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Abstract

Universal domain adaptation (UniDA) aims to transfer
the knowledge learned from a label-rich source domain to
a label-scarce target domain without any constraints on
the label space. However, domain shift and category shift
make UniDA extremely challenging, which mainly lies in
how to recognize both shared “known” samples and pri-
vate “unknown” samples. Previous works rarely explore
the intrinsic geometrical relationship between the two do-
mains, and they manually set a threshold for the overconfi-
dent closed-world classifier to reject “unknown” samples.
Therefore, in this paper, we propose a Geometric anchor-
guided Adversarial and conTrastive learning framework
with uncErtainty modeling called GATE to alleviate these
issues. Specifically, we first develop a random walk-based
anchor mining strategy together with a high-order atten-
tion mechanism to build correspondence across domains.
Then a global joint local domain alignment paradigm is de-
signed, i.e., geometric adversarial learning for global dis-
tribution calibration and subgraph-level contrastive learn-
ing for local region aggregation. Toward accurate target
private samples detection, GATE introduces a universal
incremental classifier by modeling the energy uncertainty.
We further efficiently generate novel categories by mani-
fold mixup, and minimize the open-set entropy to learn the
“unknown” threshold adaptively. Extensive experiments on
three benchmarks demonstrate that GATE significantly out-
performs previous state-of-the-art UniDA methods.

1. Introduction
Deep neural networks have achieved impressive progress

in image recognition tasks given abundant labeled data,
however, they do not generalize well to novel unlabeled do-
main [28]. Annotating massive data from various domains
is an expensive and time-consuming task, and these do-
mains often sample from different distributions against each
other. Such so-called domain shift would degenerate the

*This work is completed in Huawei Technologies.
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model performance heavily [15]. To alleviate this issue, do-
main adaptation (DA) transfers knowledge from the label-
rich source domain to the label-scarce target domain by di-
minishing the feature discrepancy across two domains [10].
Suppose that the label spaces of two domains are Cs and Ct,
respectively, traditional unsupervised DA usually assumes
Cs = Ct, i.e., close-set DA (CDA) [38]. In complex real-
world scenarios, however, this assumption may not be eas-
ily satisfied. There are several situations we may encounter:
Ct ⊂ Cs, i.e., partial DA (PDA) [2]; Cs ⊂ Ct, i.e., open-
set DA (ODA) [29]; Cs ∩ Ct ̸= ∅, Cs ∪ Ct ̸= Cs or Ct,
i.e., open-partial DA (OPDA) [16]. Although these variants
have recently been resolved independently, the downside is
that a method that is applicable to one variant may not be ap-
plicable to another. More difficultly, we cannot know which
of these variants will occur in advance.

To better tackle these general situations, universal DA
(UniDA) is raised to account for both domain shift and cat-
egory shift, allowing two domains to own their private cat-
egories [44]. It assumes that we have no prior knowledge
about their label space differences, thus being very prac-
tical in the real world. In UniDA, we aim to classify the
target samples into either one of the “known” labels or the
“unknown” label. However, there exist two main techni-
cal challenges in UniDA. First, we should constrain the do-
main bias removal into the common categories between two
domains, and need to separate their respective private cat-
egories simultaneously. Second, we need to detect the po-
tential “unknown” samples in the target domain without any
target label supervision or other prior information. These
two challenges are complementary and mutually constrain-
ing, since better removal of feature discrepancy can help
identify the “unknown” sample, whereas, in turn, the model
can help separate the common and private categories once
it learns the concept of “unknown”.

Recently, several efforts have been devoted to settling
the UniDA task. For the first challenge, UAN [44] exploits
both the domain similarity and the prediction uncertainty
of each sample to incorporate a weighting mechanism into
the adversarial network for promoting common-class adap-
tation. DANCE [32] moves each target sample either to a
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source “known” class prototype or to its target neighbors,
and uses an entropy separation loss to encourage domain
alignment. These methods rarely explore the intrinsic struc-
tural relationship between the two domains in the geometric
manifold space, making it difficult to achieve fine-grained
class-specific alignment and separation. For the second
challenge, existing methods like CMU [9] manually set a
threshold for confidence or entropy score outputted by the
closed-world classifier to reject “unknown” samples. How-
ever, the class competition nature may cause the neural net-
work to generate overconfident predictions for “unknown”
instances, making the threshold hard to tune [43]. Besides,
since the semantic information of “known” categories varies
in different domains and tasks, it is hard to acquire an opti-
mal threshold that suits all open-set recognition tasks [47].

To address these two challenges, here we propose
a Geometric anchor-guided Adversarial and conTrastive
learning framework with uncErtainty modeling called
GATE for UniDA task. First, we retrieve the mutual nearest
neighbors (MNN) intra- and inter-domains as the geometric
anchors to build the intrinsic structure correspondence be-
tween two domains. To better uncover the complete distri-
bution of samples from the common categories, we develop
a novel within-domain random walk-based strategy to ex-
pand the MNN anchor pair list. We also introduce a shared
nearest neighbor (SNN) scoring mechanism to minimize the
influence of incorrectly constructed anchors. Based on this
fine-grained affinity knowledge across domains, we design
a multi-anchor-constrained geometric adversarial learning
paradigm for global distribution alignment, and propose a
subgraph-level cross-domain contrastive learning objective
to facilitate local region aggregation. Such a global joint
local learning strategy better realizes the matching of com-
mon categories and the separation of private categories.

