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Abstract

Despite the substantial progress of deep models for crack
recognition, due to the inconsistent cracks in varying sizes,
shapes, and noisy background textures, there still lacks the
discriminative power of the deeply learned features when
supervised by the cross-entropy loss. In this paper, we pro-
pose the geometry-aware guided loss (GAGL) that enhances
the discrimination ability and is only applied in the train-
ing stage without extra computation and memory during in-
ference. The GAGL consists of the feature-based geometry-
aware projected gradient descent method (FGA-PGD) that
approximates the geometric distances of the features to the
class boundaries, and the geometry-aware update rule that
learns an anchor of each class as the approximation of the
feature expected to have the largest geometric distance to
the corresponding class boundary. Then the discriminative
power can be enhanced by minimizing the distances be-
tween the features and their corresponding class anchors
in the feature space. To address the limited availability of
related benchmarks, we collect a fully annotated dataset,
namely, NPP2021, which involves inconsistent cracks and
noisy backgrounds in real-world nuclear power plants. Our
proposed GAGL outperforms the state of the arts on various
benchmark datasets including CRACK2019, SDNET2018,
and our NPP2021.

1. Introduction

Concrete structure health monitoring is of crucial impor-
tance in various industries [2, 5, 7, 38, 39], of which crack
damage classification is the first and critical stage. There
is a great need for automated testing methods to recognize
and repair cracks before the onset of serious deterioration so
that the heavy maintenance costs could be reduced. How-
ever, it is extremely challenging to realize crack recogni-
tion in a real-world industrial environment. The cracks are
commonly presented as dark curves on walls in inconsistent
sizes and irregular shapes [13], moreover, mixed with vary-
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ing surrounding backgrounds, resulting in different signal-
to-noise ratios [44] [2].

Recently, the application of deep learning technology on
crack recognition tasks has achieved great success [4, 14,
39]. These methods [14, 43] commonly train the convolu-
tion neural network (CNN) on sub-images, then apply the
trained model on the high-resolution images with a sliding
window [6] to scan and classify the existence of cracks in
each sub-image. However, the traditional CNN-based meth-
ods for crack recognition have a crucial limitation: the in-
ability of extracting discriminative features of cracks in a
realistic environment. That is, due to the inconsistent cracks
in varying sizes and shapes [43], the noisy texture patterns
of the surrounding background, and the limited discrimina-
tive ability of the cross-entropy (CE) loss [37], it is chal-
lenging for deep models to extract the discriminate features
that can be successfully classified. To verify this, Fig. 1(a)
visualizes the crack and non-crack images in the feature
space. It demonstrates that each class of images projected in
the feature space spread in a wide area, and crack/non-crack
features are mixed together and close to the class bound-
ary. Therefore, the existing approaches are inappropriate for
crack recognition in a realistic environment.

In this paper we propose a novel geometry-aware guided
loss (GAGL) to enhance the discriminative power of the
deeply learned features with the joint supervision of CE
loss. GAGL enlarges the inter-class features separation and
reduces the intra-class features variation by pulling the deep
features of the same class to the feature that has the largest
geometric distance to the class boundary. There are several
challenges to realize such a loss as discussed in the below.

Due to the irregularity of the class boundaries [24], it
is hard to detect the class boundaries and estimate the ge-
ometric distances of features to them. To solve this issue,
we propose a feature-based geometry-aware projected gra-
dient descent method (FGA-PGD) to approximate the geo-
metric distances of the features to class boundaries. Intu-
itively, features which are close to the decision boundaries
are vunerable to attacks. As shown in Fig. 1, to find the mis-
classified adversarial variants of input features, the features
near the boundary require less rounds (i.e., lighter colors) of
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Figure 1. T-SNE feature visualizations of the crack and non-crack classes from the CRACK2019 dataset. The color gradient of the feature
is calculated based on the least attack number κ that PGD needs to find its misclassified adversarial variant. The features that need a large
κ (darker red and blue) are farther away from the decision boundary. Meanwhile, the features that need a small κ (lighter red and blue)
are closer to the decision boundary. (a) CE supervision, (b) CE and GAGL supervision, (c) The illustration of GAGL. In each iteration,
GAGL first relabels the features with a larger κ than their corresponding class anchors as the safe state features. Otherwise, the features
are relabeled as the swing state features. Then, GAGL iteratively updates the anchor of each class as the alternative for the safest state
feature by exploiting the anchor loss. Meanwhile, the object function of GAGL is defined to enhance the discriminative power of the deeply
learned features by making the swing state features close to their corresponding class anchors. (Best viewed in color)

adversarial attacks than those faraway. In contrast, the fea-
tures far away from class boundaries require a larger num-
ber of attacks. By exploiting this effect, FGA-PGD gener-
ates adversarial samples based on feature embeddings in-
stead of images such that the geometric distances of crack
and non-crack features could be approximated in an effi-
cient manner (see Sec. 3.2). Herein, FGA-PGD exploits the
κ-step Projected Gradient Descent (PGD-κ) method [21,22]
as the adversarial attack method.

