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Abstract

Semi-supervised object detection has made significant
progress with the development of mean teacher driven self-
training. Despite the promising results, the label mismatch
problem is not yet fully explored in the previous works,
leading to severe confirmation bias during self-training. In
this paper, we delve into this problem and propose a sim-
ple yet effective LabelMatch framework from two different
yet complementary perspectives, i.e., distribution-level and
instance-level. For the former one, it is reasonable to ap-
proximate the class distribution of the unlabeled data from
that of the labeled data according to Monte Carlo Sam-
pling.  Guided by this weakly supervision cue, we intro-
duce a re-distribution mean teacher, which leverages adap-
tive label-distribution-aware confidence thresholds to gen-
erate unbiased pseudo labels to drive student learning. For
the latter one, there exists an overlooked label assignment
ambiguity problem across teacher-student models. To rem-
edy this issue, we present a novel label assignment mech-
anism for self-training framework, namely proposal self-
assignment, which injects the proposals from student into
teacher and generates accurate pseudo labels to match each
proposal in the student model accordingly. Experiments
on both MS-COCO and PASCAL-VOC datasets demon-
strate the considerable superiority of our proposed frame-
work to other state-of-the-arts. Code will be available at
https://github.com/HIK-LAB/SSOD.

1. Introduction

Supervised learning has advanced object detection in the
past few years, benefited from tremendous labeled training
data [5, 17, 26, 28, 34]. However, it is extremely expen-
sive and time-consuming to collect accurate annotations. As
an alternative, semi-supervised object detection (SSOD) is
proposed to use a small amount of labeled data in conjunc-
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Figure 1. Label mismatch problems on the MS-COCO dataset.
1) Distribution-level mismatch: there exists a bias between the
pseudo labels produced by the single confidence threshold and the
ground truth labels (GT) during self-training, as shown in the re-
lation of the blue bar and the orange dotted line. 2) Instance-level
mismatch: there are two kinds of training patterns for the unla-
beled data in the previous SSOD frameworks. One is the same
as supervised learning, using both classification and box regres-
sion for optimization, which will overfit the poor-quality pseudo
labels and result in low localization accuracy. To avoid incorrect
box regression, another one merely exploits a classification objec-
tive [22], which will bring ambiguity due to the similar classifi-
cation scores to confuse the post-processing of Non-Maximum-
Suppression (NMS).

tion with a large amount of unlabeled data to optimize the
detectors [14,22,31,37,40]. Recently, SSOD has achieved
growing interest in the object detection community.
Self-training has been proven useful in SSOD, especially
mean teacher framework [22, 37], which annotates the un-
labeled data by a gradually evolving teacher and guides the
learning of a student in a mutually beneficial manner. As
the key process of mean teacher, the existing pseudo label-
ing methods [22,37,40] simply utilize a hand-crafted con-
fidence threshold to filter out low-quality pseudo labels and
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directly treat the remaining ones as reliable pseudo labels.
However, it is inevitable to encounter the label mismatch
problem, leading to severe confirmation bias [ | ] during self-
training. In this paper, we delve into this problem from two
perspectives, i.e., distribution-level and instance-level.

From the perspective of the distribution-level label mis-
match problem, it is extremely difficult to generate unbiased
pseudo labels to match the ground-truth labels with consis-
tent class distribution by using a single and fixed confidence
threshold due to the class-imbalanced data distribution. As
shown in Fig. 1, the number of pseudo labels is much higher
than the ground-truth labels in some classes, while far less
in some other classes, resulting in abundant false positives
and false negatives. From the perspective of the instance-
level label mismatch problem, the existing methods directly
follow supervised object detection [28] for label assign-
ment. However, the situation is totally different in semi-
supervised learning since the quality of pseudo label can-
not be guaranteed, leading to label assignment ambiguity
problem as illustrated in Fig. 1. Especially in mean teacher
driven self-training framework, it is crucial to study how to
assign the pseudo labels generated by the mean teacher to
the proposals generated by the student network rather than
arough IoU based label assignment manner [28]. Based on
the aforementioned challenges of label mismatch in two dif-
ferent yet complementary granularities, we begin our study
and develop a LabelMatch framework.

To address the first challenge, we present a very sim-
ple re-distribution mean teacher. Assumed that the labeled
data is selected from the entire data gallery via Monte Carlo
Sampling. In this way, the label distribution of the unla-
beled data can be approximated from that of the labeled
data. In fact, we have evaluated the label distribution of
the labeled and unlabeled data in several popular SSOD
datasets, and they all meet this hypothesis which can be
exploited as a weakly supervision cue for pseudo label-
ing. Under this inspiration, in contrast to a single and fixed
confidence threshold, we utilize adaptive label-distribution-
aware confidence thresholds (ACT) to generate unbiased
pseudo labels for the unlabeled data, supervised by the la-
bel distribution in the labeled data. The ACT are category-
specific and adaptively up-to-date during self-training.

To address the second challenge, we propose a novel
proposal self-assignment method. Before introducing our
method, we should highlight that it is infeasible to set all
pseudo labels as hard labels due to the poor quality of the
pseudo labels, especially at the beginning of self-training.
Under this consideration, we divide the pseudo labels into
reliable ones and uncertain ones according to the confidence
score. We treat the reliable labels as hard labels for model
optimization identically to the supervised manner, while ex-
ploiting the uncertain ones via the proposal self-assignment
method for soft learning. Detailedly, the proposals from the

student are injected into the teacher for proposals correc-
tion, which can provide corresponding soft labels to rec-
tify each proposal accordingly. Besides, to encourage pos-
itive feedback during self-training, we introduce a reliable
pseudo label mining (RPLM) strategy to further improve the
performance, which aims to convert the high-quality uncer-
tain pseudo labels into reliable ones in a curriculum way.