Second, to enable the model known “unknown”, we
transform the closed-world classifier into a universal formu-
lation by adding extra dimension to model the energy-based
uncertainty. Such an augmented classifier component also
stands for a learnable threshold between “known” and “un-
known”. To efficiently anticipate the distribution of novel
categories in training, we consider generating synthesized
instances by manifold mixup technique, which mimics the
target private categories with a limited computation cost.
In this way, the open-set classification has in turn changed
back to a generalized closed-set classification, thus adap-
tively estimating the “unknown” threshold. We also pro-
pose to apply open-set entropy minimization for unlabeled
target samples, allowing the model to align them to either
“known” or “unknown” categories. Given this insight, the
idea of our method is simple yet powerful.

Our contribution can be summarized as follows:

• We propose a novel UniDA framework called GATE
based on geometric anchor mining and uncertainty

modeling. GATE designs a global joint local domain
alignment strategy, i.e., geometric adversarial learning
for global distribution calibration and subgraph-level
contrastive learning for local region aggregation.

• We propose an energy-based universal classification
paradigm that learns the “unknown” threshold adap-
tively. The open-set entropy minimization allows us
to label the “known” samples and detect “unknown”
samples in the target domain.

• We conduct extensive experiments on various UniDA
benchmarks, and the empirical results show that GATE
outperforms other state-of-the-art UniDA methods.
Deeper analyses validate the effectiveness of individ-
ual components proposed in GATE.

2. Related work
2.1. Universal domain adaptation

Universal domain adaptation is a realistic but challeng-
ing DA scenario which allows both domains to have their
own private categories. UAN [44] measures the sample-
level transferability to distinguish the common and private
categories. CMU [9] detects the target “unknown” samples
by aggregating multiple complementary uncertainty mea-
sures. DANCE [32] designs two loss functions, neighbor-
hood clustering and entropy separation, for category shift-
agnostic adaptation. DCC [18] draws the domain consen-
sus knowledge to facilitate the target clustering and the pri-
vate category discovery. OVANet [33] trains a One-vs-All
classifier for each source class and decides the “known” or
“unknown” by using the output. However, these methods
do not consider the intrinsic manifold structure relationship
between two domains, thus making them suboptimal for do-
main alignment. In this paper, we design a global joint local
learning framework to remove domain bias based on the ge-
ometric anchor correspondence across domains.

2.2. Contrastive learning

Recently, contrastive learning, a kind of self-supervised
learning paradigm [23], has achieved impressively supe-
rior performance in many computer vision tasks [6, 13].
It aims to achieve instance-level discrimination and invari-
ance, by pushing semantically distinct samples away while
pulling semantically consistent samples closer in the fea-
ture space [7,42]. The existing contrastive learning methods
can be mainly divided into three types: instance-based [11],
cluster-based [4], and neighborhood-based [46]. In this pa-
per, we first construct the random walk-based MNN pairs as
positive anchors intra- and inter-domains, and then propose
a cross-domain subgraph-level contrastive learning objec-
tive to aggregate local similar samples and separate dissim-
ilar samples. By incorporating the high-order association
into anchor scoring, the soften contrastive alignment pro-
cess becomes more robust to avoid negative label transfer.
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Figure 1. Schematics of GATE. (A) In the feature space, we use the subgraph-level contrastive loss to achieve local aggregation across
domains. The geometric-aware adversarial loss aims to remove the global distribution-level domain shift. For the universal classifier, the
open-set entropy minimization aligns the target samples to either “known” or “unknown” categories. (B) Within-domain random walk for
anchor expansion. (C) The shared nearest neighbor score for robust correspondence. (D) Manifold mixup for generating novel samples.

3. Methods
In UniDA, we have access to a labeled source domain

Ds = (xs
i , y

s
i )

ns

i=1 and an unlabeled target domain Dt =
(xt

i)
nt

i=1 during training, which are sampled from different
distributions p and q, respectively. Assume that the label
sets of source domain and target domain are Cs and Ct, re-
spectively, we denote C = Cs∩Ct as the common label set
shared by both domains. C̄s = Cs\C and C̄t = Ct\C rep-
resent the label sets private to the source and target domain,
respectively. Our goal is to train a model on Ds ∪ Dt to
classify the target samples with either one of the “known”
|Cs| labels or the “unknown” label.

As shown in Figure 1(A), our model consists of three
modules: (1) a feature extractor F that maps the input x
into embedding feature z = F(x), and (2) an adversarial
discriminator D that remove the global feature discrepancy
of cross-domain geometric anchors, and (3) a universal clas-
sifier G that assigns the feature z into one of |Cs|+1 classes,
with the |Cs| + 1-th element representing the “unknown”
uncertainty. The neural network should be able to produce
high uncertainty scores for “unknown” samples.

3.1. Intrinsic geometric anchor correspondence
mining intra- and inter-domains

The main challenge of UniDA is to align the common
categories between the two domains and to separate the
respective private categories. Naturally, removing feature
discrepancy should be limited to the integration of com-
mon categories. Since the target domain does not have any
prior structure knowledge of semantic categories, a natural
question is how to identify the target sample is associated
with the common category of the source domain? In man-
ifold learning, a basic inductive bias is that samples that
are neighbors in the feature space are more likely to come
from the same category [5]. Correspondingly, we introduce

a novel inductive bias for UniDA: samples from common
categories (defined as anchors) are geometrically close to
each other in the feature space. Therefore, a key step for
domain alignment is the identification of anchors between
two domains. These anchors represent two instances (with
one instance from each domain), that we predict to originate
from a common semantic category.

