
efficient video encoder that considers spatio-temporal con-
text to extract frame-wise representations. Inspired by the
recent progress of self-supervised learning, we present a
novel sequence contrastive loss (SCL) applied on two cor-
related views obtained through a series of spatio-temporal
data augmentations. SCL optimizes the embedding space by
minimizing the KL-divergence between the sequence simi-
larity of two augmented views and a prior Gaussian dis-
tribution of timestamp distance. Experiments on FineGym,
PennAction and Pouring datasets show that our method
outperforms previous state-of-the-art by a large margin
for downstream fine-grained action classification. Sur-
prisingly, although without training on paired videos, our
approach also shows outstanding performance on video
alignment and fine-grained frame retrieval tasks. Code
and models are available at https://github.com/
minghchen/CARL_code.

1. Introduction
In the last few years, deep learning for video understand-

ing [1, 9, 17, 33, 39, 41, 44, 47] has achieved great success
on video classification task [9, 19, 40]. Networks such as
I3D [9] and SlowFast [17] always take short video clips
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(c) Temporal video alignment on PennAction dataset.

Figure 1. Multiple applications of our frame-wise representation
learning on various datasets: (a) Fine-grained frame retrieval on
FineGym [37]. (b) Phase boundary detection on Pouring [36]. (c)
Temporal video alignment on PennAction [49]. As shown in the
figures, the representations obtained through our method (CARL)
are invariant to the appearance, viewpoint and background.

(e.g., 32 frames or 64 frames) as input and extract global
representations to predict the action category. In contrast,
many practical applications, e.g., sign language transla-
tion [4, 5, 13], robotic imitation learning [29, 36], action
alignment [6,21,23] and phase classification [16,27,37,49]
require algorithms having ability to model long videos with
hundreds of frames and extract frame-wise representations
rather than the global features (Fig. 1).

13801



Previous methods [27, 35, 37] have made an effort to
learn frame-wise representations via supervised learning,
where sub-actions or phase boundaries are annotated. How-
ever, it is time-consuming and even impractical to manually
label each frame and exact action boundaries [21] on large-
scale datasets, which hinders the generalization of mod-
els trained with fully supervised learning in realistic sce-
narios. To reduce the dependency of labeled data, some
methods such as TCC [16], LAV [23] and GTA [21] ex-
plored weakly-supervised learning by using either cycle-
consistency loss [16] or soft dynamic time warping [21,23].
All these methods rely on video-level annotations and the
training is conducted on the paired videos describing the
same action. This setting obstructs them from applying on
more generic video datasets where no labels are available.

The goal of this work is to learn frame-wise represen-
tations with spatio-temporal context information for long
videos in a self-supervised manner. Inspired by the recent
progress of contrastive representation learning [8, 11, 12,
20], we present a novel framework named contrastive action
representation learning (CARL) to achieve our goal. We as-
sume no labels are available during training, and videos in
both training and testing sets have long durations (hundreds
of frames). Moreover, we do not rely on video pairs of the
same action for training. Thus it is practical to scale up our
training set with less cost.

Modeling long videos with hundreds of frames is chal-
lenging. It is non-trivial to directly use off-the-shelf back-
bones designed for short video clip classification, since our
task is to extract frame-wise representations for long videos.
In our work, we present a simple yet efficient video encoder
that consists of a 2D network to encode spatial information
per frame and a Transformer [42] encoder to model tempo-
ral interaction. The frame-wise features are then used for
representation learning.

Recently, SimCLR [11] uses instance discrimina-
tion [46] as the pretext task and introduces a contrastive
loss named NT-Xent, which maximizes the agreement be-
tween two augmented views of the same data. In their im-
plementation, all instances other than the positive reference
are considered as negatives. Unlike image data, videos pro-
vide more abundant instances (each frame is regarded as
an instance), and the neighboring frames have high seman-
tic similarities. Directly regarding these frames as nega-
tives may hurt the learning. To avoid this issue, we present
a novel sequence contrastive loss (SCL), which optimizes
the embedding space by minimizing the KL-divergence
between the sequence similarity of two augmented video
views and a prior Gaussian distribution.