Since the entire training set is very large and contains
tens of thousands of training samples, it is inefficient and
even impractical to select the feature that has the largest ge-
ometric distance to the class boundary in each iteration. To
address this problem, we exploit the aforementioned FGA-
PGD method to measure the geometric distance and develop
a geometry-aware update rule to learn an anchor (a vector
with the same dimension as the feature) of each class as the
approximation of the feature expected to have the largest
geometric distance to the corresponding class boundary (see
Sec. 3.3).

Then, the objective function of GAGL can be defined by
optimizing the distances between the anchors and the fea-
tures that are closer to the class boundaries than the cor-
responding class anchors.(see Sec. 3.4). The optimization
process of GAGL can be viewed as guiding the model to
pull feature embeddings away from class boundaries and
gather intra-class features together, which effectively help
to separate crack and non-crack images in the feature space.

Hence, the goal of the GAGL can be realized by simulta-
neously updating the anchors by the geometry-aware update
rule and iteratively optimizing the features by the objective
function of GAGL. The main contributions of this paper can
be summarized as:

(1) Propose the feature-based geometry-aware projected

gradient descent (FGA-PGD) method to approximate the
geometric distances of features to the class boundaries.
Moreover, FGA-PGD is highly efficient as the adversarial
attacks performed on the features instead of the images.

(2) Propose the geometry-aware guided loss (GAGL)
to enhance the discriminative power of the deeply learned
features by penalizing the distances between the features
and their corresponding class anchors in the feature space,
where the anchor of each class is learned by the proposed
geometry-aware update rule as the approximation of the fea-
ture expected to have the largest geometric distance to the
corresponding class boundary.

(3) A labeled dataset has been constructed, namely,
NPP2021, which contains accurate annotations, to facili-
tate the research about crack recognization tasks for the
noisy backgrounds and the inconsistent cracks in varying
size problems.

2. Related work

In this section, we briefly review existing researches on
related topics.

2.1. Crack recognition

Following the research [11], the image-based crack
recognition via classification approaches in the literature
can be clustered into two groups: traditional approaches and
deep learning approaches. The methods of the first group
usually contain two stages [19]. At the first stage, HOG [18]
and LBP [28, 34] are used to extract the image features by
a local descriptor. Then, at the second stage, a well-trained
classifier is introduced to recognize potential crack patches.
The classifier is usually chosen from the follows: Gaussian
process [25], SVM [18, 28, 34], and Neural Network [40].
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Most of the deep learning approaches re-train a deep CNN
model for crack image classification [11]. Variants of CNN
are applied on classifying crack images on sub-images of
120× 120 pixels [8], 200× 200 pixels [42], and 256× 256
pixels [6, 10]. Ali et al [3] modify the architecture of the
VGG16 model and use the CE loss to train this model. Un-
like the previous works, we develop a novel loss function to
enhance the discriminative power of the deeply learned fea-
tures for the crack classification tasks, instead of designing
a customized model.

2.2. Adversarial attacks

The general setting of the adversarial attacks is two-
fold: (1) black-box setting, the attacker can only get the sub-
stitute model, (2) white-box setting, the attacker must have
full access to the attacked models. Compared with the meth-
ods in the black-box setting, gradient-based attack methods
under the white-box setting are more practical and powerful
on real tasks [45]. Specifically, for the gradient-based attack
methods, FGSM [12] generates adversarial examples to fool
the model by directly increasing the loss of the model. Then,
κ-step projected gradient descent method [21, 22] (PGD-
κ) performs the iterative attack, which can be viewed as
an iterative version of FGSM. Typically, the stronger ad-
versarial examples [22] can be generated by taking more
attack iterations (larger κ). However, each attack iteration
needs to compute the gradient on the input image by the
back-propagation, which causes a large computational over-
head. In this paper, we investigate the relationship between
the least number of iterations required for features to be suc-
cessfully attacked by the PGD-κ method and the geometric
distances of the features to the class boundaries. Compared
with the image-based attacks, our feature-based attacks can
achieve higher efficiency, e.g., for the ResNet50 [16] model,
feature-based attacks take only 1ms for one iteration, while
image-based attacks take 82ms.