Specifically, we identify mutual nearest neighbor (MNN)
pairs across domains as anchors. Assume that the features
{zm}ns+nt

m=1 are l2 normalized, for each sample i in source
domain, we find the k samples in target domain with the
smallest cosine distance to i, i.e., its k nearest neighbors T i

k

in target domain. We do the same for each sample j in target
domain to find its k nearest neighbors Sj

k in source domain.
If a pair of instances (i ∈ Ds, j ∈ Dt) is contained in each
other’s set of k nearest neighbors, namely

i ∈ Sj
k ∧ j ∈ T i

k , (1)
those samples are considered to be mutual nearest neigh-

bors. We interpret these anchor pairs as containing sam-
ples that belong to the same semantic category being gener-
ated in different domains. Thus, any systematic differences
in feature representation between samples in MNN pairs
should represent the domain shift. For convenience, we
use Ast = AT

ts to denote the MNN affinity correspondence
graph matrix between the two domains, and Ast(i, j) = 1
when (i ∈ Ds, j ∈ Dt) is a cross-domain MNN anchor pair,
otherwise Ast(i, j) = 0. Further, the semantic information
represented by the MNN pair is also applicable to associate
the clusters in target domains. Similarly, define Att as the
MNN adjacency graph matrix in the target domain, we have
Att = 1 if and only if (i ∈ Dt, j ∈ Dt) meets the following
condition:

i ∈ T j
k ∧ j ∈ T i

k . (2)
Considering that the source domain is labeled, its intrinsic
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affinity adjacency matrix Ass can be obtained according to
whether the sample pairs have the same label.
3.2. Random walk-based MNN expansion and an-

chor pair scoring mechanism
One major potential drawback of the MNN pairs is that

it is hard to assure these pairs could cover the complete dis-
tributions of samples from common categories. Therefore,
we alternatively develop a within-domain random walk (rw)
strategy to expand the MNN pair list (see Figure 1(B)).
Specifically, suppose instance i1 from source domain and
instance j1 from target domain is selected as an MNN pair.
Among the k nearest neighbors T j1

k of j1 within target do-
main, we arbitrarily pick one instance j2. Conversely, the
same procedure would give i2 from source domain. Then,
(i2, j2) is regarded as an extended MNN pair. For all MNN
pairs, we could generate these kinds of new pairs. We call
such pairs obtained from this procedure rwMNN pairs. The
generated rwMNN pairs can better cover the distributions
of matched common categories, which could strengthen the
correspondence across domains. For convenience, we de-
note the anchor sets that can form cross-domain rwMNN
pairs in the two domains as Ms and Mt.

Robust identification of anchor correspondence is key for
effective domain alignment. Incorrect anchor pairs repre-
senting instances from distinct categories can lead to error
classification. In particular, instances that come from pri-
vate categories should theoretically not participate in cross-
domain anchor pairs, yet in practice, they will do so with
low frequency. To minimize the influence of incorrectly
identified anchors, we propose to weight anchors by shared
nearest neighbor (SNN) score (see Figure 1(C)). Suppose
(i ∈ Ds, j ∈ Dt) is a rwMNN pair and their k nearest
neighbor sets in two domains are (Si

k, T i
k ) and (Sj

k, T
j
k ),

respectively, then their SNN score can be calculated by

Ãst(i, j) = SNN(i, j) =
|Si

k ∩ Sj
k|+ |T i

k ∩ T j
k |

2k
. (3)

By examining the neighbor consistency in the local re-
gion, the SNN score introduces the high-order association
to improve anchor reliability. The same procedure can also
be able to apply on the target domain. For an anchor pair
(j1 ∈ Dt, j2 ∈ Dt), the SNN score is defined as

Ãtt(j1, j2) = SNN(j1, j2) =
|T j1

k ∩ T j2
k |

k
. (4)

After that, we replace the original binarized graph matrices
with the weighted ones Ãst, Ãts, Ãtt and Ãss(= Ass).
3.3. Feature alignment via geometric adversarial

and contrastive learning
To achieve domain alignment in UniDA, we develop a

global calibration joint local aggregation strategy from the
constructed anchor correspondence within and across do-
mains. Specifically, classical adversarial learning methods
for CDA employ an adversarial domain discriminator D
to distinguish the source samples from the target samples,

while training the feature extractor F to generate embed-
ding features to confuse the discriminator [36]:
Ladv = −Ex∼Dt

[logD(F(x))] (5)
LD = −Ex∼Ds

[logD(F(x))]− Ex∼Dt
[log(1−D(F(x)))].

(6)
Min-max training between LD and Ladv yields the domain
invariant feature representation. However, when the source
domain and target domain have their own private classes,
such an adversarial learning strategy will cause the distribu-
tion of private classes to be aligned to the common classes,
resulting in the overcorrection of domain bias. To resolve
this issue, we propose to perform adversarial learning on
cross-domain rwMNN anchor pairs, namely,
Lrw
adv = −Ex∼Mt

[logD(F(x))] (7)
Lrw
D = −Ex∼Ms

[logD(F(x))]− Ex∼Mt
[log(1−D(F(x)))].

(8)
Our motivation here is that the difference in embedding

features between samples in an rwMNN pair provides an
estimate of the domain bias, which is made more precise
by averaging across many such pairs. We use the adversar-
ial network to obtain the estimation of domain shift implic-
itly and apply it to other samples to perform bias correction
from the global feature distribution level. Using only the
overlapping anchor subsets between two domains for fea-
ture discrepancy correction naturally avoids the assumption
of equal category composition in unsupervised DA.