The main contributions of this paper are summarized as
follows:

• We propose a novel framework named contrastive ac-
tion representation learning (CARL) to learn frame-

wise action representations with spatio-temporal con-
text information for long videos in a self-supervised
manner. Our method does not rely on any data annota-
tions and has no assumptions on datasets.

• We introduce a Transformer-based network to effi-
ciently encode long videos and a novel sequence con-
trastive loss (SCL) for representation learning. Mean-
while, a series of spatio-temporal data augmentations
are designed to increase the variety of training data.

• Our framework outperforms the state-of-the-art meth-
ods by a large margin on multiple tasks across dif-
ferent datasets. For example, under the linear evalua-
tion protocol on FineGym [37] dataset, our framework
achieves 41.75% accuracy, which is +13.94% higher
than the existing best method GTA [21]. On Penn-
Action [49] dataset, our method achieves 91.67% for
fine-grained classification, 99.1% for Kendall’s Tau,
and 90.58% top-5 accuracy for fine-grained frame re-
trieval, which all surpass the existing best methods.

2. Related Works
Conventional Action Recognition. Various challenging
video datasets [9, 25, 32, 38, 40] have been constructed to
reason deeply about diverse scenes and situations. These
datasets provide labels of high-level concepts or detailed
physical aspects for short videos or trimmed clips. To tackle
video recognition, large amounts of architectures have been
proposed [1, 3, 9, 17, 33, 39, 41, 43, 44]. Most networks are
based on 3D Convolution layers and combined with the
techniques in image recognition [9, 17, 41], e.g., residual
connections [24] and ImageNet pre-training [14]. Some
works [33, 44] find that 3D ConvNets have insufficient re-
ceptive fields and become the bottleneck of the computa-
tional budget.

Recently, Transformers [42] achieved great success in
the field of computer vision, e.g., ViT [15] and DETR [7].
There are also several works that extend Transformers to
video recognition, such as TimeSformer [3] and ViViT [1].
Due to the strong capacity of Transformers and the global
receptive field, these methods have become new state-
of-the-art. Combining 2D backbones and Transformers,
VTN [33] can efficiently process long video sequences.
However, these architecture are all designed for video clas-
sification and predict one global class for a video.
Fine-grained Action Recognition. There are also some
datasets [27, 35, 37, 49] that investigate fine-grained action
recognition. They decompose an action into some action
units, sub-actions, or phases. As a result, each video con-
tains multiple simple stages, e.g., wash the cucumber, peel
the cucumber, place the cucumber, take a knife, and make
a slice in preparing cucumber [35]. However, these fine-
level labels are more expensive to collect, resulting in a
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Figure 2. Overview of our framework (CARL). Two augmented views are constructed from a training video through a series of spatio-
temporal data augmentations. The frame-level video encoder (FVE) and the projection head are optimized by minimizing the proposed
sequence contrastive loss (SCL) between two views.

limited size of these datasets. GTA [21] argues that these
boundary of manual annotations are subjective. Therefore,
self-supervised learning for fine-level representations is a
promising direction.
Self-supervised Learning in Videos. Previous methods of
self-supervised learning in videos construct pretext tasks,
including inferring the future [22], discriminating shuffled
frames [31] and predicting speed [2]. There are also some
alignment-based methods, where a pair of videos are trained
with cycle-consistent loss [16] or soft dynamic time warp-
ing (DTW) [10, 21, 23]. Recently, the contrastive learning
methods [11, 12, 20, 45] based on instance discrimination
have shown superior performance on 2D image tasks. Some
works [18, 26, 34, 36, 48] also use this contrastive loss for
video representation learning. They treat different frames
in a video [26, 36, 48] or different clips [18, 34] in other
videos as negative samples. Different from these methods,
our goal is fine-grained temporal understanding of videos
and we treat a long sequence of frames as input data. The
most relevant work to ours is [28], which utilizes 3D hu-
man keypoints for self-supervised acton discovery in long
kinematic videos.

