
Knowledge Distillation with the Reused Teacher Classifier

Defang Chen1,2,3 Jian-Ping Mei4 Hailin Zhang1,2,3

Can Wang1,2,3∗ Yan Feng1,2,3 Chun Chen1,2,3

1Zhejiang University 2Shanghai Institute for Advanced Study of Zhejiang University
3ZJU-Bangsun Joint Research Center 4Zhejiang University of Technology

defchern@zju.edu.cn, jpmei@zjut.edu.cn, {zzzhl, wcan, fengyan, chenc}@zju.edu.cn

Abstract

Knowledge distillation aims to compress a powerful yet
cumbersome teacher model into a lightweight student model
without much sacrifice of performance. For this purpose,
various approaches have been proposed over the past few
years, generally with elaborately designed knowledge rep-
resentations, which in turn increase the difficulty of model
development and interpretation. In contrast, we empiri-
cally show that a simple knowledge distillation technique
is enough to significantly narrow down the teacher-student
performance gap. We directly reuse the discriminative clas-
sifier from the pre-trained teacher model for student infer-
ence and train a student encoder through feature alignment
with a single ℓ2 loss. In this way, the student model is able to
achieve exactly the same performance as the teacher model
provided that their extracted features are perfectly aligned.
An additional projector is developed to help the student en-
coder match with the teacher classifier, which renders our
technique applicable to various teacher and student archi-
tectures. Extensive experiments demonstrate that our tech-
nique achieves state-of-the-art results at the modest cost of
compression ratio due to the added projector.

1. Introduction
Given a powerful teacher model with large numbers of

parameters, the goal of knowledge distillation (KD) is to
help another less-parameterized student model gain a simi-
lar generalization ability as the larger teacher model [4,24].
A straightforward way to achieve this goal is by aligning
their logits or class predictions given the same inputs [2,24].
Due to its conceptual simplicity and practical effectiveness,
KD technique has achieved great success in a variety of ap-
plications, such as object detection [8], semantic segmenta-
tion [32] and the training of transformers [45].

One limitation of the vanilla KD is that the performance
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Figure 1. An overview of our proposed SimKD. A simple ℓ2 loss
is adopted for feature alignment in the preceding layer of the final
classifier. Only the student feature encoder and dimension projec-
tor are updated during training (boxes with the black border). The
pre-trained teacher classifier is reused for student inference.

gap between the original teacher model and the distilled stu-
dent model is still significant. To overcome this drawback,
a bunch of approaches have been proposed in the last few
years [19, 48]. Most of them benefit from exploiting addi-
tional supervision from the pre-trained teacher model, es-
pecially the intermediate layers [1, 6, 39, 44, 46, 50, 53]. Be-
sides aligning the plain intermediate features [6,39,50], the
existing efforts are typically based on elaborately designed
knowledge representations, such as mimicking spatial at-
tention maps [53], pairwise similarity patterns [36, 37, 46]
or maximizing the mutual information between teacher and
student features [1, 44, 55]. Although we indeed see con-
stant improvements of these works in student performance,
neither effective representations nor well-optimized hyper-
parameters ensuring their success are easily achievable in
practice. Furthermore, the diversity of transferred knowl-
edge hinders the emergence of a unified and clear interpre-
tation of the final improvement in student performance.

In this paper, we present a simple knowledge distillation
technique and demonstrate that it can significantly bridge
the performance gap between teacher and student models
with no need for elaborate knowledge representations. Our
proposed “SimKD” technique is illustrated in Figure 1. We
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argue that the powerful class prediction ability of a teacher
model is credited to not only those expressive features but
just as importantly, a discriminative classifier. Based on this
argument, which is empirically supported later on, we train
a student model through feature alignment in the preceding
layer of the classifier and directly copy the teacher classifier
for student inference. In this way, if we could perfectly align
the student features with those of the teacher model, their
performance gap will just disappear. That is to say, the fea-
ture alignment error alone accounts for the accuracy of stu-
dent inference, which makes our knowledge transfer more
comprehensible. According to our experimental results, a
single ℓ2 loss for feature alignment already works surpris-
ingly well. Such a simple loss saves us from carefully tun-
ing hyper-parameters as previous works do in order to bal-
ance the effect of multiple losses [1,6,24,39,44,46,50,53].