However, the global distribution-level adversarial align-
ment strategy may not be enough to guarantee local com-
mon class-specific alignment and private class separation,
which might lead to negative transfer. To enforce the
fine-grained class-level alignment, we design an rwMNN-
guided contrastive learning framework to aggregate simi-
lar samples across domains and push away dissimilar sam-
ples. Specifically, let S(zi, zj) = exp (zizj/τ) represents
the similarity of embedding features between two samples
(xi, xj), where τ is a temperature parameter. Then we de-
fine two statistics for each sample based on the weighted
adjacency graph matrices, i.e., total intra-subgraph similar-
ity and total inter-subgraph similarity, as below

Sintra(xi) =



if xi ∈ Ds,∑
Ãss(i,j)>0 Ãss(i, j)S(zi, zj)+∑
Ãst(i,k)>0 Ãst(i, k)S(zi, zk);

if xi ∈ Dt,∑
Ãts(i,j)>0 Ãts(i, j)S(zi, zj)+∑
Ãtt(i,k)>0 Ãtt(i, k)S(zi, zk).

(9)

Sinter(xi) =


if xi ∈ Ds,∑

Ãss(i,j)=0 S(zi, zj) +
∑

Ãst(i,k)=0 S(zi, zk);

if xi ∈ Dt,∑
Ãts(i,j)=0 S(zi, zj) +

∑
Ãtt(i,k)=0 S(zi, zk).

(10)
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Assume that the unified graph can be partitioned into sev-
eral subgraphs, the intuition of category alignment and com-
pactness implies that the similarities of feature represen-
tation in the same local subgraph should be larger than
that between distinct subgraphs. To utilize this relation
knowledge of intra- and inter-domains, we propose a novel
subgraph-level multi-sample contrastive loss below,

Lrw
Contra = − 1

ns + nt

ns+nt∑
i=1

log(
Sintra(xi)

Sinter(xi)
). (11)

Minimizing Lrw
Contra can simultaneously increase total

intra-subgraph similarity and decrease total inter-subgraph
similarity, which improves the common categories match-
ing across domains and the respective private categories
separation. Note that the loss Lrw

Contra covers compu-
tations involving all the embedded features of two do-
mains, so we employ a hybrid memory bank Z =
{zs1, ..., zsns

, zt1, ..., z
t
nt
} to store these features. Before ev-

ery mini-batch training, we simply update the old items in
the Z corresponding to the current mini-batch.

3.4. Energy-based uncertainty modeling for univer-
sal classification

Most existing UniDA methods use a softmax-based
closed-world classifier to discriminate all samples, and they
manually set a threshold for the confidence or entropy score
output by the classifier to identify “unknown” samples in
the target domain [33]. This strategy would face two thorny
troubles: 1) since the model is asked to classify the input
into that pre-defined source “known” categories with high
probability during training, the class competition nature in
softmax causes neural network classifiers to generate over-
confident predictions, thus failing to model uncertainty in
output probabilities; 2) in the absence of some prior “un-
known” samples as supervision, it is difficult to tune an
optimal threshold to apply it to all open-set tasks. To ad-
dress these issues, we introduce an energy-based |Cs| + 1-
dimensional softmax formulation for universal classifica-
tion, which incorporates the open-world uncertainty mod-
eling as the augmented dimension.

Assume that G(F)(x)k(1 ≤ k ≤ |Cs|) represents the
k-th logit for the k-th category produced by closed clas-
sification head layer, then the discrimination probabilities
P(x) = (P1(x),P2(x), ...,P|Cs|(x)) can be obtained after
putting a softmax normalization function on the |Cs| logits,

Pk(x) =
exp(G(F)(x)k)∑|Cs|
i=1 exp(G(F)(x)i)

. (12)

According to [22],
∑|Cs|

i=1 exp(G(F)(x)i) can be regarded
as a kind of negative energy function which encodes the
classification uncertainty for out-of-distribution sample de-
tection. The smaller the value of

∑|Cs|
i=1 exp(G(F)(x)i), the

larger the classification uncertainty and the more the sample
tends to be the “unknown” sample. To incorporate this char-

acteristic into the classification layer, we extend the closed-
world classifier into open-world one by adding an extra di-
mension representing uncertainty estimation, namely

P|Cs|+1(x) =
exp(G(F)(x)|Cs|+1)∑|Cs|+1
j=1 exp(G(F)(x)j)

. (13)

Now the next question is how to design a training principle
that equips the P|Cs|+1(x) with the ability for identifying
“unknown” samples. Our motivation is to generate synthe-
sized instances by manifold mixup [40] to mimic the emer-
gence of novel categories (see Figure 1(D)). Specifically,
we arbitrarily take two samples (xs

i , x
s
j) from different cat-

egories in the source domain, and then mix their embedding
features (F(xs

i ),F(xs
j)) by linear interpolation,

z̃λ = λF(xs
i ) + (1− λ)F(xs

j), yi ̸= yj , (14)
where λ ∈ [0, 1] is randomly sampled from Beta distribu-

tion (Beta(2, 2)). Since the interpolation regions between
two source “known” categories are often places of low-
confidence yet high-uncertainty predictions, we can treat
z̃λ as the embedding of novel classes and give it label
|Cs| + 1. The set of these synthesized samples are defined
as Dmix

s . Naturally, the source samples together with their
augmented novel instances are trained with a |Cs|+ 1-way
cross-entropy loss, given by