3. Method
In this section, we introduce a novel framework named

contrastive action representation learning (CARL) to learn
frame-wise action representations in a self-supervised man-
ner. In particular, our framework is designed to model
long video sequences by considering spatio-temporal con-
text. We first present an overview of the proposed frame-
work in Section 3.1. Then we introduce the details of view
construction and data augmentation in Section 3.2. Next,
we describe our frame-level video encoder in Section 3.3.
Finally, the proposed sequence contrastive loss (SCL) and
its design principles are introduced in Section 3.4.

3.1. Overview

Figure 2 displays an overview of our framework. We first
construct two augmented views for an input video through

a series of spatio-temporal data augmentations. This step
is named data preprocessing. Then we feed two augmented
views into our frame-level video encoder (FVE) to extract
dense representations. Following SimCLR [11], FVE is ap-
pended with a small projection network which is a two-
layer MLP for obtaining latent embeddings. Due to the
fact that temporally adjacent frames are highly correlated,
we assume that the similarity distribution between two aug-
mented views should follow a prior Gaussian distribution.
Based on the assumption, we propose a novel sequence con-
trastive loss (SCL) to optimize frame-wise representations
in the embedding space.

3.2. View Construction

We first introduce the view construction step of our
method, as shown in the ‘data preprocessing’ part in Fig-
ure 2. Data augmentation is crucial to avoid trivial solutions
in self-supervised learning [11, 12]. Different from prior
methods designed for image data which only require spa-
tial augmentations, we introduce a series of spatio-temporal
data augmentations to further increase the variety of videos.

Concretely, for a training video V with S frames, we
aim to construct two augmented videos with T frames in-
dependently through a series spatio-temporal data augmen-
tations. For temporal data augmentation, we first perform
temporal random crop on V to generate two randomly
cropped clips with the length of [T, αT ] frames, where α
is a hyper-parameter controlling maximum crop size. Dur-
ing this process, we guarantee at least β percent of over-
lapped frames existing between two clips. Then we ran-
domly sample T frames for each video sequence, and ob-
tain V 1 = {v1

i | 1 ≤ i ≤ T}, and V 2 = {v2
i | 1 ≤ i ≤ T},

where v1
i and v2

i represent i-th frame from V 1 and V 2, re-
spectively. We set T = 240 by default. For the videos with
less than T frames, empty frames are padded before crop-
ping. Finally, we apply several temporal-consistent spatial
data augmentations, including random resize and crop, hor-
izontal flip, random color distortions, and random Gaussian
blur, on V 1 and V 2 independently.
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Figure 3. Architecture of the proposed frame-level video encoder
(FVE). The input is a long video with T frames and the outputs
are frame-wise representations. ResNet-50 is pre-trained on Ima-
geNet. We freeze the first four residual blocks of ResNet-50 and
only finetune the last block.

3.3. Frame-level Video Encoder

It is non-trivial to directly apply video classification
backbones [9, 17, 41] to model long video sequences with
hundreds of frames due to the huge computational cost.
TCC [16] presents a video encoder that combines 2D
ResNet and 3D Convolution to generate frame-wise fea-
tures. However, stacking too many 3D Convolutional layers
leads to unaffordable computational costs. As a result, this
kind of design may have limited receptive fields to capture
temporal context. Recently, Transformers [42] achieved
great progress in computer vision [7, 15]. Transformers uti-
lize the attention mechanism to solve sequence-to-sequence
tasks while handling long-range dependencies with ease. In
our network implementation, we adopt the Transformer en-
coder as an alternative to model temporal context.