2.3. Robust loss function

Recently, several robust loss functions are proposed to
extract discriminative features. For example, in the work
[32], CE loss and the contrastive loss are combined to learn
more discriminative features. Focal loss [20] is designed to
prevent a large number of easy samples from dominating
the training procedure by assigning a large weight to the
hard examples. Furthermore, a cosine margin term is intro-
duced to further maximize the decision margin in the an-
gular space [36]. To increase interpretability, the geometric
interpretation has been added on a hypersphere [9] to boost
the performance of the face recognition tasks. From a dif-
ferent perspective, center loss [37] simultaneously learns a
center for deep features of each class and penalizes the dis-
tances between the samples and their corresponding class
centers in the feature space. However, center loss suffers

from the sacrifice of inter-class separability, that is, some of
the features, which are farther away from the class boundary
than the corresponding class centers, will be pulled close to
the class boundary when supervised by center loss.

Our proposed GAGL shares the same purpose to ex-
tract discriminative features with the previous loss func-
tions. However, ours is distinct from these loss functions
in two-fold: (1) We approximate the geometric distance of
feature to the class boundary by the feature-based adver-
sarial attacks, (2) Unlike the center loss simply learning the
centers of features, GAGL learns the anchor of each class as
the approximation of the feature expected to have the largest
geometric distance to the corresponding class boundary.

3. Geometry-aware guided loss
In this section, we introduce the proposed GAGL. We

start with the motivation of the GAGL in Sec. 3.1, and pro-
vide the descriptions of the feature-based geometry-aware
projected gradient descent method (FGA-PGD) in Sec. 3.2,
the geometry-aware update rule in Sec. 3.3, and the learning
objective of GAGL in Sec. 3.4.

3.1. Motivation of GAGL

GAGL is based on an intuitive idea: the geometric dis-
tance of the feature from the class boundary is closely re-
lated to the least number of iterations required for this fea-
ture to be successfully attacked.

To verify this intuition, we conduct an experiment on the
CRACK2019 dataset. Specifically, we first train a ResNet50
[16] model on CRACK2019 dataset, and extract the features
of the images from this dataset by ResNet50, then we per-
form the PGD attacks on these features to get the least num-
ber of iterations κ. After that, we use t-SNE [33] to visualize
the features with the κ denoted by the color gradient in Fig.
1(a). It can be observed that features involving small/large κ
are more likely close to/far from class boundaries. Thus, the
geometric distances between features and class boundaries
can be approximated by the least number of attacks.

In Fig. 1(a), analogy to U.S. elections 1, the blue and
red states are used to denote the features with the crack and
non-crack label, respectively. Then, we use the swing state
features to refer to the features that their prediction labels
are easily changed by adversarial attacks with a small κ,
these features are close to the class boundaries. Otherwise,
if the features are hard to be attacked, then these features
are referred to the safe state features.

Our GAGL aims to simultaneously learn the anchor of
each class (see Sec. 3.3) as the alternative for the safest state
feature in the same class and enhance the discriminative
power of the deeply learned features by making the swing
state features close to their corresponding class anchors (see

1https://edition.cnn.com/election
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Sec. 3.4). We train the ResNet50 with the supervision of CE
and GAGL, and show the features learned by the model in
Fig. 1(b). We can observe that there are less swing state
features in Fig. 1(b) compared with Fig. 1(a). This further
verifies that the geometric distance of the features can be
approximated by the least number of the attacks, and some
of the swing state features can be pulled away from the class
boundaries by GAGL.

3.2. Realization of FGA-PGD

As prior discussed, the geometric distance of the feature
to the class boundary can be approximated as the least num-
ber of iterations required to generate its misclassified adver-
sarial variant by the adversarial attack. Herein, we propose
an efficient feature-based geometry-aware projected gradi-
ent descent method (FGA-PGD), that returns the geomet-
ric value of the feature to the class boundary. Compared to
the existing method PGD-κ, FGA-PGD is more efficient as
it directly attacks the features, and does not require back-
propagation of the feature extractor Me. The corresponding
pseudocode for feature geometric distance approximation is
presented in Algorithm 1.

