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Abstract

In this work, we propose the first end-to-end optimized
framework for compressing automotive stereo videos (i.e.,
stereo videos from autonomous driving applications) from
both left and right views. Specifically, when compressing
the current frame from each view, our framework reduces
temporal redundancy by performing motion compensation
using the reconstructed intra-view adjacent frame and at
the same time exploits binocular redundancy by conduct-
ing disparity compensation using the latest reconstructed
cross-view frame. Moreover, to effectively compress the in-
troduced motion and disparity offsets for better compensa-
tion, we further propose two novel schemes called motion
residual compression and disparity residual compression to
respectively generate the predicted motion offset and dis-
parity offset from the previously compressed motion offset
and disparity offset, such that we can more effectively com-
press residual offset information for better bit-rate saving.
Overall, the entire framework is implemented by the fully-
differentiable modules and can be optimized in an end-to-
end manner. Our comprehensive experiments on three au-
tomotive stereo video benchmarks Cityscapes, KITTI 2012
and KITTI 2015 demonstrate that our proposed framework
outperforms the learning-based single-view video codec
and the traditional hand-crafted multi-view video codec.

1. Introduction
Stereo cameras are often used as crucial sensors for au-

tonomous driving applications as they can acquire more pre-
cise depth information than traditional mono cameras, while
being less expensive than other sensors (e.g., LIDAR) [7].
Due to the increasing demand for storing and transmitting
the massive automotive stereo videos, how to effectively
compress such data has become an emerging task.

Automotive stereo video compression can be regarded as
a special case of multi-view video compression (MVC), for
which several traditional MVC standards [35, 38, 41] have
been proposed in the past decades. Nevertheless, such stan-
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dards all rely on hand-crafted modules, which cannot be
jointly end-to-end optimized. Moreover, they only aim at
improving the compression performance for one view (e.g.,
the left view) by exploiting both inter-view and intra-view
redundancy, while compressing the base view (e.g., the right
view) by directly employing the single-view video codecs.
Therefore, the compression performance could not be sig-
nificantly improved without exploiting the cross-view re-
dundancy when compressing the right-view videos.

While deep neural networks (DNNs) have achieved
tremendous success in image and video compression [5,29],
how to develop an effective learning-based stereo video
codec remains an under-explored research problem. In
this work, we propose the first learning-based stereo video
compression (LSVC) framework for autonomous driving
applications. Different from the traditional stereo video
codecs, which simply compress the right-view videos by us-
ing the single-view video codecs, our framework effectively
reduces both temporal and binocular redundancy for the
stereo videos from both views, in which we use the infor-
mation from one view to assist the compression of another
view in an iterative fashion. Specifically, when compressing
the current left/right frame, the reconstructed within-view
frame (i.e., the left/right frame) from the previous time-
step and the latest reconstructed cross-view frame (i.e., the
right/left frame) are used as two reference frames. To better
exploit both temporal redundancy for adjacent within-view
frames and binocular redundancy for cross-view frames, in
our approach, we estimate the motion offset between the
current frame and the reconstructed previous frame from the
same view, while estimating the disparity offset between the
current frame and the latest reconstructed cross-view frame.
After motion and disparity compression, we respectively
perform motion compensation and disparity compensation
to generate the intra-view and inter-view compensated fea-
tures, which are eventually fused as the final compensated
feature for the subsequent residual compression process.

Furthermore, we also propose two new approaches
called motion residual compression (MRC) and disparity
residual compression (DRC) to effectively compress the in-
troduced motion and disparity offsets, which is based on
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the observation that most automotive stereo sensors are
particularly calibrated and their epipolar line is horizon-
tal [12, 25]. Consequently, the produced stereo frames are
rectified, which leads to a strong relationship among tempo-
rally adjacent stereoscopic frames [23, 26]. To exploit such
a relationship, rather than directly compressing the raw off-
sets, we generate the predicted motion offset (resp., dispar-
ity offset) based on the latest reconstructed motion offset
(resp., disparity offset) by leveraging the geometric correla-
tion of stereoscopic frames (resp., temporal correlation of
adjacent within-view frames), such that we only need to
compress the residual offset information between the raw
offset and the predicted offset for better bit-rate saving.

Overall, we implement all our modules by using fully-
differentiable DNNs and perform all coding operations in
the feature space for better performance as in [19]. We con-
duct comprehensive experiments on three automotive stereo
video benchmarks Cityscapes [10], KITTI 2012 [15] and
KITTI 2015 [32]. The results demonstrate that our proposed
framework significantly outperforms other codecs.