As the dimensions of extracted features from teacher and
student models usually differ from each other, a projector is
thus added after the student feature encoder to remedy this
dimension mismatch. This projector generally incurs a less
than 3% cost to the pruning ratio in teacher-to-student com-
pression, but it makes our technique applicable to arbitrary
model architectures. The pruning ratio could be even en-
larged in a few cases where the parameter number of the
added projector plus the reused teacher classifier is less
than that of the original student classifier (see Figure 7).
We conduct extensive experiments on standard benchmark
datasets and observe that our SimKD consistently outper-
forms all compared state-of-the-art approaches with a vari-
ety of teacher-student architecture combinations. We also
show that our simple technique generalizes well in different
scenarios such as multi-teacher knowledge distillation and
data-free knowledge distillation.

2. Related Work
Knowledge distillation (KD) is a technique to compress

the knowledge from a powerful teacher model, such as an
ensemble of multiple deep neural networks, into a smaller
student model [4, 19, 24, 48]. The transferred knowledge is
initially regarded as the conditional distribution of outputs
given input samples [24]. From this viewpoint, the predic-
tions, or soft targets, from the pre-trained teacher model
play a major role in the improvement of student perfor-
mance. A common belief behind the success of this tech-
nique is that those teacher-learned soft targets can capture
the relationships among different categories and serve as an
effective regularization during student training [2,7,24,51].

In order to make KD more practical for model compres-
sion, we need to further resist the performance degrada-
tion in teacher-to-student compression [19, 48]. Leverag-
ing more information from the pre-trained teacher model
especially the intermediate layers is a general solution to-
wards this problem. A bunch of such works have sprung up

seeking for better student performance in the last few years,
collectively known as feature distillation. They mostly pro-
pose diverse representations to capture appropriate trans-
ferred knowledge, such as the crude intermediate feature
maps [39] or their transformations [1, 23, 53], sample rela-
tions encoded by the pairwise similarity matrices [36,37,46]
or modeled by contrastive learning [44, 49, 55]. More re-
cently, a few works turn to designing cross-layer associa-
tions to make full use of those intermediate features of the
teacher model [6, 10]. With the help of aforementioned
knowledge representations or reformed transfer strategies,
the student model will be trained with gradient information
coming from not only the final layer, i.e., the classifier, but
also from those early layers. However, additional hyper-
parameters need careful tuning in these methods to balance
the effect of different losses and it is still unclear how the
newly introduced supervisory signal would exert positive
influence on the final performance of student models.

To some extent, our key idea of reusing the teacher clas-
sifier is related to the previous studies on hypothesis trans-
fer learning (HTL) [38]. HTL aims to utilize the learned
source domain classifier to help the training of the target
domain classifier, on the condition that only a small amount
of labeled target dataset and no source dataset are accessi-
ble [15,28,29]. A recent work further gets rid of the require-
ment of labeling target dataset and extends the vanilla HTL
to the unsupervised domain adaptation setting by resorting
to a pseudo-labeling strategy [31]. Different from this one,
our goal is to reduce the teacher-student performance gap on
the same dataset, rather than adapting the pre-trained model
to achieve good performance on another dataset with a dif-
ferent distribution. In addition, our SimKD is much simpler
than this work and still achieves surprisingly good results in
the standard KD setting.

3. Method

3.1. Vanilla Knowledge Distillation

Generally, the popular deep neural networks designed
for image classification tasks in the current era can be re-
garded as the stack of a feature encoder with multiple non-
linear layers, together with a classifier that usually contains
a single fully-connected layer with softmax activation func-
tion [22,25,33,41,54]. Both two components will be trained
end-to-end with the back-propagation algorithm. The sym-
bolic description is presented as follows.

Given a training sample x with one-hot label y from a
K-category classification dataset, we denote the encoded
feature in the penultimate layer of the student model as
fs = Fs(x;θs) ∈ RCs . This feature is subsequently
passed into the classifier with weight W s ∈ RK×Cs to
obtain the logits gs = W sfs ∈ RK as well as the class
prediction ps = σ(gs/T ) ∈ RK with a softmax activation
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Figure 2. Comparison of three kinds of knowledge distillation techniques. The main differences lie in how the gradient is formalized
and where the gradient flow starts. (a) Vanilla KD calculates the gradient in class predictions and relies on this gradient to update the
whole student model. (b) Feature distillation gathers more gradient information from the intermediate layers through various knowledge
representations. Additional hyper-parameters need to be carefully turned for maximum performance. (c) Our SimKD calculates ℓ2 loss in
the preceding layer of the classifier and back propagates this gradient solely to update the student feature encoder and dimension projector.
The cross entropy losses between predictions and ground-truth labels of the compared approaches in (a) and (b) are omitted for simplicity.