The adversarial attacks in FGA-PGD can be interpreted
as a multi-step scheme for maximizing the CE loss func-
tion ` under the feature Fx of the image x with the ground
truth label y. ŷ denotes the prediction label of x. Fx can be
obtained by Me as follows:

Fx = Me(x). (1)

ŷ can be obtained by the classifier Mc with respect to Fx as
follows :

ŷ = argmax
i

Mc(Fx). (2)

Then, the (t + 1)th adversarial variant feature F (t+1)
x is updated

along the gradient ∇F(t)
x
`(·) of ` with respect to F (t)

x . As a con-

sequence, F (t)
x can be obtained by the follows:

F (t+1)
x = F (t)

x +ΠB[F(t)
x ,ε]

(
γ sign

(
∇F(t)

x
`
(
Mc
θ

(
F (t)
x

)
, y
)))

,

(3)
where 0th adversarial variant feature F (0)

x is initialized by
Fx. The step size γ is used to control the magnitude of
adversarial variant features change, and the project func-
tion ΠB[F(t)

x ,ε]
is used to project F (t)

x back into the center

of F (t)
x , where the metric ε-ball controls its perturbation

bound.
After that, the least number of adversarial attacks needed

to find misclassified features can be obtained by starting
from F (0)

x until tth adversarial variants can fool the cur-
rent network. In Algorithm 1, the certain stopping criterion
is that the prediction label ŷ of the F (t)

x is unequal to the
ground truth label y, or t reaches the maximum PGD attack
number K. Finally, the geometric distance κ(Fx, y) of Fx
with the label y can be approximated by the t.

Algorithm 1 Feature-based geometry-aware projected gra-
dient descent method (FGA-PGD)
Input: image x, label y, feature extractor Me, classifier Mc,
CE loss `, maximum attack number K, step size γ and per-
turbation bound ε

1: Extract the feature Fx of x : Fx = Me(x)

2: Adversarial feature initialize: F (0)
x ← Fx

3: Adversarial attack number initialize : t← 0
4: while K >0 do
5: if arg maxiMc(F (t)

x ) = y then
6: t← t+ 1
7: else
8: κ(Fx, y)← t, K = 0
9: end if

10: ∇ = ΠB[F(t)
x ,ε]

(
γ sign

(
∇F(t)

x
`
(
Mc
θ

(
F (t)
x

)
, y
)))

11: F
(t+1)
x = F (t)

x +∇
12: K ← K − 1
13: end while

Output: Feature geometric distance k(Fx, y)

3.3. Geometry-aware update rule

Taking the entire training set into account and select-
ing the safest state feature of each class that has the largest
geometry distance to the corresponding class boundary in
each iteration are inefficient even impractical. We develop
the geometry-aware update rule to address this problem to
update the anchor of each class as the alternative for the
safest state feature in the same class. The intuition behind
this mini-batch-based rule is two-fold: (1) In each mini-
batch, assuming that some features have larger geometric
distances than their corresponding class anchors, then the
anchors can be learned to increase their geometric distances
by minimizing their distances from these features with the
same class. The learned anchors will not be updated in the
case that no other features have a larger geometric distance
than the current anchor. (2) The features with a large geo-
metric distance should be given a large importance weight
so that the geometric distances of the learned anchors can
be significantly increased by making the anchors close to
these features.

Base on the above intuition, we decompose the geome-
try aware update rule into three steps: (1) Feature state re-
labeling, in each mini-batch, we relabel the features that
have a larger geometric distance than their corresponding
class anchors as the safe state features, otherwise as the
swing state features. (2) Dynamic re-weighting function,
we use this function to assign the different weights to the
safe state features considering their importance to the an-
chors. (3) Anchor update rule, we develop this rule to update
the anchors. Specifically, we first design the anchor loss that
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minimizes the re-weighting distances between the anchors
and the safe state features by considering their importance,
then the update rule can be formulated by this loss.

Feature state re-labeling. We provide an in-detail de-
scription of how to re-label the feature state. Specifically,
as we have mentioned before, the feature geometric dis-
tance κ(Fx, y) of the feature Fx with the label y can be
approximated by the least number of attacks. Meanwhile,
the geometric distance κ(Ay, y) of the anchor Ay for the
class y can also be approximated by Algorithm 1. Then, we
use the label S to denote the safe state features that have
larger geometric distances than their corresponding class
anchors. Otherwise, when the geometric distances of fea-
tures are smaller than or equal to the anchors, these features
are referred to the swing state features labeled as W . Our
feature state re-labeling function is shown as follows:

s(Fx, y) =

{
S, case κ(Fx, y) > κ(Ay, y)
W, case κ(Fx, y) ≤ κ(Ay, y)

, (4)

where s(Fx, y) denotes the state of Fx with respect to its
geometric distance.