Our contributions are summarized as follows:

• Our proposed framework reduces both intra-view and
inter-view redundancy by iteratively performing deep
motion and disparity compensation in the feature space
for both left-view and right-view videos. To the best
of our knowledge, it is the first end-to-end optimized
stereo video compression framework.

• We propose two new compression schemes MRC and
DRC to compress the residual motion information and
the residual disparity information, respectively, which
enables effective compression of complex motion and
disparity offsets from the automotive stereo videos.

• The extensive experiments on three automotive stereo
video benchmarks demonstrate that our newly pro-
posed framework achieves the state-of-the-art results
for compressing the automotive stereo videos.

2. Related Work
2.1. Image and Video Compression

The traditional image and video codecs [6,36,37,42,44]
mostly adopted the hand-crafted techniques to reduce the
spatial and spatial-temporal redundancies. However, they
cannot be end-to-end optimized based on large training
datasets. Recently, several learning-based image compres-
sion methods were proposed, among which the most re-
cent works [4, 5, 8, 9, 33, 39, 45] adopted the auto-encoder
style networks to compress images. For example, Ballé et
al. [5] proposed to use the variational auto-encoder (VAE)
with hierarchical priors, which achieves better compression
performance than BPG [6]. Inspired by the success of im-
age compression, learning-based video compression also at-
tracts increasing attention [3,14,16–18,24,27–30,47]. Most

works followed the hybrid coding framework and produced
the compensated frames based on the estimated motion in-
formation. For example, DVC [29] is the first end-to-end
optimized video codec by implementing all modules with
DNNs, while the latest method FVC [19] performs all ma-
jor coding operations in the feature space. Although such
learning-based video codecs can achieve promising perfor-
mance for single-view video compression, they cannot be
directly applied for effective automotive stereo video com-
pression as it is unclear how these methods can effectively
handle the inter-view redundancy, which is one of the core
challenges in the stereo video compression task.

2.2. Multi-view Image and Video Compression
Based on the hand-crafted modules, the traditional multi-

view image compression methods usually used disparity
compensation for stereo image compression [13, 31, 34].
For stereo video compression, the standard MVC meth-
ods were extended from the standard video codecs [36, 44].
For example, the MVC extension [41] of H.264 employed
disparity compensation to exploit the inter-view redun-
dancy. Extended from H.265, the most recent standard MV-
HEVC [38] adopted the new techniques (e.g., the coding
tree unit [21]) to compress the disparity information. How-
ever, such MVC standards might not be suitable for auto-
motive stereo video compression as they are all based on
the hand-crafted modules and thus prevent the joint opti-
mization of the compression task together with other ma-
chine vision tasks (e.g., object detection) for the standard
autonomous driving applications. Recently, Liu et al. [25]
proposed the first deep stereo image coding method DSIC
by adopting the parametric skip function, while Deng et
al. [12] further employed homography estimation. How-
ever, these two approaches were only proposed for stereo
image compression without considering the temporal re-
dundancy of stereo videos. As far as we know, there are
no learning-based stereo video compression approaches.

3. Methodology
3.1. Overview

Let us denote a rectified automotive stereo video pair
as (V l,Vr), where the superscripts l and r respectively de-
note the left and right views from the camera. Our method
compresses each frame pair (X l

t, X
r
t ) in an iterative fash-

ion, where the subscript t denotes the time-step t. Specif-
ically, as shown in the Fig. 1 (a), at time-step t, we use
the LSVC right-view compression module to compress the
right-view frame Xr

t and produce the reconstructed frame
X̂r

t , in which we adopt the reconstructed within-view frame
X̂r

t−1 from time-step t−1 and the most recent cross-view re-
constructed frame X̂ l

t−1 as two reference frames. Then, we
compress the left-view frame X l

t by using the LSVC left-
view compression module, in which we employ the previ-
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Figure 1. (a) At time-step t, we first use the reconstructed frames X̂l
t−1 and X̂r

t−1 respectively from the left-view and right-view videos at
time-step t− 1 as the reference frames to compress the right-view current frame Xr

t and then produce the reconstructed right-view current
frame X̂r

t by using the LSVC right-view compression module. By adopting X̂r
t as the cross-view reference frame and X̂l

t−1 as the within-
view reference frame, we then use the LSVC left-view compression module to compress the left-view current frame Xl

t and produce the
reconstructed left-view current frame X̂l

t , which will be again used as the cross-view reference frame together with X̂r
t for compressing the

right-view frame Xr
t+1 at next time-step t+1. (b) Taking the LSVC left-view compression module for compressing Xl