function σ(·) and the temperature T

psi =
exp (gsi /T )∑K
j=1 exp

(
gsj/T

) , (1)

where psi/g
s
i denotes the i-th element of corresponding vec-

tors and T is a hyper-parameter for softening effect1.
Vanilla knowledge distillation consists of two losses

[24]: one is the conventional cross entropy loss and another
is the alignment loss in prediction pairs between ps and soft
targets pt with Kullback-Leibler divergence [27]

LKD = LCE(y,p
s)︸ ︷︷ ︸

T=1

+T 2LKL(p
t,ps)︸ ︷︷ ︸

T>1

.
(2)

Compared to the cross entropy loss, the introduced pre-
diction alignment loss gives extra information on incorrect
classes to facilitate the student training [17,24]. Since prob-
abilities assigned to those incorrect classes tend to be rather
small after softmax transformation, the temperature T in
this term needs raising to produce softer distributions for
conveying more information [24].

3.2. Simple Knowledge Distillation

In recent years, various feature distillation approaches
have been proposed. These works mainly collect and trans-
mit extra gradient information from intermediate teacher-
student layer pairs to train the student feature encoder bet-
ter (Figure 2b). However, their success heavily depends
on those particularly-designed knowledge representations
to entail proper inductive bias [3, 6], and carefully chosen
hyper-parameters to balance the effect of different losses.
Both are labor-intensive and time-consuming. It is also dif-
ficult to conclude the actual role that a certain type of rep-
resentation plays in the student training.

1We only present notations for the student model in this paragraph, but
similar notations also hold for the teacher model.

In contrast, we propose a simple knowledge distillation
technique named as SimKD, which breaks away from these
stringent demands while still achieving state-of-the-art re-
sults on extensive experiments. As shown in Figure 2c, a
key ingredient of SimKD is the “classifier-reusing” opera-
tion, i.e., we directly borrow the pre-trained teacher clas-
sifier for student inference rather than training a new one.
This eliminates the need of label information to calculate
the cross entropy loss and makes the feature alignment loss
become the only source for generating gradient.

Overall, we argue discriminative information contained
in the teacher classifier matters, but has been largely over-
looked in the literature of KD. We then provide a plau-
sible explanation for its important role. Consider a sit-
uation where one model is requested to handle several
tasks with different data distributions, a basic practice is to
freeze or share some shallow layers as the feature extrac-
tor across different tasks while fine-tuning the last layer to
learn task-specific information [5, 13, 18, 30]. In this one-
model multiple-task setting, existing works hold the opin-
ion that task-invariant information could be shared while
task-specific information needs to be independently iden-
tified, generally by the final classifier. As for KD where
teacher and student models with different capabilities are
trained on the same dataset, analogously, we could reason-
ably believe that there is some capability-invariant informa-
tion in the data being easily gained across different models
while the powerful teacher model may contain extra essen-
tial capability-specific information that is hard for a simpler
student model to acquire. Furthermore, we hypothesize that
most capability-specific information is contained in deep
layers and expect that reusing these layers, even only the
final classifier will be helpful for the student training.

Based on this hypothesis, which is supported later by
empirical evidences from various aspects, we furnish the
student model with the teacher classifier for inference and
force their extracted features to be matched with the follow-
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(a) Vanilla KD [24]. (b) Our SimKD.

Figure 3. Visualization results of test images from CIFAR-100
with t-SNE [47]. We randomly sample 10 out of 100 classes. Fea-
tures extracted by the teacher and student models are depicted with
dark and light colors, respectively, and they are almost indistin-
guishable in our SimKD. Best viewed in color.

ing ℓ2 loss function

LSimKD = ∥f t − P(fs)∥22, (3)

where a projector P(·) is designed to match the feature di-
mensions at a relatively small cost while being effective
enough to ensure accurate alignment. In effect, this simple
loss has already been exploited before [39, 50], but we are
actually attempting to reveal the potential value of reusing
the teacher classifier rather than developing a sophisticated
loss function for feature alignment. As shown in Figure 3,
the extracted features from the pre-trained teacher model
(dark colors) and the distilled student model in our SimKD
(light colors) are compactly clustered within the same class
and distinctly separated across different classes, which en-
sures the student features to be correctly classified latter
with the reused teacher classifier.

Somewhat surprisingly, the performance degradation in
teacher-to-student compression will be greatly alleviated by
this simple technique. Along with high inference accuracy,
the simplicity of this single-loss formulation provides our
SimKD with good interpretability. Note that the reused part
from a pre-trained teacher model is allowed to incorporate
more layers but not just limited to the final classifier. Usu-
ally, reusing more layers leads to higher student accuracy,
but will bring about the burden increase on the inference.