Dynamic re-weighting function. Since the safe state
features have unequal importance for the anchors, the dy-
namic re-weighting function with respect to κ(Fx, y) is de-
signed to pay more attention to the feature that has a larger
geometric distance by assigning a larger weight. This func-
tion is heuristically defined as the non-decreasing function
shown as follows:

ω(Fx, y) =
(1+tanh(β + 5× (2× κ(Fx, y)/K − 1)))

2
, (5)

where the β is used to control the magnitude of weight
changes, if β = +∞, all the safe state features will be as-
signed to the same weight for the anchor update. Here we
heuristically give one example, and more examples are dis-
cussed in Sec. 4.2.

Anchor update rule. Consider the T th training iteration
on the mini-batch Sm = {(xi, yi)}mi=1, where xi denotes
the ith image sample with class yi, we use AT

j to denote
the anchor with the class j, j ∈ {1, ..., C} at iteration T ,
where C denotes the number of class. Since AT

j is updated
by making it close to the safe state features with unequal
weights, the anchor loss `ATj with respect to the AT

j can be
defined by the follows:

`ATj
=

1

2

m∑
i=1

δ(yi=j)δ (s (Fxi , yi)=S)ω (Fxi , yi) (Fxi−A
T
j )2,

(6)
where δ(condition)=1 if the condition is satisfied, other-

wise, δ(condition)=0. Fxi denotes the extracted feature of
xi. Then, we use ∇ATj

to denote the gradient of `ATj with

respect to AT
j , and the formula is as follows:

∇ATj
=

m∑
i=1

δ(yi=j)δ(s(Fxi , yi)=S)ω(Fxi , yi)
(
ATj −Fxi

)
.

(7)

Finally, AT
j can be updated along the negative gradient

∇ATyi
to make the anchor close to the safe state features.

The corresponding formula is as follows:

AT +1
j = AT

j − α∇ATj
, (8)

where AT +1
j represents the anchor with the class j at the

(T + 1)th training iteration. The α is used to control the
magnitude of AT

j update, and A0
j is randomly initialized.

3.4. Learning objective of GAGL
With the prior rule, we can learn the anchor of each

class as the alternative for the safest state feature in the
same class. However, those swing state features are still
more likely close to the boundary and mixed together in
the feature space. To address this problem, the learning ob-
jective of GAGL is defined by minimizing the distances
between the swing state features and their corresponding
class anchors. In addition, the swing state features, which
have smaller geometric distances to the class boundary,
are more easily misclassified. Hence, we pay more atten-
tion to these features by assigning a larger weight to them.
Unlike the non-decreasing dynamic re-weighting function
ω(Fxi

, yi) in Sec. 3.3, we use the non-increasing dynamic
re-weighting function 1 − ω(Fxi

, yi) to assign different
weights on the swing state features with respect to their ge-
ometric distances. Then, the objective function of GAGL is
defined as follows:

`G =

m∑
i=1

1

2
δ(s(Fxi , yi)=W)(1− ω(Fxi , yi)) (Fxi −Ayi)

2 .

(9)
As the FGA-PGD is performed by CE loss, hence, we adopt
the CE loss and GAGL as the joint supervision loss `js to
train the Me and Mc for discriminative feature learning.
The formulation is given as follows:

`js = `CE + λ`G

= −
m∑
i=1

yi · log (softmax (Mc (Me(xi)))) + λ`G, (10)

where the scalar λ is used to balance the two loss functions.
By exploiting the rule in Sec. 3.3 and the objective of

GAGL, we are able to simultaneously learn the anchors and
the discriminative features. The corresponding pseudocode
for the model under the joint supervision loss of CE and
GAGL is presented in Algorithm 2.

4. Experiment
The essential experimental setup is described in Sec. 4.1.

Then, we discuss different re-weighting functions ω in
Sec. 4.2. To find the most suitable parameters α, β, and λ in
GAGL, we carry out some experiments on different param-
eters as shown in Sec. 4.3. Furthermore, to verify the ef-
fectiveness of our proposed method, we not only compared
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Algorithm 2 Geometry-aware feature learning algorithm
Input: Training dataset S = {(xi, yi)}ni=1, feature extrac-
tor Me, classifier Mc, hyperparameters α, β, and λ, the iter-
ation number T initialized to 0, mini-batch size m and the
random initial anchors A0

j , j ∈ {1, ..., C}, whereC denotes
the number of class

1: while not converge do
2: T ← T + 1
3: For each mini-batch Sm = {(xi, yi)}mi=1 of the train-