t as an example, we
first extract the features Fl

t, Fl
t−1 and Fr

t respectively from the frames Xl
t , X̂l

t−1 and X̂l
r by using the feature extraction module. Then, we

produce the reconstructed motion offset (resp., reconstructed disparity offset) by using motion estimation (resp., disparity estimation) and
motion residual compression (MRC) (resp., disparity residual compression (DRC)) in the motion branch (resp., disparity branch). After
compensation including both motion and disparity compensation and the simple fusion operation, we produce a final compensated feature
F̄l

t. Following that, the residual feature Rl
t between Fl

t and F̄l
t is then compressed by using the residual compression module, such that

we can then produce the final reconstructed feature F̂l
t by adding the reconstructed residual feature R̂l

t and F̄l
t. Eventually, we decode the

feature F̂l
t back to the reconstructed frame X̂l

t by using the image reconstruction module, which will be then stored in the frame buffer.
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Figure 2. The structure of (a) one residual block, (b) the extractor
for feature extraction and (c) the reconstructor for image/feature
reconstruction, where “Conv(C,K, S)” and “Deconv(C,K, S)”
represent the convolution and deconvolution operations with the
number of output channels as C, the kernel size as K×K and the
stride as S. In our main framework (i.e., Fig. 1 (b)), the feature
extraction module employs one “Extractor(64)”, while the image
reconstruction module employs one “Reconstructor(64, 3)”.

ously reconstructed frames X̂r
t as the cross-view reference

frame and X̂ l
t−1 as the within-view reference frame. After

we obtain the reconstructed frame X̂ l
t , we will use it as the

cross-view reference frame together with X̂r
t to help com-

press the right-view frame Xr
t+1 at next time-step t+1 and

then the iterative process will continue for compressing the
subsequent left and right frames. The left-view and right-

view compression modules are almost identical. So we will
only take the left-view compression module as an example
to illustrate our main framework (i.e., Fig. 1 (b)) and sum-
marise the difference between the left-view and the right-
view modules in Section 3.4. Motivated by [19], all our
operations are performed in the feature space. It is worth
mentioning that our proposed framework is a general one
and other advanced learning-based motion compensation
and residual compression technologies beyond the current
design can be readily incorporated into this framework.

Feature Extraction. We first use the feature extraction
module (i.e., our extractor shown in Fig. 2 (b)) to generate
the features Fl

t, F
l
t−1 and Fr

t respectively from the input
video frame X l

t , and two reference frames including the re-
constructed within-view frame X̂ l

t−1 at time-step t− 1 and
the latest reconstructed frame X̂r

t from the right view.
Motion Estimation and Disparity Estimation. In-

spired by the existing works in video restoration [19,20,40],
we also use deformable convolution [11] as our warping
strategy (see details in Section 3.2). Therefore, we esti-
mate the motion and disparity offsets Ml

t and Dl
t for the
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Figure 3. The structure of (a) our compensation module, (b) our
deformable warping operation and (c) the deformable convolution
operation. For motion (resp., disparity) compensation, we adopt
one “Deformable Warping (64)”. Our deformable warping opera-
tion first uses a “Conv(G×2×9, 3, 1)” to produce the offset map.
Note “G”, “2”, “9” denote the channel groups (G=8), two direc-
tions (the horizontal and vertical direction) of the offset map and
the size of each kernel (3×3), respectively. Last, the deformable
convolution module will use the offset map to warp the reference
feature F from another view or the previous time-step to gener-
ate the predicted feature, which is followed by the standard post-
processing operations such as concatenation and convolution.

deformable warping operation based on (Fl
t, F

l
t−1) and (Fl

t,
Fr

t ). For both motion and disparity estimation, we simply
concatenate the two input features (e.g., (Fl

t, F
l
t−1)) and

then employ one “Conv(64, 3, 1)” and three “Resblock(64,
3)” operations to generate the estimated offsets.

Motion Residual Compression (MRC) and Disparity
Residual Compression (DRC). Here, the MRC and DRC
modules are respectively used to compress the left-view cur-
rent motion offset Ml

t and the left-view current disparity
offset Dl

t. We generate the predicted motion (resp., dispar-
ity) offset feature by warping the features from the recon-
structed right-view current motion offset M̂r

t (resp., the lat-
est reconstructed left-view disparity offset D̂l

t−1) using the
deformable warping operation and then introduce the resid-
ual offset compression module for better compressing Ml

t

and Dl
t. Please see Section 3.3 for more details.