Figure 3 shows our frame-level video encoder (FVE). To
seek the tradeoff between representation performance and
inference speed, we first use a 2D network, e.g., ResNet-
50 [24], along temporal dimension to extract spatial features
for the RGB video sequence of size T × 224× 224× 3.
Then a transformation block that consists of two fully con-
nected layers with batch normalization and ReLU is ap-
plied to project the spatial features to the intermediate em-
beddings of size T × 256. Following common practice,
we add the sine-cosine positional encoding [42] on top of
the intermediate embeddings to encode the order informa-
tion. Next, the encoded embeddings are fed into the 3-layer
Transformer encoder to model temporal context. At last, a
linear layer is adopted to obtain the final frame-wise repre-
sentations H ∈ RT×128. We use hi (1 ≤ i ≤ T ) to denote
the representation of i-th frame.
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Figure 4. Illustration of the proposed sequence contrastive loss.
We use the loss computation of v1

i ∈ V 1 as the example. We
first compute a prior Gaussian distribution of timestamp distance
(s1i−s21, · · · , s1i−s2T ). Then the embedding similarity distribution
between z1

i and Z2 is calculated. We minimize the KL-divergence
of two distributions in the embedding space.

The 2D ResNet-50 network is pre-trained on Ima-
geNet [14]. Considering the limited computational budget,
we freeze the first four residual blocks since they already
learned favorable low-level visual representations by pre-
training. This simple design ensures that our network can
be trained and tested on videos with more than 500 frames.
VTN [33] adopt a similar hybrid Transformer-based net-
work to perform video classification. They use the [CLS]
token to generate a global feature, while our network is de-
signed to extract frame-wise representations by considering
the spatio-temporal context. In addition, our network ex-
plores modeling much more prolonged video sequences.

3.4. Sequence Contrastive Loss

SimCLR [11] introduces a contrastive loss named NT-
Xent by maximizing agreement between augmented views
of the same instance. Unlike self-supervised learning for
images, videos provide abundant sequential information,
which is a vital supervisory signal. For typical instance
discrimination, all instances other than the positive refer-
ence are considered as negatives. However, the neighboring
frames around the reference frame are highly correlated.
Directly regarding these frames as negatives may hurt the
learning. Learning principles should be carefully designed
to avoid this issue. To optimize frame-wise representations,
we propose a novel sequence contrastive loss (SCL) which
minimizes the KL-divergence between the embedding sim-
ilarity of two augmented views and the prior Gaussian dis-
tribution, as shown in Figure 4.
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Concretely, following SimCLR, we use a small projec-
tion network g(·) which is a two-layer MLP to project
frame-wise representations H encoded by the proposed
FVE to the latent embeddings Z = g(H). Let Z1 =
{z1

i | 1 ≤ i ≤ T} and Z2 = {z2
i | 1 ≤ i ≤ T} de-

note the latent embeddings of V 1 and V 2, where z1
i and

z2
i represent the latent embedding of i-th frame in V 1 and

V 2 respectively. Let S1 = {s1i | 1 ≤ i ≤ T} denote times-
tamp vector of V 1, where s1i is the corresponding raw video
timestamp of the i-th frame in V 1 (see Figure 4). In the
same way, we can define S2 = {s2i | 1 ≤ i ≤ T}.

Given the i-th reference frame in V 1 and its correspond-
ing latent embedding z1

i , due to the fact that temporally
adjacent frames are more highly correlated than those far-
away ones, we assume the embedding similarity between
z1
i and Z2 = {z2

i | 1 ≤ i ≤ T} should follow a prior
Gaussian distribution of timestamp distance between s1i and
S2 = {s2i | 1 ≤ i ≤ T}. This assumption motivates
us to use KL-divergence to optimize the embedding space.
Specifically, let sim(u,v) = u>v/‖u‖‖v‖ denote cosine
similarity, and G(x) = 1

σ
√
2π

exp(− x2

2σ2 ) denote the Gaus-
sian function, where σ2 is the variance. We formulate the
loss of i-th reference frame in V 1 as follows:

L1
i = −

T∑
j=1

wij log
exp(sim(z1

i , z
2
j )/τ)∑T

k=1 exp(sim(z1
i , z

2
k)/τ)