ing set S, Fxi = Me(xi), i ∈ {1, ...,m}
4: Calculate the geometric distances of the features and

the anchors by Algorithm 1
5: Calculate the anchor loss by Eq. 4 to Eq. 6
6: Update the anchor AT

j for each class j, j ∈
{1, ..., C} by Eq. 7 to Eq. 8

7: Calculate the joint loss `js by Eq. 9 to Eq. 10
8: Update weights in Mc and Me according to the gra-

dient of the joint loss
9: end while

Output: The feature extractor Me and classifier Mc

it with other crack classification approaches in Sec. 4.4, but
also compared it with other state of the art loss functions in
Sec. 4.5. Moreover, we compare the learned anchors with
the centers learned by center loss in Sec. 4.6.

4.1. Experimental setup

In this paper, we carry out experiments based on the fol-
lowing crack classification datasets and implementation de-
tails.
NPP2021. This dataset
is collected by un-
manned aerial vehicles
at the nuclear power
plants, comprising 300
images with the size
of 7000 × 6000. The
images of this dataset
include cracks as narrow
as 0.05 mm and as wide
as 10 mm. Due to the complex environment, the collected
images contain a lot of noise. To augment the dataset with-
out compromising the resolution, the images are sliced into
images of 224× 224 pixels, composing a final dataset with
13372 samples, which are carefully manually labeled in
three classes: w/o cracks, w/ cracks and w/ scratches. The
numbers of pictures in each category are 5317, 4254, and
3801, respectively. This dataset is divided into training set,
validation set, and test set at the ratio of 3 : 1 : 1.
CRACK2019 [26, 43]. This dataset is partially from
crack500 [43]. The data is collected from Temple Univer-
sity and various METU Campus Buildings. The dataset

contains 40000 total images with 227 × 227 pixels with
RGB channels, divided into non-crack class and crack
class for the crack classification task, and each class has
20000 images. As this dataset is generated from 458 high-
resolution images (4032 × 3024 pixels), which have vari-
ance in terms of surface finish and illumination condition, it
is difficult to successfully classify the images. In our exper-
iments, we divide it into training set, validation set, and test
set at the ratio of 3 : 1 : 1.
SDNET2018 [1]. This dataset contains over 56000 images
of crack and non-crack concrete bridge decks, walls, and
pavements. The dataset includes cracks as narrow as 0.06
mm and as wide as 25 mm, and images with a variety of
disturbances, including shadow, surface roughness, scaling,
edge, and hole. In our experiments, we divide it into train-
ing set, validation set, and test set at the ratio of 3 : 1 : 1.
Implementation details. To verify the effectiveness of our
method, our experiments select the ResNet50 [16] and
VGG16 [30] as the feature extractor. Although the input
resolutions of CRACK2019, SDNET2018, and NPP2021
are 227 × 227, 256 × 256, and 224 × 224 respectively,
we resize all the images into the size of 224 × 224 and
perform data augmentation via random horizontal flip and
synthesis [17, 35]. For these three datasets, the models are
trained with 150 epochs in total. The initial learning rate
is set to 0.01 and reduced by a factor of 10 after 65, 95,
125 epochs. We use mini-batch SGD [15] as the optimizer
and set the mini-batch size to 64. According to the set-
ting in the paper [41], the maximum PGD step K is set to
10. During the initial period of the training epochs, the ge-
ometric distance is less informative when the classifier is
not properly learned. Thus, the initial 30 epochs are burn-
in period, in which we do not update the anchors and the
model is only supervised by CE loss. For a fair comparison,
all methods are implemented with the same training config-
uration when it is possible. Finally, we use two metrics to
evaluate these methods (i) Error rate, denoted as ER. (ii) Er-
ror rate on adversarial features generated by PGD-20 [27],
denoted as PGD-ER.