Compensation. As shown in Fig. 3 (a), based on the pre-
vious temporal reference feature Fl

t−1 and the reconstructed
motion offset M̂l

t, the motion compensation module em-
ploys our deformable warping operation (i.e., Fig. 3 (b)) to
warp the feature Fl

t−1 from the previous time-step t − 1
to the current time-step t and generate the motion compen-
sated feature. Meanwhile, based on the reconstructed dis-
parity offset D̂l

t and the right-view feature Fr
t , we can pro-

duce the disparity compensated feature by using the same
deformable warping operation again for disparity compen-
sation. Then, a fusion network with a set of standard op-
erations such as concatenation and convolution is proposed
to combine these two compensated features and generate a
more accurate left-view compensated feature F̄l

t.

Residual Compression. The residual feature Rl
t be-

tween F̄l
t and Fl

t is then compressed by using the same
auto-encoder style network as in [19] and the output is the
reconstructed residual feature R̂l

t.
Image Reconstruction. After adding the reconstructed

residual feature R̂l
t and the compensated feature F̄l

t, we pro-
duce the final reconstructed feature F̂l

t, from which the final
reconstructed image is generated by using the image recon-
struction module, which directly employs the reconstructor
operation shown in Fig. 2 (c).

Entropy Coding. We use the quantization approach and
the learning-based entropy coding method as in [5] to loss-
lessly compress the quantized motion feature Ûl

t, the quan-
tized disparity feature V̂l

t and the quantized residual feature
Ẑl

t, respectively produced from the motion branch, the dis-
parity branch and the residual compression module.

3.2. Deformable Warping
We adopt deformable convolution [11] as our primary

compensation and prediction technique in the feature space,
which is intuitively illustrated in Fig. 3 (c). Based on the
learned offset map O and the reference feature F, for each
kernel, we use the offsets to control the sampling locations
in the reference feature. Then, all the values from the sam-
pled locations in the reference feature are fused through the
standard deformable convolution layer [11] to generate the
predicted feature, which is further post-processed by using
standard operations such as concatenation and two convo-
lution operations. The whole process is called “deformable
warping” in our framework. As suggested in [19], we di-
vide the reference feature channels into 8 different groups
(i.e., G=8) and use a shared offset map for each group.

3.3. Motion and Disparity Residual Compression
For the automotive stereoscopic frames, the motion and

disparity maps have strong geometric and temporal corre-
lation [23, 26]. For example, both Ml

t and Mr
t represent

the motion offsets from t − 1 to t. Though they are cal-
culated from different views, their correspondence can still
be intuitively captured by the disparity offset between the
left and right views. Therefore, we can approximate the
raw left-view motion offset Ml

t based on the reconstructed
right-view motion offset M̂r

t . Hence, we only need to com-
press the residual offset information between the predicted
and raw offset features for better bit-rate saving.

Our MRC module is shown in Fig. 4 (a), we first ex-
tract the reference feature f(M̂r

t ) from the reconstructed
right-view current motion offset M̂r

t . Based on the feature
f(D̂l

t−1) (extracted from the reconstructed left-view dispar-
ity offset D̂l

t−1 at previous time-step t − 1), we perform
the deformable warping operation (i.e., Fig. 3 (b)) to warp
this reference feature f(M̂r

t ) and generate a predicted offset
feature. Then we only need to compress the residual feature
between the raw offset feature extracted from Ml

t and the
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Figure 4. The network structure of (a) our motion residual com-
pression (MRC) and (b) our disparity residual compression (DRC)
modules. For MRC (resp., DRC), we extract f(M̂r

t ) (resp.,
f(D̂l

t−1)) as the reference feature from the reconstructed right-
view current motion offset M̂r

t (resp., the reconstructed left-view
disparity offset D̂l

t−1 at time-step t − 1) to produce the predicted
offset feature. Therefore, we only need to compress the residual
offset feature between the raw offset feature extracted from the
current raw motion offset Ml

t (resp., the current raw disparity off-
set Dl

t) and the predicted offset feature by using the residual off-
set compression module, in which we adopt 2 “Conv(128, 3, 1)”
and 1 “Conv(128, 5, 2)” operations to compress the residual offset
feature, then produce the quantized residual motion feature (resp.,
quantized residual disparity feature), and eventually reconstruct it
by using 2 “Deconv(128, 3, 1)” and 1 “Deconv(128, 5, 2)” opera-
tions. For both MRC and DRC, we employ 3 “Extractor(128)” op-
erations for the feature extraction module, 3 “Reconstructor(128,
128)” operations for the offset reconstruction module and 1 “De-
formable Warping (128)” operation (i.e., Fig. 3 (b)) to generate the
predicted offset feature. For MRC, we use the feature f(D̂l

t−1)
extracted from the reconstructed left-view disparity offset D̂l

t−1 at
time-step t−1 to help warp the reference feature. While for DRC,
we first concatenate two features f(M̂l

t) and f(M̂r
t ) respectively

extracted from the reconstructed left and right motion offsets M̂l
t

and M̂r
t at time-step t to help warp the reference feature.