Lsup = −E(x,y)∈Ds∪Dmix
s

[log(Py(x))]. (15)
Since the constructed universal classifier has the concept of
“unknown”, we apply open-set entropy minimization train-
ing for the unlabeled target samples to improve the discrim-
ination reliability,

Lent = − 1

nt

nt∑
i=1

|Cs|+1∑
k=1

Pk(x
t
i) logPk(x

t
i). (16)

3.5. Overall training objective
The overall training loss of our model can be written as

a min-max game:
max
D

min
F,G

Lsup + Lent + αLrw
Contra − αLrw

D , (17)

where α is a weight parameter to trade-off between align-
ment and discrimination. Here we set it as 0.1 to balance
each loss component. During training, we split source and
target samples into different mini-batches and forward them
separately. Note that the synthesized samples are produced
within source mini-batches, i.e., once we get a source mini-
batch, another order of instances can be derived by shuffling
this mini-batch. Then we mask the pairs from the same cat-
egory and conduct manifold mixup with the pairs from dif-
ferent categories, thus free of extra time cost.

4. Results
4.1. Setup

Dataset. We conduct experiments on three benchmark
datasets. Office [31] consists of about 4700 images in 31
categories from three domains: Amazon (A), DSLR (D),
and Webcam (W). OfficeHome [39] is a larger dataset with
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Table 1. H-score comparison in the OPDA setting. Some results for previous methods are cited from DCC [18] and OVANet [33].
Office (10/10/11) OfficeHome (10/5/50) VisDA (6/3/3)

Methods Type A2W D2W W2D A2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R
RTN C 50.2 54.7 55.2 50.2 47.7 49.3 51.2 38.4 44.7 45.7 42.6 44.1 45.5 42.6 36.8 45.5 44.6 39.8 44.5 42.9 26.0

IWAN P 50.1 54.1 55.4 50.6 49.7 49.8 51.6 40.5 47.0 47.8 45.0 45.1 47.6 45.8 41.4 47.6 46.3 42.5 46.5 45.3 27.6
OSBP O 50.2 55.5 57.2 51.1 49.8 50.2 52.3 39.6 45.1 46.2 45.7 45.2 46.8 45.3 40.5 45.8 45.1 41.6 46.9 44.5 27.3
UAN U 58.6 70.6 71.4 59.7 60.1 60.3 63.5 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6 30.5
CMU U 67.3 79.3 80.4 68.1 71.4 72.2 73.1 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6 34.6

DANCE U 75.8 90.9 87.1 79.6 82.9 77.6 82.3 61.0 60.4 64.9 65.7 58.8 61.8 73.1 61.2 66.6 67.7 62.4 63.7 63.9 42.8
DCC U 78.5 79.3 88.6 88.5 70.2 75.9 80.2 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2 43.0

OVANet U 78.4 95.9 95.5 83.8 80.7 82.7 86.2 63.4 77.8 79.7 69.5 70.6 76.4 73.5 61.4 80.6 76.5 64.3 78.9 72.7 53.1
GATE U 81.6 94.8 94.1 87.7 84.2 83.4 87.6 63.8 75.9 81.4 74.0 72.1 79.8 74.7 70.3 82.7 79.1 71.5 81.7 75.6 56.4

Table 2. H-score comparison in the ODA setting. Some results for previous methods are cited from DCC [18] and OVANet [33].
Office (10/0/11) OfficeHome (25/0/40) VisDA (6/0/6)

Methods Type A2W A2D D2W W2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R
STA O 75.9 75.0 69.8 75.2 73.2 66.1 72.5 55.8 54.0 68.3 57.4 60.4 66.8 61.9 53.2 69.5 67.1 54.5 64.5 61.1 64.1

OSBP O 82.7 82.4 97.2 91.1 75.1 73.7 83.7 55.1 65.2 72.9 64.3 64.7 70.6 63.2 53.2 73.9 66.7 54.5 72.3 64.7 52.3
ROS O 82.1 82.4 96.0 99.7 77.9 77.2 85.9 60.1 69.3 76.5 58.9 65.2 68.6 60.6 56.3 74.4 68.8 60.4 75.7 66.2 66.5
UAN U 46.8 38.9 68.8 53.0 68.0 54.9 55.1 40.3 41.5 46.1 53.2 48.0 53.7 40.6 39.8 52.5 53.6 43.7 56.9 47.5 51.9
CMU U 55.7 52.6 75.9 64.7 76.5 65.8 65.2 45.1 48.3 51.7 58.9 55.4 61.2 46.5 43.8 58.0 58.6 50.1 61.8 53.3 54.2

DANCE U 78.8 84.9 78.8 88.9 79.1 68.3 79.8 61.9 61.3 63.7 64.2 58.6 62.6 67.4 61.0 65.5 65.9 61.3 64.2 63.0 67.5
DCC U 54.8 58.3 89.4 80.9 67.2 85.3 72.6 56.1 67.5 66.7 49.6 66.5 64.0 55.8 53.0 70.5 61.6 57.2 71.9 61.7 59.6

OVANet U 88.3 90.5 98.2 98.4 86.7 88.3 91.7 58.9 66.0 70.4 62.2 65.7 67.8 60.0 52.6 69.7 68.2 59.1 67.6 64.0 66.1
GATE U 86.5 88.4 95.0 96.7 84.2 86.1 89.5 63.8 70.5 75.8 66.4 67.9 71.7 67.3 61.5 76.0 70.4 61.8 75.1 69.1 70.8

15500 images from 65 categories in four domains: Artistic
images (A), Clip-Art images (C), Product images (P), and
Real-World images (R). VisDA [30] is a large-scale chal-
lenging dataset with 12 categories, with source domain con-
taining about 150K synthetic images (S) and target domain
containing 50K real world images (R). Let |C|, |C̄s| and
|C̄t| denote the number of common categories, source pri-
vate categories and target private categories, respectively.
Following existing studies [32, 33], we show the category
split (|C|/||C̄s||/|C̄t|) of each experimental setting in a cor-
responding result table. The split details can be seen in the
supplementary.