4.2. Experiments on re-weighting functions

Based on Sec. 3.3, the re-weighting functions should be
the non-decreasing function with respect to the geometric
distance κ. In Fig. 2, we compare the tanh-type Eq. 5 (Blue
line) with three other types of re-weighting functions: (i)
constant function ω, which means the function ω(F , y) ≡ 1
as shown by the green line. When GAGL takes constant
ω(F , y) ≡ 1 over the training epochs, the anchors will be
updated to the center of safe state features, and make other
swing state features close to their corresponding class an-
chors; (ii) a linear increasing function ω(F , y) = κ(F,y)

K
is shown by the red line; (iii) the sigmoid-type increasing
function ω(F , y) = σ(β + 5 × (2κ(F , y)/K − 1)) is de-

4708



Methods
Dataset NPP2021 SDNET2018 CRACK2019

ER (%) PGD-ER (%) ER (%) PGD-ER (%) ER (%) PGD-ER (%)
ConvNet [43] 21.65 ± 0.49 54.21 ± 0.38 13.87 ± 0.41 58.19 ± 0.23 2.31± 0.19 49.89 ± 0.21

Crack-CNN [8] 18.23 ± 0.23 51.03 ± 0.31 10.47 ± 0.27 53.85 ± 0.29 0.96 ± 0.23 46.01 ± 0.42
SDNET [1] 19.71 ± 0.32 51.34 ± 0.29 11.23 ± 0.23 55.6 ± 0.37 1.07 ± 0.27 46.31 ± 0.37
AliNet [3] 17.07 ± 0.31 48.15 ± 0.29 9.47 ± 0.26 52.3 ± 0.29 0.92 ± 0.18 44.67 ± 0.29

SilvaNet [29] 15.09 ± 0.23 47.76 ± 0.33 8.85 ± 0.28 43.9 ± 0.31 0.68 ± 0.21 41.54 ± 0.31
Res-GAGL 13.24 ± 0.18 44.15 ± 0.24 8.24 ± 0.32 40.37 ± 0.21 0.52 ± 0.17 39.21 ± 0.21

VGG-GAGL 11.37 ± 0.19 42.76 ± 0.21 7.47 ± 0.25 38.2 ± 0.19 0.41 ± 0.21 37.12 ± 0.23

Table 1. Comparison with the state-of-the-art crack classification methods on various datasets. We report the mean test error (ER), mean
error rate on adversarial features generated by PGD-20 (PGD-ER), and their standard deviations by three independent experiments.

noted by the black line, where σ(x) = 1
1+e(−x) .

(a) Re-weighting functions (b) Results with different functions

Figure 2. Comparison of GAGL with different re-weighting func-
tions on NPP2021 dataset.

In Fig. 2, we can observe that compared with constant
function, GAGL with different weight assignment functions
have similar degradation of test error on the test dataset un-
der β = 0, but GAGL with the tanh-type has the better test
error. Thus, we use the tanh-type function in the next ex-
periments, and further explore the Eq. 5 with different β in
Sec. 4.3.

4.3. Sensitivity study on hyper-parameters

Three hyper-parameters have been introduced in this pa-
per. α is used to control the magnitude of anchors update
in Eq. 8, β is used to control the re-weighting function
ω of GAGL, and λ is exploited to balanced the CE loss
and GAGL. The hyper-parameter sensitivity study on the
CRACK2019 dataset with ResNet50 as the feature extrac-
tor is introduced in Fig. 3. It is observed the three hyper-
parameters α, β, and λ across a wide range only have 0.4%,
0.2%, 0.2% test error increase compared with the lowest, re-
spectively, which demonstrates the satisfying stability and
robustness of our proposed methods applied in real-world
crack datasets. Based on these observations, we set α = 0.1,
β = 4 and λ = 0.01 in our next experiments.

Figure 3. Hyper-parameter sensitivity study of α, β, λ with
ResNet50 as feature extractor on CRACK2019 dataset.

4.4. Comparison on different crack classification
approaches

In this section, our method is compared to several base-
lines including state-of-the-art robust crack classification
methods: ConvNet [43] designs a supervised deep convo-
lutional neural network to classify each image patch of the
collected images, Crack-CNN [8] proposes a deep learn-
ing framework to deal with the noisy background in the
image, SDNET [1] uses the AlexNet architecture to de-
tect the crack, SilvaNet [29] uses the VGG16 architec-
ture, AliNet [3] proposes a customized ResNet50 architec-
ture. Since the previous works used the ResNet50 and VGG
as the backbone, we also use these models as our backbone
for the fairness. The Res-GAGL and VGG-GAGL denote
ResNet50 [16] and VGG16 [30] under the supervision of
the joint loss in Sec. 3.4, respectively. Both Res-GAGL and
VGG-GAGL are compared with other approaches in terms
of ER and PGD-ER metrics.
ER: In Tab. 1, it can be observed that our methods com-
pare favorably to other competitive crack classification ap-
proaches. For example, compared with the AliNet [3], the
test errors of Res-GAGL and VGG-GAGL are 13.24%
and 11.37% while the AliNet only achieves 17.07% on
NPP2021. For the SDNET2018, Res-GAGL and VGG-
GAGL reduce test errors by about 0.61% and 1.38% com-
pared with SilvaNet. Also for CRACK2019, the test errors
of Res-GAGL and VGG-GAGL are 0.52% and 0.41% while
the AliNet achieves 0.92%. Our methods show consistent
improvements on these datasets. This indicates that GAGL
can enhance the discriminative power of the deeply learned
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features by enlarging the intra-class compactness and inter-
class separability, so that these features can be successfully
classified to crack or non-crack class.
PGD-ER: As GAGL aims to turn the swing state features
to safe state features, the learned features should be hard to
be attacked. To verify this, we use the PGD-ER metrics to
evaluate our methods compared with other approaches. In
Tab. 1, compared with all existing methods, VGG-GAGL
gives the best performance on all datasets. For example,
the error rate on adversarial features generated by PGD-20
is 42.76% for the NPP2021 dataset. The reason for this ef-
fect is that our GAGL can guide the model to pull feature
embeddings away from class boundaries, and the learned
features are hard to be attacked.