, (1)

wij =
G(s1i − s2j )∑T
k=1 G(s1i − s2k)

, (2)

where wij is the normalized Gaussian weight and τ is the
temperature parameter. Then the overall loss for V 1 can be
computed across all frames:

L1 =
1

T

T∑
i=1

L1
i . (3)

Similarly, we can calculate the loss L2 for V 2. Our se-
quence contrastive loss is defined as LSCL = L1 + L2.
Noticeably, our loss does not rely on frame-to-frame cor-
respondence between V 1 and V 2, which supports the di-
versity of spatial-temporal data augmentation.

4. Experiments
4.1. Datasets and Metrics

We use three video datasets, namely PennAction [49],
FineGym [37] and Pouring [36] to evaluate the performance
of our method. We compare our method with sate-of-the-
arts on all three datasets. Unless otherwise specified, all
ablation studies on conducted on PennAction dataset.
PennAction Dataset. Videos in this dataset show hu-
mans doing different kinds of sports or exercise. Follow-
ing TCC [16], we use 13 actions of PennAction dataset. In

total, there are 1140 videos for training and 966 videos for
testing. Each action set has 40-134 videos for training and
42-116 videos for testing. We obtain per-frame labels from
LAV [23]. The video frames are from 18 to 663.
FineGym Dataset. FineGym is a recent large-scale fine-
grained action recognition dataset that requires representa-
tion learning methods to distinguish different sub-actions
within the same video. We chunk the original YouTube
videos according to the action boundaries so that each
trimmed video data only describes a single action type
(Floor Exercise, Balance Beam, Uneven Bars, or Vault-
Women). Finally, we obtained 3182 videos for training and
1442 videos for testing. The video frames vary from 140
to 5153. FineGym provides two data splits according to the
category number, namely FineGym99 with 99 sub-action
classes and FineGym288 with 288 sub-action classes.
Pouring Dataset. In this dataset, videos record the pro-
cess of hand pouring water from one object to another. The
phase labels (5 phase classes) are obtained from TCC [16].
Following TCC [16], we use 70 videos for training and 14
videos for testing. The video frames are from 186 to 797.

Evaluation Metrics. For each dataset, We first optimize
our network on the training set, without using any labels,
and then use the following four metrics to evaluate the
frame-wise representations:

• Phase Classification (or Fine-grained Action Classi-
fication) [16] is the averaged per-frame classification
accuracy on testing set. Before testing, we fix the net-
work and train a linear classifier by using per-frame
labels (phase class or sub-action category) of the train-
ing set.

• Phase Progression [16] measures the representation
ability to predict the phase progress. We fix the
network and train a linear regressor to predict the
phase progression values (timestamp distance between
a query frame and phase boundaries) for all frames.
Then it is computed as the average R-squared measure.

• Kendall’s Tau [16] is calculated over every pair of test-
ing videos by sampling two frames in the first video
and retrieving the corresponding nearest frames in the
second video, and checking whether their orders are
shuffled. It measures how well-aligned two sequences
are in time. No more training or finetuning is needed.

• Average Precision@K [23] is computed as how many
frames in the retrieved K frames have the same phase
labels as the query frame. It measures the fine-grained
frame retrieval accuracy. K = 5, 10, 15 are evaluated.
No more training or finetuning is needed.

Following [16, 23, 36], Phase Classification, Phase
Progression and Kendall’s Tau are evaluated on Pouring
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Method Training Strategy Annotation Classification Progress τ

TCC [16] Per-action Weakly 81.35 0.664 0.701
LAV [23] 84.25 0.661 0.805

TCC [16]
Joint Weakly

74.39 0.591 0.641
LAV [23] 78.68 0.625 0.684
GTA [21] - 0.789 0.748

SaL [31]
Joint None

68.15 0.390 0.474
TCN [36] 68.09 0.383 0.542
Ours 93.07 0.918 0.985

Table 1. Comparison with state-of-the-art methods on PennAction, using various evaluation metrics: Phase Classification (Classification),
Phase Progression (Progress) and Kendall’s Tau (τ ). The top row results are from per-action models, i.e., separate models are trained for
different actions. The results in middle and bottom row are obtained from training a single model for all actions.

dataset. For PennAction, all four metrics are evaluated
within each action category, and the final results are aver-
aged across the 13 action categories. Following [21], we use
Fine-grained Action Classification to evaluate our method
on FineGym dataset.