Evaluation protocols. We use the same evaluation met-
rics as those in the previous studies [9, 18]. In CDA and
PDA settings, we calculate the classification accuracy over
all target samples. In ODA and OPDA settings, target pri-
vate samples are grouped into a single “unknown” class. As
such, the trade-off between the accuracy of “known” and
“unknown” classes is important in evaluating performance.
Thus, we use the H-score, i.e. the harmonic mean of the ac-
curacy on common classes and accuracy on the “unknown”
class, to evaluate each method. The H-score metric is high
only when both the “known” and “unknown” accuracies are
high. For all experiments, the averaged results of three runs
are reported. Additionally, we assume no prior information
about category shift in any of the above DA settings.

Implementation details. Our implementation is based
on PyTorch and we conduct all experiments on 8 Tesla
V100 GPUs. Following previous UniDA works, the feature
extractor is ResNet50 [14] pre-trained on ImageNet [8]. A
bottleneck layer with 256 units followed by a classifier and
a domain discriminator, is added after the feature extractor.
The batch size is set to 36 and the temperature parameter τ
is set as 0.05. The nearest neighbor number k is set to 5 for
Office and OfficeHome and 10 for VisDA as default. We
train our model for 10000 iterations with Nesterov momen-
tum SGD. The initial learning rate is set to 0.001, which is

decayed with the same schedule as in previous study [25].
More details are illustrated in the supplementary.

4.2. Comparative results
Comparison baselines. We compare GATE with pre-

vious state-of-the-arts in four possible scenarios of UniDA,
i.e., CDA (RTN [26], CDAN [25], MDD [19], SRDC [37]),
PDA (PADA [2], IWAN [45], ETN [3], BA3US [20]), ODA
(OSBP [34], STA [21], ROS [1]) and OPDA (UAN [44],
CMU [9], DANCE [32], DCC [18], OVANet [33]). For all
cases, each UniDA method is tested without knowing the
prior of category shift, and those baselines tailed for each
setting are conducted by taking this prior into consideration.
We use “C”, “P”, “O” and “U” to denote the methods de-
signed for CDA, PDA, ODA and UniDA accordingly. Due
to a limited space, we put some results in supplementary.

ODA and OPDA settings. From the results in Table
1, GATE achieves a new state-of-the-art on three datasets
in the most challenging OPDA setting. With respect to
H-score, GATE outperforms the previous state-of-the-art
UniDA method OVANet on Office by 2% and on Office-
Home by 3%. On large-scale VisDA dataset, GATE also
gives more than 3% improvement compared to all other
methods in terms of H-score. Collectively, this evidence
shows that GATE gains a better trade-off between com-
mon categories classification and private samples identifi-
cation. For the ODA setting, the H-score comparison re-
sults are presented in Table 2. Although slightly inferior to
OVANet on Office, our method consistently performs bet-
ter than all the UniDA baselines on OfficeHome and VisDA
datasets, with +3% H-score improvement. Even compared
with ROS, a previous state-of-the-art method tailed for the
ODA setting, GATE is also superior on all three datasets.
Under these two scenarios with “unknown” samples, GATE
shows a stronger capability on the separation of common
and private categories, which benefits from the global joint
local feature alignment paradigm and adaptive energy un-
certainty calibration strategy.
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Table 3. Accuracy comparison in the PDA setting. Some results for previous methods are cited from DANCE [32] and DCC [18].
Office (10/21/0) OfficeHome (25/40/0) VisDA (6/6/0)

Methods Type A2W A2D D2W W2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R
PADA P 82.2 86.5 92.7 99.3 95.4 100.0 92.7 52.0 67.0 78.7 52.2 53.8 59.1 52.6 43.2 78.8 73.7 56.6 77.1 62.1 53.5
ETN P 94.5 95.0 100.0 100.0 96.2 94.6 96.7 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5 59.8

BA3US P 98.9 99.4 100.0 98.7 94.8 95.0 97.8 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0 54.9
UAN U 76.8 79.7 93.4 98.3 82.7 83.7 85.8 24.5 35.0 41.5 34.7 32.3 32.7 32.7 21.1 43.0 39.7 26.6 46.0 34.2 39.7
CMU U 84.2 84.1 97.2 98.8 69.2 66.8 83.4 50.9 74.2 78.4 62.2 64.1 72.5 63.5 47.9 78.3 72.4 54.7 78.9 66.5 65.5

DANCE U 71.2 77.1 94.6 96.8 83.7 92.6 86.0 53.6 73.2 84.9 70.8 67.3 82.6 70.0 50.9 84.8 77.0 55.9 81.8 71.1 73.7
DCC U 81.3 87.3 100.0 100.0 95.4 95.5 93.3 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9 72.4

OVANet U 61.7 69.4 90.2 98.7 61.4 66.4 74.6 34.1 54.6 72.1 42.4 47.3 55.9 38.2 26.2 61.7 56.7 35.8 68.9 49.5 34.3
GATE U 86.2 89.5 100.0 98.6 93.5 94.4 93.7 55.8 75.9 85.3 73.6 70.2 83.0 72.1 59.5 84.7 79.6 63.9 83.8 73.9 75.6