predicted offset feature by using an auto-encoder style net-
work called residual offset compression. The corresponding
quantized residual motion feature is denoted as Ûl

t.
As shown in Fig. 4 (b), the scheme our DRC module is

almost identical to our MRC module, in which we extract
the reference feature f(D̂l

t−1) from the latest reconstructed
left-view disparity offset D̂l

t−1 at time-step t− 1 to predict
the raw offset feature extracted from the left-view current
disparity offset Dl

t. To produce better prediction, we em-
ploy the features from the latest left-view and right-view
reconstructed motion offsets M̂l

t and M̂r
t for warping the

reference feature f(D̂l
t−1), in which we simply concate-

nate the two features f(M̂l
t) and f(M̂r

t ) from both views.
Again, we only need to compress the residual offset feature
between the raw disparity feature extracted from Dl

t and
the predicted offset feature. The corresponding quantized
residual disparity feature is denoted as V̂l

t.

3.4. LSVC Right-view Compression Module
We adopt the most recent reconstructed left-view frame

X̂ l
t−1 as the cross-view reference frame and the recon-

structed right-view adjacent frame X̂r
t−1 from time-step

t − 1 as the within-view reference frame, and then use
the LSVC right-view compression module to compress the
right-view current frame Xr

t . The right-view compression
module is almost identical to the left-view compression
module (i.e., Fig. 1 (b)), which also consists of three main
blocks: motion branch, disparity branch and residual com-
pression. There are only two minor modifications.

First, for the motion branch, we directly compress the
right-view motion offset Mr

t without using MRC as the
corresponding reference motion offset from the left-view at
time-step t is not available. Specifically, we use the fea-
ture extraction module (see Fig. 4 (a)) to generate the raw
offset feature from Mr

t and then directly quantize it as Ûr
t

for lossless entropy coding, and eventually we use the off-
set reconstruction module (see Fig. 4 (a)) to generate the
reconstructed right-view motion offset M̂r

t .
Second, as the reconstructed cross-view reference frame

X̂ l
t−1 at time-step t − 1 is different from the current right-

view frame Xr
t in terms of both timp-steps and views, it will

be difficult to directly perform the disparity compensation
based on its extracted feature Fl

t−1. To improve the per-
formance, we generate an intermediate feature F̃l

t at time-
step t by compensating Fl

t−1 based on the reconstructed
left-view current motion offset M̂l

t. Note, we can perform
the operations from the motion branch of the LSVC left-
view compression module before the disparity branch of the
LSVC right-view compression module to generate M̂l

t, as
this step does not require the reconstructed right-view frame
X̂r

t to be ready. Therefore, we eventually adopt the inter-
mediate feature F̃l

t to perform all operations in the disparity
branch of the LSVC right-view compression module.

3.5. Training Strategy
We optimize our framework for compressing the videos

from both left and right views. Specifically, we jointly com-
press the stereoscopic frame pair (X l

t , X
r
t ) and the corre-

sponding objective function is formulated as follows,

L =λD(X l
t, X̂

l
t) +R(Ûl

t) +R(V̂l
t) +R(Ẑl

t)

+ λD(Xr
t , X̂

r
t ) +R(Ûr

t ) +R(V̂r
t ) +R(Ẑr

t )
(1)

where D(·) represents the distortion between the recon-
structed and original frames. R(·) represents the bit-rate
cost in the compression procedure. Here, Ûl

t and Ûr
t rep-

resent the quantized residual motion feature produced by
MRC from the left-view video and the quantized motion
feature produced by motion compression from the right-
view video. Then, V̂l

t and V̂r
t represent the quantized resid-

ual disparity features produced by DRC from the left-view

6077



0.04 0.06 0.08 0.10 0.12 0.14 0.16

37.0

38.0

39.0

40.0

41.0

PS
N
R

Cityscapes dataset

H.265
MV-HEVC
FVC
LSVC (ours)

0.3 0.4 0.5 0.6 0.7

27.5

27.8

28.0

28.2

28.5

28.8

29.0

PS
N
R

KITTI 2012 dataset

H.265
MV-HEVC
FVC
LSVC (ours)