4.2. Implementation Details

In our network, we adopt ResNet-50 [24] pre-trained by
BYOL [20] as frame-wise spatial encoder. Unless other-
wise specified, we use a 3-layer Transformer encoder [42]
with 256 hidden size and 8 heads to model temporal con-
text. We train the model using Adam optimizer with learn-
ing rate 10−4 and weight decay 10−5. We decay the learn-
ing rate with cosine decay schedule without restarts [30]. In
our loss, we set σ2 = 10 and τ = 0.1 as default. Follow-
ing SimCLR [11], random image cropping, horizontal flip-
ping, random color distortions, and random Gaussian blur
are employed as the spatial augmentations. For our tem-
poral data augmentations described in Section 3.2, we set
hyper-parameters α = 1.5 and β = 20%. The video batch
size is set as 4 (8 views), and our model is trained on 4
Nvidia V100 GPUs for 300 epochs. During training, we
sample T = 240 frames for Pouring and FineGym, T = 80
frames for PennAction. During testing, we feed the whole
video into the model at once, without any temporal down-
sampling. We L2-normalize the frame-wise representations
for evaluation.

4.3. Main Results

Results on PennAction Dataset. In Table 1, our method
is compared with state-of-the-art methods on PennAction.
TCC [16] and LAV [23] train a separate model for each ac-
tion (‘Per-action’ in the table), which results in 13 expert
models for 13 action classes correspondingly. In contrast,
we train only one model for all 13 action classes (‘Joint’
in the table). Noticeably, our approach not only outper-
forms the methods using joint training, but also outperforms
the methods adopting per-action training strategy by a large

Method AP@5 AP@10 AP@15

TCN [36] 77.84 77.51 77.28
TCC [16] 76.74 76.27 75.88
LAV [23] 79.13 78.98 78.90

Ours 92.28 92.10 91.82

Table 2. Fine-grained frame retrieval results on PennAction.

Method FineGym99 FineGym288

D3TW [10] 15.28 14.07
SpeedNet [2] 16.86 15.57
TCN [36] 20.02 17.11
SaL [31] 21.45 19.58
TCC [16] 25.18 20.82
GTA [21] 27.81 24.16

Ours 41.75 35.23

Table 3. Comparison with state-of-the-art methods on FineGym,
under the evaluation of Fine-grained Action Classification.

margin under different evaluation metrics. In Table 2, we
report the results under the Average Precision@K metric,
which measures the performance of fine-grained frame re-
trieval. Surprisingly, although our model is not trained on
paired data, it can successfully find frames with similar se-
mantics from other videos. For all AP@K, our method is at
least +11% better than previous methods.

Results on FineGym Dataset. Table 3 summarizes the
experimental results of Fine-grained Action Classification
on FineGym99 and FineGym288. Our method outper-
forms the other self-supervised [2, 31, 36] and weakly
supervised [10, 16, 21] methods. The performance of
our method surpasses the previous state-of-the-art method
GTA [21] by +13.94% on FineGym99 and +11.07% on Fin-
eGym288. The weakly supervised methods, i.e., TCC [16],
D3TW [10] and GTA [21], assume there exists an optimal
alignment between two videos from the training set. How-
ever, for FineGym dataset, even in two videos describing
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Method Classification Progress τ

TCN [36] 89.53 0.804 0.852
TCC [16] 91.53 0.837 0.864
LAV [23] 92.84 0.805 0.856

Ours 93.73 0.935 0.992

Table 4. Comparison with state-of-the-art methods on Pouring.