4. Experiments
In this section, we conduct extensive experiments to

demonstrate the effectiveness of our proposed SimKD. We
first compare it with several representative state-of-the-art
approaches on standard benchmark datasets. Some empiri-
cal evidences are then given to show the superiority of our
“classifier-reusing” operation on the student performance
improvement. Although an additional projector is required
for our student inference, experiments show that its effect to
the pruning ratio could be controlled in an acceptable level.

Finally, we employ our technique to the multi-teacher and
data-free knowledge distillation settings.

Datasets and baselines. Two benchmark image classi-
fication datasets including CIFAR-100 [26] and ImageNet
[40] are adopted for a series of experiments. We use the
standard data augmentation and normalize all images by
channel means and standard deviations as [22, 25, 52]. Be-
sides the vanilla KD [24], various approaches are repro-
duced for comparison, including FitNet [39], AT [53], SP
[46], VID [1], CRD [44], SRRL [50] and SemCKD [6]. All
compared approaches except KD itself are implemented in-
corporating the vanilla KD loss, i.e., Eq. (2).

Training details. We follow the training procedure of
previous works [6, 44, 50] and report the performance of
all competitors on our randomly associated teacher-student
combinations. Specifically, we adopt SGD optimizer with
0.9 Nesterov momentum for all datasets. For CIFAR-100,
the total training epoch is set to 240 and the learning rate
is divided by 10 at 150th, 180th and 210th epochs. The
initial learning rate is set to 0.01 for MobileNet/ShuffleNet-
series architectures and 0.05 for other architectures. The
mini-batch size is set to 64 and the weight decay is set to
5 × 10−4. For ImageNet, the initial learning rate is set to
0.1 and then divided by 10 at 30th, 60th, 90th of the total
120 training epochs. The mini-batch size is set to 256 and
the weight decay is set to 1× 10−4. All results are reported
in means (standard deviations) over 4 trials, except for the
results on ImageNet are reported in a single trial. The tem-
perature T in the KD loss is set to 4 throughout this pa-
per. More detailed descriptions for reproducibility as well
as more results are included in the technical appendix.

4.1. Comparison of Test Accuracy

Table 1 to 3 present a comprehensive performance com-
parison of various approaches based on fifteen network
combinations, where the teacher and student models are in-
stantiated with similar or completely different architectures.

From the test accuracy comparison in Table 1 and 2, we
can see that SimKD consistently outperforms all competi-
tors on CIFAR-100 and the improvements are quite sig-
nificant in some cases. For example, as for the “ResNet-
8x4 & ResNet-32x4” combination, SimKD achieves 3.66%
absolute accuracy improvement while the best competitor
only achieves 1.81% absolute improvement on the basis of
the vanilla KD. Moreover, as shown in the fourth and fifth
columns of Table 1, given the same teacher model “ResNet-
110x2”, SimKD could train a lightweight student model
“ResNet-110” with a projector containing 0.05M additional
parameters to surpass all the competitors by a considerable
margin even when they are employed on a “ResNet-116”
containing about more 0.10M parameters than “ResNet-
110”. Test accuracy for different training epochs in Table 3
show that SimKD achieves faster convergence in training.
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Student WRN-40-1 ResNet-8x4 ResNet-110 ResNet-116 VGG-8 ResNet-8x4 ShuffleNetV2
71.92 ± 0.17 73.09 ± 0.30 74.37 ± 0.17 74.46 ± 0.09 70.46 ± 0.29 73.09 ± 0.30 72.60 ± 0.12

KD [24] 74.12 ± 0.29 74.42 ± 0.05 76.25 ± 0.34 76.14 ± 0.32 72.73 ± 0.15 75.28 ± 0.18 75.60 ± 0.21
FitNet [39] 74.17 ± 0.22 74.32 ± 0.08 76.08 ± 0.13 76.20 ± 0.17 72.91 ± 0.18 75.02 ± 0.31 75.82 ± 0.22

AT [53] 74.67 ± 0.18 75.07 ± 0.03 76.67 ± 0.28 76.84 ± 0.25 71.90 ± 0.13 75.74 ± 0.09 75.41 ± 0.10
SP [46] 73.90 ± 0.17 74.29 ± 0.07 76.43 ± 0.39 75.99 ± 0.26 73.12 ± 0.10 74.84 ± 0.08 75.77 ± 0.08
VID [1] 74.59 ± 0.17 74.55 ± 0.10 76.17 ± 0.22 76.53 ± 0.24 73.19 ± 0.23 75.56 ± 0.13 75.22 ± 0.07