Table 4. H-score comparison on the new low-light OPDA benchmark. Source domain: ImageCLEF [27]; Target domain: ExDark [24].
ExDark without ZeroDCE (8/4/4) ExDark with ZeroDCE (8/4/4)

Methods Type B2E C2E I2E P2E Avg B2E C2E I2E P2E Avg
UAN U 41.4 50.7 52.3 42.9 46.8 42.8 52.5 54.9 41.9 48.1
CMU U 52.1 50.4 54.3 46.7 50.9 54.4 54.2 58.6 55.8 55.7

DANCE U 53.2 60.8 56.6 56.9 56.9 55.4 62.1 58.9 58.4 58.7
DCC U 50.7 61.3 55.8 54.1 55.5 53.4 61.6 59.5 58.0 58.1

OVANet U 49.0 50.1 57.5 56.6 53.3 51.4 53.1 60.0 58.7 55.8
GATE U 55.3 62.8 59.4 57.9 58.8 57.2 64.7 61.5 60.6 61.0

CDA and PDA settings. In the PDA setting, the results
in Table 3 tell us that GATE outperforms all other base-
lines including those tailored for PDA on VisDA. For Of-
fice and OfficeHome datasets, GATE also gives comparable
results to BA3US, which is the state-of-the-art method in
PDA. The results in supplementary for CDA setting show
that GATE outperforms other state-of-the-art UniDA meth-
ods on all three datasets. Even compared to those methods
specialized for the CDA setting, GATE also achieves com-
parable performance to some of them, such as only inferior
to SRDC on Office, OfficeHome and VisDA datasets. How-
ever, such methods customized for these two settings cannot
adapt to situations where “unknown” samples exist, thereby
limiting their application in real-world scenarios. It can also
be seen that under these two settings OVANet does not per-
form as well as in ODA and OPDA settings, mainly because
it pays more attention to the discovery of private categories
and ignores the importance of domain alignment.

New low-light DA benchmark. High-level vision tasks,
such as classification, detection and segmentation, would
suffer severe performance degradation under low-light en-
vironments [35]. Recently, the low-light DA has attracted
much attention of community [41]. Here, we integrate the
existing datasets, ImageCLEF [27] and Exclusively Dark
(ExDark) [24], to construct a new OPDA benchmark from
normal-light to low-light. ImageCLEF consists of 4 do-
mains, i.e., Bing (B), Caltech (C), ImageNet ILSVRC (I)
and Pascal VOC (P), and each domain has 600 images with
12 categories. ExDark (E) is a collection of 7363 low-light
images in 12 object classes. There are 8 common categories
between these two datasets and 4 private categories for each
dataset. We use ImageCLEF as the source domain and Ex-
Dark as the target domain for low-light transfer learning ex-
periments. The parameter settings are the same as those on
Office. To better illustrate the difficulty of low-light DA,
we use ZeroDCE [12] to perform low-light enhancement
on ExDark, and the enhanced dataset repeats the above ex-
periment. From Table 4, the H-score of each method is im-

proved when ExDark is enhanced. However, GATE consis-
tently outperforms all other baseline methods, whether with
or without low-light enhancement. This evidence shows
that GATE is better able to cope with low-light conditions.

Feature visualization. We use t-SNE [17] to visualize
the learned source and target features with corresponding
domain labels and category labels. In this analysis, we use
“D2W” in Office to conduct experiments under the ODA
setting. As shown in Figure 2a, before adaptation, the com-
mon categories do not mix together and most target private
samples are attached near the common samples. Using only
geometric adversarial learning can reduce the margin be-
tween common categories, but they still don’t mix well (see
Figure 2b). Using only subgraph-level contrastive learning
can mix some common categories and separate some tar-
get private samples, but there are still category mismatches
and negative transfers (see Figure 2c). After applying both
of them, we achieve the common categories mixing well
and separate most target private samples from the common
samples (see Figure 2d), demonstrating that our global joint
local strategy is very effective for feature alignment.

4.3. Ablation studies
Effect of geometric adversarial learning. To verify the

necessity of the geometric adversarial learning, we remove
Lrw
D in the overall loss and conduct control experiments in

four settings on OfficeHome and VisDA datasets. From the
results in Table 5, the performance would be degraded in
all settings without geometric adversarial learning. This is
mainly because, in the early stages of training, global fea-
ture discrepancy would cause the accuracy of cross-domain
anchor pairs to be unguaranteed. Specifically, for all set-
tings on VisDA, we observe that the proportion of true pos-
itive rwMNN pairs is sharply decreased after removing the
geometric adversarial learning (see Figure 3a).

Effect of subgraph-level contrastive learning. To
evaluate the contribution of Lrw

Contra, we train the model
without it and present the results in Table 5. Removing
contrastive learning on the rwMNN anchor pairs would
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Figure 2. Feature visualization on “D2W” in Office under the ODA setting. For domain, blue represents the source domain and orange
refers to the target domain. For category, blue plots are “unknown” samples, others are “known” samples.
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Figure 3. Case study. (A) The proportion of true positive rwMNN pairs in VisDA; (B) The ratio of anchor pairs having correct predicted
labels in VisDA; (C & D) Histogram of energy scores on “R2P” of OfficeHome in OPDA setting; (E) Varying the loss weight α; (F)
Varying the nearest neighbor number k.
severely hurt performance in all settings. Further tested
results in Figure 3b tell us that without it, the ratio of an-
chor pairs having correct predicted labels decreases more
than 15% in all settings on VisDA. It is reasonable since
geometric adversarial learning cannot achieve fine-grained
class-specific alignment, while subgraph-level contrastive
learning can pull those rwMNN pairs closer to each other
and push away dissimilar samples. Therefore, global adver-
sarial learning and local contrast learning complement each
other and jointly improve the effect of domain alignment.