Architecture Classification Progress τ

ResNet-50 only 68.63 0.296 0.440
ResNet-50+C3D 83.96 0.705 0.778

ResNet-50+ 93.07 0.918 0.985Transformer

Table 5. Ablation study on different architectures.

the same action, the set and order of sub-actions may differ.
Therefore, the alignment found by these methods can be in-
correct, which impedes learning. The great improvement
verifies the effectiveness of our framework.

Results on Pouring Dataset. As shown in Table 4, our
method also achieves the best performance on a relatively
small dataset, Pouring. These results further demonstrate
the great generalization ability of our approach.

Visualization Results. We present the visualization of fine-
grained frame retrieval and video alignment in Section A.

4.4. Ablation Study

In this section, we perform multiple experiments to an-
alyze the different components of our framework. Unless
otherwise specified, experiments are conducted on the Pen-
nAction dataset.
Network Architecture. In Table 5, we investigate the net-
work architecture. ‘ResNet-50+Transformer’ denotes our
default frame-level video encoder introduced in Section 3.3.
‘ResNet-50 only’ means we remove the Transformer en-
coder in our network, and only use 2D ResNet-50 and
linear transformation layers to extract representations per
frame. ‘ResNet-50+C3D’ represents that two 3D convolu-
tional layers [41] are added on top of the ResNet-50 be-
fore the spatial pooling, which is the same as the model
adopted in TCC [16] and LAV [23]. These models are all
trained with the proposed sequence contrastive loss. Our
default network outperforms the other two networks, which
attributes to the long-range dependency modeling ability of
Transformers.
Layer Number of Transformer Encoder. Table 6 shows
studies using different numbers of layers in Transformers.
We find that Phase Classification increases with more lay-
ers. However, Phase Progression slightly drops when there
are too many layers. We use 3 layers by default.

#Layers Classification Progress τ

1 92.15 0.909 0.985
2 92.61 0.913 0.990
3 93.07 0.918 0.985
4 92.81 0.910 0.990

Table 6. Study on the effects of using different number of layers
in Transformer encoder.

Learnable Blocks Classification Progress τ

None 90.63 0.907 0.994
Block5 93.07 0.918 0.985
Block4+Block5 92.98 0.919 0.989

Table 7. Ablation study on learnable blocks of ResNet-50.

Method Classification Progress τ

TCN† 86.31 0.898 0.832
TCC† 86.35 0.899 0.980

Ours 93.07 0.918 0.985

Table 8. Applying our network to TCN and TCC. † denotes we re-
implement the method and replace the network with ours. “Con-
trastive baseline” uses the corresponding frame at the other view
as the positive sample.

Training Different Blocks of ResNet. In our implementa-
tion, ResNet-50 is pre-trained on ImageNet. In Table 7, we
study the effects of finetuning different blocks of ResNet-
50. The standard ResNet contains 5 blocks, namely Block1-
Block5. ‘None’ denotes that all layers of ResNet are frozen.
‘Block5’ denotes we freeze the first four residual blocks
of ResNet and only make the last residual block learnable,
which is our default setting. Similarly, ‘Block4+Block5’
means we freeze the first three blocks and only train the last
two blocks. Table 7 shows that encoding dataset-related
spatial information is important (‘None’ vs. ‘Block5’),
and training more blocks does not lead to improvement
(‘Block5’ vs. ‘Block4+Block5’).
Applying Our Network to Other Methods. We study
whether our frame-level video encoder (FVE) introduced
in Section 3.3 can boost the performances of TCC [16] and
TCN [36]. We replace the C3D-based network with ours.
Table 8 shows the results. We find that the proposed net-
work can dramatically improve the performance of their
methods (compared with the results in Table 3). In addi-
tion, our method still keeps a large performance gain, which
attributes to the proposed sequence contrastive loss.
Hyper-parameters of Sequence Contrastive Loss. We
study the hyper-parameters, i.e., temperature parameter τ
and Gaussian variance σ2 in our sequence contrastive loss
(see Eq. 2). The variance σ2 of the prior Gaussian distribu-
tion controls how the adjacent frames are semantically sim-
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Hyper-parameters Classification Progress τ