CRD [44] 74.80 ± 0.33 75.59 ± 0.07 76.86 ± 0.09 76.83 ± 0.13 73.54 ± 0.19 75.78 ± 0.27 77.04 ± 0.61
SRRL [50] 74.64 ± 0.14 75.39 ± 0.34 76.75 ± 0.14 77.19 ± 0.09 73.23 ± 0.16 76.12 ± 0.18 76.19 ± 0.35

SemCKD [6] 74.41 ± 0.16 76.23 ± 0.04 76.62 ± 0.14 76.69 ± 0.48 75.27 ± 0.13 75.85 ± 0.16 77.62 ± 0.32

SimKD 75.56 ± 0.27 78.08 ± 0.15 77.82 ± 0.15 77.90 ± 0.11 75.76 ± 0.12 76.75 ± 0.23 78.39 ± 0.27

Teacher WRN-40-2 ResNet-32x4 ResNet-110x2 ResNet-110x2 ResNet-32x4 WRN-40-2 ResNet-32x4
76.31 79.42 78.18 78.18 79.42 76.31 79.42

Table 1. Top-1 test accuracy (%) of various knowledge distillation approaches on CIFAR-100.

Student ShuffleNetV1 WRN-16-2 ShuffleNetV2 MobileNetV2 MobileNetV2x2 WRN-40-2 ShuffleNetV2x1.5
71.36 ± 0.25 73.51 ± 0.32 72.60 ± 0.12 65.43 ± 0.29 69.06 ± 0.10 76.35 ± 0.18 74.15 ± 0.22

KD [24] 74.30 ± 0.16 74.90 ± 0.29 76.05 ± 0.34 69.07 ± 0.47 72.43 ± 0.32 77.70 ± 0.13 76.82 ± 0.23
FitNet [39] 74.52 ± 0.03 74.70 ± 0.35 76.02 ± 0.21 68.64 ± 0.27 73.09 ± 0.46 77.69 ± 0.23 77.12 ± 0.24

AT [53] 75.55 ± 0.19 75.38 ± 0.18 76.84 ± 0.19 68.62 ± 0.31 73.08 ± 0.14 78.45 ± 0.24 77.51 ± 0.31
SP [46] 74.69 ± 0.32 75.16 ± 0.32 76.60 ± 0.22 68.73 ± 0.17 72.99 ± 0.27 78.34 ± 0.08 77.18 ± 0.19
VID [1] 74.76 ± 0.22 74.85 ± 0.35 76.44 ± 0.32 68.91 ± 0.33 72.70 ± 0.22 77.96 ± 0.33 77.11 ± 0.35

CRD [44] 75.34 ± 0.24 75.65 ± 0.08 76.67 ± 0.27 70.28 ± 0.24 73.67 ± 0.26 78.15 ± 0.14 77.66 ± 0.22
SRRL [50] 75.18 ± 0.39 75.46 ± 0.13 76.71 ± 0.27 69.34 ± 0.16 73.48 ± 0.36 78.39 ± 0.19 77.55 ± 0.26

SemCKD [6] 76.31 ± 0.20 75.65 ± 0.23 77.67 ± 0.30 69.88 ± 0.30 73.98 ± 0.32 78.74 ± 0.17 79.13 ± 0.41

SimKD 77.18 ± 0.26 77.17 ± 0.32 78.25 ± 0.24 70.71 ± 0.41 75.43 ± 0.26 79.29 ± 0.11 79.54 ± 0.26

Teacher ResNet-32x4 ResNet-32x4 ResNet-110x2 WRN-40-2 ResNet-32x4 ResNet-32x4 ResNet-32x4
79.42 79.42 78.18 76.31 79.42 79.42 79.42

Table 2. Top-1 test accuracy (%) of various knowledge distillation approaches on CIFAR-100.

We also find that the student model trained with SimKD
yields higher accuracy than its teacher model in the case of
“ResNet-8x4 & WRN-40-2” and “ShuffleNetV2 & ResNet-
110x2” combinations, which seems a bit confusing since
even zero feature alignment loss only guarantees their accu-
racies to be exactly the same. A possible explanation from
self-distillation is that the feature re-representation effect in
Equation (3) may help the student model become more ro-
bust and thus achieve better results [12, 35].

4.2. Classifier-Reusing Operation Analysis

The “classifier-reusing” operation is our recipe for suc-
cess in above performance comparisons. To better under-
stand its crucial role, we conduct several experiments with
two alternative strategies to deal with the student feature en-
coder and classifier: (1) joint training, (2) sequential train-
ing. The performance degradation resulted from these two
variants confirms the value of discriminative information in
the teacher classifier. Moreover, reusing more deep teacher
layers will further improve the student performance.