0.2 0.3 0.4 0.5 0.6

28.2

28.5

28.8

29.0

29.2

29.5

29.8

PS
N

R

KITTI 2015 dataset

H.265
MV-HEVC
FVC
LSVC (ours)

0.05 0.10 0.15 0.20

0.98

0.99

0.99

0.99

0.99

0.99

M
S-
SS

IM

Cityscapes dataset

H.265
MV-HEVC
FVC
LSVC (ours)

0.2 0.3 0.4 0.5 0.6

0.96

0.96

0.97

0.97

0.98

0.98

0.99

M
S-

SS
IM

KITTI 2012 dataset

H.265
MV-HEVC
FVC
LSVC (ours)

0.2 0.3 0.4 0.5 0.6

0.96

0.97

0.97

0.98

0.98

M
S-

SS
IM

KITTI 2015 dataset

H.265
MV-HEVC
FVC
LSVC (ours)

Figure 5. Experimental results on three automotive stereo video benchmark datasets Cityscapes, KITTI 2012 and KITTI 2015. We report
both PSNR and MS-SSIM compression results. We use the models trained based on the Cityscapes dataset when evaluating the PSNR
results on all three benchmark datasets. When using MS-SSIM for compression performance evaluation, we additionally fine-tune both
FVC [19] and our LSVC models based on the Cityscapes dataset by using MS-SSIM as the distortion loss.

and right-view videos, respectively. Last, Ẑl
t and Ẑr

t rep-
resent the quantized residual features produced by resid-
ual compression from the left-view and right-view videos,
respectively. We learn the whole network by solving the
above optimization problem in an end-to-end fashion.

4. Experiments
4.1. Evaluation Datasets

Cityscapes. The Cityscapes raw sequence [10] con-
sists of 2975, 500 and 1525 sequence pairs in the train-
ing, validation and testing sets, respectively. Each sequence
pair contains two 30-frames videos with the resolution of
2048× 1024. In our experiments, we follow [10] to use the
default training/testing split. For the preprocessing proce-
dure, we follow the evaluation setting as in [25], where we
crop out the top and left parts with rectification artifacts as
well as the bottom part with the ego vehicle.

KITTI. We further evaluate our method on two
stereo video benchmark datasets KITTI 2012 [15] and
KITTI 2015 [32]. KITTI 2012 consists of 195 stereo se-
quence pairs, while KITTI 2015 consists of 200 stereo se-
quence pairs. Each sequence has 21 frames and we crop all
sequences to the resolution of 1216×320 for fair evaluation.

4.2. Experiment Protocols
Implementation Details. In our implementation, we

train our models with four different λ values (λ =
512, 1024, 2048, 4096). We first pre-train all modules in

the motion branch and residual compression based on the
Vimeo-90K dataset [46], in which the parameters of those
modules are shared for both left-view and right-view mod-
ules. A two-stage training scheme is then used for train-
ing our model based on the Cityscapes dataset. At the first
stage, we train our framework without using the MRC and
DRC modules, in which we first use the learning rate of 5e-5
in the first 6 epochs and then reduce the learning rate as 5e-
6 in the subsequent 3 epochs. In the second stage, we first
fix all other parameters, but only train both MRC and DRC
modules based on the learning rate of 5e-5 for the first 3
epochs and then we train the network in an end-to-end fash-
ion with all parameters based on the learning rate of 5e-6 for
the subsequent 3 epochs. To reduce memory consumption
and computational cost, we directly reuse the encoded mo-
tion and disparity offset features, which are produced when
previously compressing the latest two frames. So we can
bypass the feature extraction procedures in both MRC and
DRC modules. To achieve better MS-SSIM [43] results,
we further fine-tune the learned model for 3 more epochs
based on the learning-rate of 5e-6 by using the MS-SSIM-
based loss function. Note, we use the same model trained
based on the Cityscapes dataset to evaluate our framework
on all three benchmark datasets Cityscapes, KITTI 2012
and KITTI 2015. The framework is implemented by Py-
Torch with CUDA support and optimized by using Adam
Optimizer [22] on a machine with a single NVIDIA 2080Ti
GPU, in which we set the batch size as 4. We use the ran-
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Figure 6. Ablation study of the joint video compression strategy
for both left-view and right-view videos on the Cityscapes dataset.
(1) FVC: the baseline method FVC for compressing both view
videos, (2) LSVC w/o right-view CM (resp., (3) LSVC w/o left-
view CM): we remove the LSVC right-view compression mod-
ule (resp., the LSVC left-view compression module) and directly
use FVC to compress the right-view videos (resp., the left-view
videos). (4) LSVC: our proposed complete framework.

dom flip technique and randomly crop each training image
to the size of 320× 256 for data augmentation.