τ=0.1, σ2=1 92.95 0.903 0.963
τ=0.1, σ2=25 92.03 0.922 0.993

τ=1.0, σ2=10 91.57 0.889 0.993
τ=0.3, σ2=10 92.13 0.903 0.992
τ=0.1, σ2=10 93.07 0.918 0.985

Table 9. Ablation study on Gaussian variance σ2 and the temper-
ature τ in sequence contrastive loss.

α Sampling β (%) FineGym99

0
Random 20

36.72
1.5 41.75
1 39.03

1.5 Even 20 38.44

1.5 Random

0 38.15
20 41.75
50 39.14
80 37.94

100 35.53

Table 10. Ablation study on hyper-parameters of temporal data
augmentations. Effects of maximum crop size α, overlap ratio β
and random sampling strategy are studied. The experiments are
conducted on FineGym99 dataset.

ilar to the reference frame, on the assumption. As Table 9
shows, too small variance (σ2 = 1) or too large variance
(σ2 = 25) degrades the performance. We use σ2 = 10 by
default. In addition, we observe an appropriate temperature
(τ = 0.1) facilitates the learning from hard negatives, which
is consistent with the conclusion in SimCLR [11].
Study on Different Temporal Data Augmentations. We
study the different temporal data augmentations described
in Section 3.2, including maximum crop size α, overlap
ratio β between views, and different sampling strategies,
namely random sampling and even sampling. Table 10
shows the results. From the table, we can see that the per-
formance drops dramatically when we crop the video with a
fixed length (α = 1). The performance also decreases when
we perform even sampling on the cropped clips. As de-
scribed in Section 3.4, our sequence contrastive loss does
not rely on frame-to-frame correspondence between two
augmented views. Experimentally, constructing two views
with β = 100% percent of overlapped frames degrades the
performance, since the variety of augmented data decreases.
In addition, we also observe the performance drops when
two views are constructed independently (β = 0% ). The
reason is that in this setting, the training may bring the rep-
resentations of temporally distant frames closer, which hin-
ders the optimization.

% of Labeled Data→ 10 50 100

Number of training frames:
80 27.10 32.78 34.02

160 30.28 36.46 38.06
240 33.53 39.89 41.75
480 31.46 37.92 39.45

Supervised 24.51 48.75 60.37

Table 11. Ablation studies on number of training frames under
different data protocols. Study is conducted on FineGym99 Fine-
grained Action Classification task. ‘Supervised’ means all layers
are trained with supervised learning.

Number of Training Frames and Linear Evaluation Un-
der Different Data Protocols. As described in Section 3.2,
our network takes augmented views with T frames as in-
put. We study the effects of different frame numbers T on
FineGym99. Table 11 shows the results. We observe that
taking long sequences as input is essential for frame-wise
representation learning. However, a too large frame num-
ber degrades the performance. We thus set T = 240 by de-
fault. We also conduct linear evaluation under different data
protocols. Concretely, we use 10%, 50% and 100% labeled
data to train the linear classifier. Compared with the super-
vised model (all layers are learnable), our method achieves
better performance when the labeled data is limited (10%
data protocol).

5. Conclusion

In this paper, we present a novel framework named
contrastive action representation learning (CARL) to learn
frame-wise action representations, especially for long
videos, in a self-supervised manner. To model long videos
with hundreds of frames, we introduce a simple yet efficient
network named frame-level video encoder (FVE), which
considers spatio-temporal context during training. In ad-
dition, we propose a novel sequence contrastive loss (SCL)
for frame-wise representation learning. SCL optimizes the
embedding space by minimizing the KL-divergence be-
tween the sequence similarity of two augmented views
and a prior Gaussian distribution. Experiments on various
datasets and tasks show effectiveness and generalization of
our method.
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