Joint training. As the previous feature distillation ap-
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Figure 4. We train the student feature encoder with its associated
classifier jointly and then report the test accuracies of student mod-
els by using their own classifiers or the reused teacher classifiers.

proaches do (Figure 2b), we now train the student feature
encoder and its associated classifier jointly. The results are
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Student KD [24] AT [53] SP [46] VID [1] CRD [44] SRRL [50] SemCKD [6] SimKD Teacher

1/4 Epoch 49.34 52.75 52.85 53.57 53.22 55.44 55.14 53.14 61.73 54.50
1/2 Epoch 64.98 66.69 66.69 66.36 66.64 67.25 67.36 66.89 69.26 70.55
Full Epoch 70.58 71.29 71.18 71.08 71.11 71.25 71.46 71.41 71.66 76.26

Table 3. Top-1 test accuracy (%) comparison on ImageNet for different training epochs. We adopt ResNet-18 as the student model.

Student Sequential SimKD Teacher

WRN-40-1 74.48 ± 0.04 75.56 ± 0.27 WRN-40-2
ResNet-8x4 51.97 ± 0.19 78.08 ± 0.15 ResNet-32x4
ResNet-110 77.63 ± 0.05 77.82 ± 0.15 ResNet-110x2
ResNet-116 77.75 ± 0.03 77.90 ± 0.11 ResNet-110x2

VGG-8 35.72 ± 1.33 75.76 ± 0.12 ResNet-32x4
ResNet-8x4 45.03 ± 0.44 76.75 ± 0.23 WRN-40-2

ShuffleNetV2 21.56 ± 0.31 78.39 ± 0.27 ResNet-32x4

Table 4. Training a new student classifier from scratch.

obtained by training student models with an extra KD loss

LJoint = (1− α)LKD + αLSimKD, (4)

where α is a hyper-parameter. To thoroughly assess the joint
training effect, four different teacher-student combinations
together with four uniformly-spaced α values are used.

As shown in Figure 4, the student performance based on
whether its own classifier or the reused teacher classifier
becomes far inferior to that of SimKD in all settings, which
indicates that discriminative information in the teacher clas-
sifier might not be easily transferred into the student model
in a joint training way. The substantial accuracy reduction
also indicates that the added projector itself and the feature
alignment loss do not necessarily improve the final perfor-
mance, unless we discard joint training and resort to a more
effective strategy, i.e., using a single feature alignment loss
for training and reusing the teacher classifier for inference.
Figure 4 also shows that in order to surpass the performance
of the vanilla KD, this two-loss approach requires a case-by-
case hyper-parameter tuning.

Sequential training. The above results show the bene-
fit of disassembling the training of student feature encoder
and classifier. Additionally, the “classifier-reusing” opera-
tion carries the implication that a classifier with good dis-
criminative ability is fairly hard to acquire. In this part, we
provide evidence for this belief by training a new classifier
from scratch rather than reusing the teacher classifier.

We adopt those teacher-student combinations in Table 1
as examples for evaluation. After performing feature align-
ment with Equation (3), we fix the student feature encoder,
i.e., freeze the extracted features, and train a randomly ini-
tialized student classifier (a fully-connected layer with soft-
max activation) with the regular training procedure. This is
exactly same as the linear evaluation protocol used in unsu-
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Figure 5. Comparison of the top-1 test accuracy (%) and negative
log-likelihood (Student: ResNet-8x4, Teacher: ResNet-32x4).

pervised learning evaluation [11, 20, 21].
The results of this sequential training are given in Ta-

ble 4. We find that apart from “WRN-40-1 & WRN-40-2”
and “ResNet-110/116 & ResNet-110x2”, the test accuracies
of other student models appear a precipitous drop. Although
we have tried tuning the initial learning rate a few times, it
only makes a slight difference in performance. Results in
Table 4 indicate that even when the extracted features have
been aligned, it is still a challenge to train a satisfactory
student classifier. Generally, we could achieve better stu-
dent performance by tuning hyper-parameters in the classi-
fier training step more carefully, but it is a non-trivial task.
In contrast, directly reusing the pre-trained teacher classi-
fier already works quite well. Detailed training procedure
and more results are provided in the appendix.

Reusing more teacher layers. We now generalize our
technique to the situation where more deep layers of the
teacher model are reused for student inference and show
that the student performance will be further improved.