Metrics. We use bits per pixel (Bpp) to measure the bit-
rate. In addition, we use PSNR and MS-SSIM to measure
the distortion between the compressed and original videos.

Baseline Codecs. In our experiments, we include the
traditional video codec H.265 [36] and its MVC extension
MV-HEVC [38]. We adopt the most recent state-of-the-art
learning-based video codec FVC [19], which also employs
deformable convolution and performs all coding operations
in the feature space as our baseline method. To pre-train
FVC, we follow its original training scheme in [19] based
on the Vimeo-90K dataset. Then, we fine-tune the models
based on the Cityscapes dataset by using the same train-
ing scheme as in our LSVC (See Implementation Details).
For H.265, we use HM-16.20 [1] with the lowdelay P main
configuration setting, while for MV-HEVC, we use the
HTM-16.3 [2] software with the baseCfg 2view configura-
tion setting. Note, we set Intra-Period=-1 for all codecs
(i.e., only the first frame of each video will be compressed
as I-frame). For two learning-based video codecs FVC and
our LSVC, we use the learning-based image compression
method in [9] to compress I-frame, which is pre-trained as
in [9] and then fine-tuned based on the Cityscapes dataset.
Inspired by MV-HEVC, our LSVC only compresses the
right-view first frame as the I-frame, while compressing
the left-view first frame by using our left-view compres-
sion module. To minimize the cumulative error, our LSVC
(resp., FVC) also follows the HTM (resp., HM) to use a bet-
ter compression model for compressing the 4th frame pair
(resp., frame) of every 4 frame pairs (resp., frames).

4.3. Experiment Results
We provide the compression results on three datasets in

Fig. 5. It is noted that our method outperforms all other
video codecs including the traditional MVC method MV-
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Figure 7. Ablation study of our newly proposed MRC and DRC
modules on the Cityscapes dataset. (1) LSVC w/o MRC & DRC:
LSVC without adopting both MRC and DRC modules to compress
the motion offset and the disparity offset. (2) LSVC w/o MRC:
LSVC without adopting the MRC module to compress the motion
offset. (3) LSVC w/o DRC: LSVC without adopting the DRC
module to compress the disparity offset. (4) LSVC: our proposed
complete framework.

HEVC [38] and the baseline method FVC [19]. We would
like to highlight that our LSVC significantly outperforms
FVC on all datasets. These results indicate that it is bene-
ficial to reduce both intra-view redundancy along the tem-
poral dimension and the inter-view binocular redundancy
when compressing the stereo video pairs. Whereas, the
standard learning-based video codecs such as FVC only
focus on reducing the temporal redundancy. Moreover,
in Table 1, we provide the BDBR results by using MV-
HEVC [38] as the anchor method. It shows that our method
respectively saves around 32.66%, 17.14% and 13.35%
bit-rates on the Cityscapes, KITTI 2012 and KITTI 2015
datasets, which clearly indicates the superiority of our pro-
posed framework over the traditional MVC methods.

Table 1. BDBR (in %) results of H.265 [36], FVC [19] and our
LSVC, in which MV-HEVC [38] is used as the anchor method.
Negative values indicate bit-rate savings, while positive values in-
dicate additional bit-rate costs.

H.265 FVC LSVC (Ours)
Cityscapes 33.27 -15.55 -32.66
KITTI 2012 7.86 -2.29 -17.14
KITTI 2015 12.73 1.02 -13.35

4.4. Ablation Study
Effectiveness of LSVC left-view and right-view com-

pression modules. We take the Cityscapes dataset as an
example to evaluate two variants of our framework. Specifi-
cally, the alternative method LSVC w/o left-view CM (resp,
LSVC w/o right-view CM) only keeps the LSVC right-view
compression module (resp., the LSVC left-view compres-
sion module) and directly employs FVC [19] to compress
the left-view videos (resp., the right-view videos), in which
the reconstructed left-view current frame X̂ l

t (resp., the re-
constructed right-view current frame X̂r

t ) comes from the
output of FVC instead of the LSVC left-view compression
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module (resp., the LSVC right-view compression module).
The design of our alternative methods is similar to the tra-
ditional stereo video codecs that usually compress one base
view by the single-view video codecs. As shown in Fig. 6,
when compared with the baseline method FVC, the first al-
ternative method LSVC w/o left-view CM can save around
8.95% bit-rates, while the second alternative method LSVC
w/o right-view CM can save up to 15.38% bit-rates. When
compressing the right-view current frame Xr

t , the LSVC
right-view compression module directly adopts the recon-
structed left-view frame X̂ l

t−1 at previous time-step t−1 as
the cross-view reference frame, therefore it might be harder
to perform the disparity compensation due to the additional
information mismatch between different time-steps, which
degrades the performance of the first alternative method
LSVC w/o left-view CM. Last, our complete framework
outperforms both alternative methods and saves 19.23% bit-
rates when compared with FVC, which indicates that it is
beneficial to simultaneously use our proposed left-view and
right-view compression modules in an iterative fashion.