Effect of energy-based universal classifier. To show
the effectiveness of energy-based universal classifier trained
by manifold mixup, we first train the model without Lent

and then use the energy score
∑|Cs|

i=1 exp(G(F)(x)) with
a threshold δ to identify “unknown” samples. Suppose
µs and σs are the mean and standard deviation values of
set {

∑|Cs|
i=1 exp(G(F)(xs

j))}
ns
j=1, we decide the threshold as

δ = µs−2×σs and divide those target samples with energy
scores lower than δ as “unknown” samples. Table 5 shows
that our universal classifier can obtain higher H-score in the
ODA and OPDA settings. This is mainly due to the fact
that the manifold mixup can tighten the classification area
of the “known” class, while adaptively calibrating the dis-
tribution gap of the energy score between the “known” and
the “unknown” (see an example in Figure 3c & 3d).

Table 5. Various ablation studies on the OfficeHome and VisDA
dataset in all four settings.

OfficeHome VisDA
Methods CDA PDA ODA OPDA CDA PDA ODA OPDA

GATE w/o Lrw
D 67.4 70.6 63.8 68.1 70.3 72.6 63.3 47.7

GATE w/o Lrw
Contra 65.9 67.3 57.4 64.3 67.7 68.5 57.4 41.6

GATE w/o Universal classifier 70.0 73.5 65.2 70.5 74.5 75.1 66.7 52.9
GATE w/o Anchor expansion 68.8 72.4 66.5 73.0 72.1 73.9 67.1 53.3
GATE with larger k in MNN 69.5 72.8 67.0 73.8 73.4 74.8 68.2 54.4

GATE w/o SNN score 69.7 73.2 67.9 74.7 73.6 74.4 69.1 54.9
GATE (full) 70.2 73.9 69.1 75.6 74.8 75.6 70.8 56.4

Effect of random walk-based anchor expansion. To
validate the effectiveness of anchor pair expansion by
within-domain random walk, we replace rwMNN with
MNN in adversarial and contrastive learning. The results in

Table 5 show that the performance of rwMNN is better than
that of MNN. Since the anchor pair number in rwMNN is
nearly the square of that in MNN, we also show that a larger
k in MNN would lead to worse performance. We chose k
in MNN as 25 on OfficeHome and 100 on VisDA, and their
results in Table 5 are really lower than those in rwMNN.
This evidence demonstrates that rwMNN is more suitable
to uncover the shared distribution of common categories.

Effect of SNN-based anchor score mechanism. To
better understand the importance of the SNN-based anchor
score, we set the affinity value of all rwMNN pairs as equal
to 1. The results in Table 5 tell us that using expanded an-
chors pairs with consistent affinity values cannot obtain the
same satisfactory performance as with the SNN-based score
mechanism. This evidence illustrates that simply expanding
MNN pairs would bring the risk of more noisy supervision,
while SNN-based scores could reduce this negative impact
and enhance the algorithm’s robustness.

Hyperparameter sensitivity. To show the sensitivity of
GATE to the loss weight α, we conducted control experi-
ments on Office under the OPDA setting and presented the
results in Figure 3e. Within a wide range of α ∈ [0.01, 1.0],
the performance changes very little, showing that GATE is
robust to the selection of α. We also analyze the behavior
of GATE when changing the nearest neighbor number k on
OfficeHome in the OPDA setting. As shown in Figure 3f,
the H-score only varies slightly with k ∈ [3, 7], validating
that GATE is stable to the choices of k.

5. Conclusion
In this paper, we propose a novel UniDA framework

called GATE from the perspective of anchor mining and un-
certainty modeling. It performs feature alignment via global
distribution-level geometric adversarial learning joint local
subgraph-level contrastive learning. We also introduce an
energy-based incremental classifier for “unknown” sample
detection. A thorough evaluation shows the superior perfor-
mance of GATE, compared to previous state-of-the-arts.

16141



References
[1] Silvia Bucci, Mohammad Reza Loghmani, and Tatiana Tom-

masi. On the effectiveness of image rotation for open set
domain adaptation. In European Conference on Computer
Vision, pages 422–438, 2020. 6

[2] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin
Wang. Partial adversarial domain adaptation. In Proceed-
ings of the European Conference on Computer Vision, pages
135–150, 2018. 1, 6

[3] Zhangjie Cao, Kaichao You, Mingsheng Long, Jianmin
Wang, and Qiang Yang. Learning to transfer examples for
partial domain adaptation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2985–2994, 2019. 6

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
Thirty-fourth Conference on Neural Information Processing
Systems, 2020. 2

[5] Lawrence. Cayton. Algorithms for manifold learning. Univ.
of California at San Diego Tech, 1:1–17, 2005. 3

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607, 2020. 2

[7] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 15750–
15758, 2021. 2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255, 2009. 6

[9] Bo Fu, Zhangjie Cao, Mingsheng Long, and Jianmin Wang.
Learning to detect open classes for universal domain adap-
tation. In European Conference on Computer Vision, pages
567–583, 2020. 2, 6

[10] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International conference
on machine learning, pages 1180–1189, 2015. 1

[11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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