We take ResNet architecture as an example and conduct
experiments on CIAFR-100 dataset. Following the standard
design, ResNet architecture consists of one convolutional
layer, three building blocks and one fully-connected layer
in a bottom-top fashion [22]. Every building blocks contain
the same number of convolutional layers and changing these
layer numbers leads to different ResNet architectures. For
example, 10 layers for each building block make up a 32-
layer ResNet model. Then, besides reusing the final classi-
fier as our SimKD do, two new variants are introduced by
reusing additional last one or two building blocks, and they
are denoted as “SimKD+” and “SimKD++”, respectively.

From Figure 5, we can see that SimKD significantly de-
creases negative log-likelihood by reusing only the teacher
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classifier, and its two variants further achieve higher per-
formance as expected, though the associated complexity is
also increased. These results support our hypothesis that
reusing deep teacher layers is beneficial for the student per-
formance improvement, probably due to most capability-
specific information is contained in them. Another expla-
nation is that reusing more deep teacher layers would make
the approximation of shallow teacher layers easier achiev-
able and thus incur less performance degradation. In prac-
tice, reusing only the final teacher classifier strikes a good
balance between performance and parameter complexity.

4.3. Projector Analysis

The parameter-free “classifier-reusing” operation in our
SimKD has been fully evaluated above. Next, we start to dig
into another component—projector from several aspects.
We first present its default implementation and then show
that it only requires a small number of extra parameters for
achieving state-of-the-art performance. Finally, several ab-
lation studies on the projector are provided.

Implementation. The aim of the projector P(·) in Equa-
tion (3) is to perfectly match the feature vectors f t ∈ RCt

and fs ∈ RCs . A naı̈ve implementation is using one con-
volutional layer with batch normalization and ReLU activa-
tion, which has Cs×Ct+2×Ct parameters [50]. However,
this one-layer transformation may not suffice for accurate
alignment due to the large capability gap between teacher
and student models. We thus employ the last feature maps
and a three-layer bottleneck transformation with dimension
reduction factor r as alternatives, hoping that these will help
the features aligned better. The total parameters are

Ct(Cs + Ct + 4)

r
+

9C2
t

r2
+ 2Ct. (5)

This formula implies that the added parameters will be re-
duced to between a quarter and a half if r is doubled, which
enables us to control the parameter complexity within an ac-
ceptable level by changing r. Detailed structure of the pro-
jector and analysis are provided in the technical appendix.

Effect to pruning ratio. Figure 6 illustrates the trade-off
between top-1 test accuracy and pruning ratio with different
dimension reduction factor r. We adopt the following equa-
tion for the calculation of pruning ratio:

Pruning Ratio = 1−
♯paramse + ♯paramproj +∆

♯paramt

∆ = ♯paramtc − ♯paramsc,

(6)

where ♯paramse, ♯paramproj, ♯paramt and ♯paramtc/sc re-
fer to the parameter number of a student encoder, a pro-
jector, a whole teacher model and a teacher/student clas-
sifier, respectively. Its upper bound is approached when
♯paramproj → 0, which could be higher than the pruning
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Figure 6. Trade-off between test accuracy and pruning ratio. The
pruning ratio of the vanilla KD is drawn with the gray dashed line.
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Figure 7. A histogram of the pruning ratio cost.

ratio of the vanilla KD since ♯paramproj + ∆ may be less
than zero. Figure 6 shows that increasing r will raise the
pruning ratio, but in turn, cause the performance drop. This
reduction may be attributed to that shrinking the bottleneck
dimension of the projector will restrict its representation
ability and thus affect the success of feature alignment.

We then calculate the minimum pruning ratio cost of
SimKD when it performs best in the competition on four-
teen teacher-student combinations from Table 1 and 2. Fig-
ure 7 show that our added projector only incurs less than 1%
pruning ratio cost in most cases (10/14). In some cases such
as “MobileNetV2x2 & ResNet-32x4” and “ShuffleNetV1
& ResNet-32x4” with r = 8, we find the pruning ratios of
SimKD are even higher than the vanilla KD, and all com-
petitors accordingly. Throughout this paper, we set r equals
2 as default since this value strikes a good balance, i.e.,
gaining state-of-the-art results at the modest cost of prun-
ing ratio. The full results are presented in the appendix.

Ablation study. We finally compare several implemen-
tations of the projector and loss function (see Appendix)
for feature alignment. All results are obtained with the
“ResNet-8x4 & ResNet-32x4” combination on CIFAR-100.