Effectiveness of MRC and DRC. To evaluate the effec-
tiveness of our newly proposed modules MRC and DRC, we
take the Cityscapes dataset as an example to perform sev-
eral new experiments and the results are reported in Fig. 7.
Specifically, for LSVC w/o MRC (resp., LSVC w/o DRC),
we replace the MRC module (resp., the DRC module) by
directly compressing the motion offset (resp., the disparity
offset) with the feature extraction and offset reconstruction
modules without going through the deformable warping and
residual offset compression processes. Namely, we directly
quantize the raw motion offset feature (resp., the raw dispar-
ity offset feature) after using the feature extraction module
(See Fig. 4) for lossless entropy coding. When compared
with our LSVC complete model, we observe that the first
alternative method LSVC w/o MRC will additionally con-
sume 5.71% bit-rates, while the second alternative method
LSVC w/o DRC will bring 7.61% extra bit-rates. More-
over, the third alternative method without using both MRC
and DRC (i.e., LSVC w/o MRC & DRC) achieves the worst
results and introduces 16.07% extra bit-rates.

Visualization. We further provide the visualization re-
sults to demonstrate the effectiveness of our newly proposed
MRC and DRC modules, in which we take the 2nd frame of
Bielefeld-028 from the Cityscapes dataset as an example.
Fig. 8 (d) shows the raw motion offset Ml

t estimated based
on the current frame (See Fig. 8 (a)) and the within-view
reference frame at time-step t − 1 (See Fig. 8 (b)), while
Fig. 8 (e) and Fig. 8 (f) represent the predicted motion offset
and the residual motion offset reconstructed from the corre-
sponding features (note both offsets are reconstructed by us-
ing the offset reconstruction module (See Fig. 4)). Here we
select the representative offset map (from the total number
of 72 offset maps) for better visualization. It is observed that

(a) Input Frame (b) Within-view Reference (c) Cross-view Reference

(g) Raw Disparity Offset   (h) Predicted Disparity Offset   (i) Residual Disparity Offset    

(f) Residual Motion Offset    (d) Raw Motion Offset   (e) Predicted Motion Offset   

Figure 8. The images of (a) the input left-view current frame Xl
t ,

(b) the within-view reference frame X̂l
t−1 and (c) the cross-view

reference frame X̂r
t . The visualization results of (d) the raw mo-

tion offset Ml
t produced based on Xl

t and X̂l
t−1, (e) the corre-

sponding predicted motion offset and (f) the residual motion offset
produced from our MRC, (g) the raw disparity offset Dl

t produced
based on Xl

t and X̂r
t , (h) the corresponding predicted disparity

offset and (i) the residual disparity offset produced from our DRC.

our predicted motion offset from the MRC module is very
close to the raw motion offset. Therefore, it takes much less
bit-rates for compressing the corresponding residual motion
offset (See Fig. 8 (f)). We have similar observations for the
disparity offset (See Fig. 8 (g), (h) and (i)).

Complexity. Last, we take the Cityscapes dataset as an
example to report the encoding time (in seconds per frame).
All experiments are performed on the machine with one In-
tel i9-10900X CPU and one NVIDIA 2080Ti GPU. The en-
coding times of our LSVC are respectively 10.34s on the
CPU platform and 0.35s on the GPU platform, which is
much faster than the traditional hand-crafted MVC standard
MV-HEVC (i.e., 18.27s on the CPU platform).

5. Conclusion
In this work, we have proposed the first end-to-end

optimized learning framework for compressing automo-
tive stereo videos, in which we introduce a new iterative
deep compression paradigm to effectively compress both
left-view and right-view videos by reducing both temporal
and binocular redundancy. Two new compression schemes
MRC and DRC are also proposed for better compressing the
introduced motion and disparity offsets. Extensive experi-
ments show that our framework outperforms the traditional
MVC standard and the most recent single-view learning-
based video codec, which provides a strong baseline for
compressing automotive stereo videos and facilitates the fu-
ture research works for the learning-based MVC task.
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