4.5. Comparison on the different loss functions

To further validate our method, we conduct a series of
experiments on SDNET2018 dataset and report quantita-
tive results with ER metric and PGD-ER metric to verify
the effectiveness of GAGL. We use VGG16 as our feature
extractor in this section. As the intuition of GAGL is to en-
hance the model ability at extracting discriminate features,
we compare it with other loss functions which have the
same intuition, including CE loss [23], focal loss [20], cen-
ter loss [37], cosface loss [36], arcface loss [9], and circle
loss [31].

Methods ER (%) PGD-ER (%)
CE [23] 9.77 ± 0.23 54.3 ± 0.43

Focal loss [20] 9.43 ± 0.24 48.8 ± 0.78
Center loss [37] 9.28 ± 0.31 49.1 ± 0.24

Cosface [36] 8.92 ± 0.26 49.3 ± 0.32
Arcface [9] 8.53 ± 0.25 47.6 ± 0.19

Circleloss [31] 8.46 ± 0.33 40.5 ± 0.20
GAGL 7.47 ± 0.25 38.2 ± 0.19

Table 2. We report mean values and standard deviations by three
independent experiments on the SDNET2018 dataset.

Tab. 2 shows the results compared with the existing loss
functions. We can observe that, first, our GAGL outper-
forms the center loss with a large margin. This benefits from
that the learned anchors have a larger geometric distance to
the class boundaries than the centers learned by center loss.
Then, the learned anchors can better guide the model to pull
feature embeddings away from class boundaries and gather
intra-class features together, which effectively helps to sep-
arate the crack and non-crack images in the feature space.
Second, our GAGL performs well on the PGD-ER metric
and achieves 38.2% test error on the adversarial features.
The reason for this effect is that the learned features are
optimized to get close to the learned anchors, and then the
geometric distances of these features will be increased, as a
result, these features are more difficult to be attacked.

4.6. Comparison between anchors and centers

To further validate the learned anchors by GAGL, we
compare them with the centers learned by center loss using
the average geometric distance of all classes as the metric,
which is denoted as avg-κ. We train VGG16 and ResNet50
models with 150 epochs under the center loss and GAGL,
respectively. We can observe from Fig. 4 that the anchors
achieve a higher average geometric distance than the cen-
ters when the training epoch is over 50 under VGG16 and
ResNet50 models. This demonstrates that our geometry-
aware update rule helps learn the anchors far from the class
boundaries.

Figure 4. Comparison with centers by the average geometric dis-
tance avg-κ at different epochs on ResNet50 and VGG16.

5. Conclusion
In this paper, we propose the geometry-aware guided

loss (GAGL) that enhances the discrimination ability of the
deeply learned features for the crack classification task. The
GAGL consists of the feature-based geometry-aware pro-
jected gradient descent method (FGA-PGD) that approxi-
mates the geometric distances of the features to the class
boundaries, and the geometry-aware update rule that learns
an anchor of each class as the approximation of the feature
expected to have the largest geometric distance to the cor-
responding class boundary. Then, the goal of GAGL can
be realized through simultaneously updating the anchors
by the geometry-aware update rule and iteratively optimiz-
ing the features by penalizing the distances between the
features and their corresponding class anchors in the fea-
ture space. The experiments on crack classification tasks
demonstrate that our method outperforms state-of-the-art
crack classification approaches and loss functions. Since
our method can learn the discriminate features, we plan to
further apply our method to other tasks, such as fine-grained
image classification tasks and face recognition tasks.
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