From Table 5, the default implementation of our projec-
tor (the last row) achieves the best performance. The accu-
racy drop resulted from its simplified counterparts indicates
the benefit of employing a relatively powerful projector in
feature alignment. Moreover, the lower accuracy (76.03 ±
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Projector Test loss (ℓ2) Accuracy (%)

1x1Conv 0.345 ± 0.001 75.15 ± 0.27
1x1Conv-1x1Conv 0.343 ± 0.001 75.71 ± 0.33

1x1Conv-3x3Conv (DW)-1x1Conv 0.306 ± 0.001 77.76 ± 0.12
1x1Conv-3x3Conv-1x1Conv 0.301 ± 0.001 78.08 ± 0.15

Table 5. Comparison of projectors. “1x1/3x3Conv” denotes a con-
volutional layer with 1x1/3x3 kernel size. “DW” denotes depth-
wise separable convolutions. Standard batch normalization and
ReLU activation are used after each layer.

Method ① ②

Student 72.60 ± 0.12 72.60 ± 0.12
AVEG 75.94 ± 0.20 76.33 ± 0.14

AEKD [14] 75.99 ± 0.18 76.17 ± 0.43
AEKD-F [14] 77.24 ± 0.32 77.08 ± 0.28

SimKDv 77.43 ± 0.21 77.60 ± 0.23
SimKD 78.59 ± 0.31 78.59 ± 0.05

Table 6. Results of the multi-teacher KD. We adopt ShuffleNetV2
as the student model and train it under two groups of pre-trained
teacher models: ① includes three ResNet-32x4. ② includes two
ResNet-32x4 and one ResNet-110x2.

0.40) obtained by aligning feature vectors fs and f t with a
three-layer transformation validates the effectiveness of us-
ing the last feature maps instead. Since our ℓ2 loss reflects
the distance between extracted features, the lower test loss
implies the closer alignment and thus the better test accu-
racy. This is consistent with the results in Table 5.

4.4. Application I: Multi-Teacher Knowledge Dis-
tillation

We then demonstrate the applicability of our technique
in the multi-teacher KD setting where multiple pre-trained
teacher models are available for the student training. Two
representative approaches are compared: “AVEG” denotes a
simple variant of the vanilla KD, which averages the predic-
tions of multiple teachers; “AEKD” aggregates the teacher
predictions with an adaptive weighting strategy and its im-
proved version by incorporating intermediate features is de-
noted as “AEKD-F” [14]. As shown in Table 6, SimKD al-
ways achieves the best performance. Additionally, we pro-
vide the results of SimKDv , where a fully-connected layer
projector is first used to align the feature vectors and then
merged into the associated teacher classifier. The weights
of multiple teacher classifiers are averaged and reused for
student inference, which incurs no extra parameters.

4.5. Application II: Data-Free Knowledge Distilla-
tion

Data-free knowledge distillation aims to exploit a pre-
trained teacher model without accessing its training dataset
to improve the student performance. A popular paradigm

Method Require data? WRN-40-1 WRN-16-2

Student Yes 71.92 ± 0.17 73.51 ± 0.32

ZSKT [34] No 33.60 ± 3.88 45.03 ± 1.73
DAFL [9] No 45.32 ± 1.46 45.94 ± 1.66
CMI [16] No 64.80 ± 0.35 65.11 ± 0.43

CMI+SimKD No 66.78 ± 0.29 67.31 ± 0.89

Table 7. Results of the data-free KD. We adopt WRN-40-2 as the
teacher model with two different student models.

is to recover the original data manifold with a generative
model first and then perform knowledge distillation on the
synthesized dataset [9, 16, 34]. Our SimKD can be easily
integrated into these existing approaches by replacing their
KD training step as our “reusing-classifier” operation and
the associated feature alignment. Table 7 shows that with
the help of our SimKD, the student performance is also im-
proved in the data-free knowledge distillation application.

5. Conclusion

In this paper, we have explored a simple knowledge dis-
tillation technique where the pre-trained teacher classifier is
reused for student inference and the student model is trained
with a single ℓ2 loss for feature alignment. We design sev-
eral experiments to analyze the workings of our technique
and conduct extensive experiments to demonstrate its supe-
riority over state-of-the-art approaches. We hope this study
will be an important baseline for future research.

6. Limitation and Future Work

A simple parameter reusing is served as our first at-
tempt to explore the potential value of the teacher classifier.
This requires a projector when feature dimensions are mis-
matched and thus increases the model complexity. How to
develop a projector-free alternative needs further investiga-
tion. Another limitation is that our technique is only appli-
cable for supervised knowledge distillation, such as image
classification [24], dense prediction [42] and machine trans-
lation [43]. It is also worthwhile to develop a successful
variant of our technique for unsupervised learning scenario.
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