We benchmark LabelMatch with the same experimental
settings to Unbiased-Teacher [22] using the MS-COCO [20]
and PASCAL-VOC [7] datasets, namely COCO-standard,
COCO-additional, and VOC. LabelMatch achieves new
state-of-the-art results across all benchmarks. Especially in
the settings with scarce labeled data, i.e., COCO-standard
with only 1% labeled data and VOC, our method can surpass
the previous state-of-the-arts by a large margin.

The contributions of this paper are listed as follows:

* We contribute to analyzing the label mismatch problem
from the perspectives of distribution-level and instance-
level, which provides a brand-new direction for SSOD.

* We propose a simple yet effective LabelMatch frame-
work to address the label mismatch problems in SSOD.
In this framework, we 1) present a re-distribution mean
teacher to address the distribution-level label mismatch
problem; 2) design a proposal self-assignment scheme
to address the instance-level label mismatch problem;
3) introduce a reliable pseudo label mining strategy for
pseudo label re-calibration during self-training.

* The LabelMatch framework achieves new state-of-the-
arts on many popular SSOD benchmarks. Also, we build
a MMDetection-based semi-supervised object detection
codebase for the fair study of SSOD algorithms.

2. Related Work

Semi-Supervised Classification. The general methods can
be roughly categorized into two types. One is consistency
regularization, assuming the model’s predictions to be in-
variant even if various perturbations are applied. There are
different kinds of perturbations, including model-level per-
turbations [13, 29, 33], image augmentations [35], and ad-
versarial training [23]. Another one is self-training, aka
pseudo labeling, which regards the predictions as pseudo la-
bels. For instance, NoisyStudent [36] evolves the pseudo la-
bels for model optimization iteratively. MixMatch [2] uses
mixup augmentation and averages different augmented pre-
dictions to generate pseudo labels. FixMatch [30] uses the
weakly augmented data for pseudo labeling while exploit-
ing the strongly augmented data for model training.

Semi-Supervised Object Detection. The technologies in
SSOD are inherited from semi-supervised classification,
dividing into consistency regularization [14, 32] and self-
training [22,31,37,38,40]. In this paper, we mainly focus
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Figure 2. An overview of LabelMatch framework. Labeled data: only applied to the student with a supervised loss. Unlabeled data:
annotated by the teacher to get pseudo labels (PL) according to the adaptive label-distribution-aware confidence thresholds (ACT), which
are then split into reliable ones and uncertain ones for separated optimization. Reliable pseudo labels directly follow the IoU based
assignment strategy, acting as hard labels to train the student model. As for uncertain labels, the proposal self-assignment method guides
the student training with the supervision provided by the corresponding proposal prediction in the teacher. Besides, a reliable pseudo label
mining (RPLM) strategy is utilized to convert the high-quality uncertain pseudo labels into reliable ones as the training goes on.

on the latter one. STAC [3 1] first generates pseudo labels by
the pre-trained model and then feeds them back into the net-
work with strong augmentation for model fine-tuning. To
simplify this offline pseudo labeling, mean teacher based
methods [22, 37, 40] perform a weak data transformation
for online pseudo labeling and a strong data transformation
for model training. However, there lies both foreground-
background imbalance and foreground classes imbalance in
SSOD, which makes it a more challenging task than semi-
supervised classification. Unbiased-Teacher [22] and Soft-
Teacher [37] use the focal-loss and the soft-weight to allevi-
ate these problems, respectively. Despite the great progress,
the label mismatch problem during pseudo labeling still ex-
ists in the previous works. In contrast, we propose a Label-
Match framework to solve this problem from perspectives
of distribution-level and instance-level.

Label Assignment. It is necessary to assign the target of
classification and localization for each proposal or anchor
in object detection, known as label assignment [8], which
can be categorized into fixed and dynamic variants [8]. ToU
based and center based label assignment are two common
fixed assigning strategies, the first of which shows effec-
tiveness in both RCNN-series [6,9,10,24,28] and one-stage
detectors [19,21,26,27], while the second one is popular

in many anchor-free object detection [16,25,34]. Recently,
many adaptive mechanisms have been proposed to promote
the label assignment, such as ATSS [39], PAA [15], Au-
toAssign [41], OTA [8], etc. However, all of these methods
are only applied in supervised object detection, leaving a
blank in SSOD due to the complex situation. To cope with
the instance-level label mismatch problem, a novel label as-
signment is proposed to facilitate self-training in this paper.

3. Methodology

In SSOD, a set of labeled images D;={z!, 4/} and a
set of unlabeled images D, ={z!} are provided, where
N and N, represent the number of labeled and unlabeled
data, respectively. The annotation y! contains both cate-
gories and bounding boxes information.

3.1. Overview

The pipeline of LabelMatch framework is illustrated in
Fig. 2, which is derived from a basic mean teacher frame-
work. The main idea of the mean teacher framework is to
drive the teacher and student to evolve in a mutual learning
mechanism. However, previous mean teacher based works
inevitably suffer from the label mismatch problems, which
we divide into two granularities, including distribution-level
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and instance-level. To solve these problems, we modify the
mean teacher framework and develop a LabelMatch frame-
work, consisting of a re-distribution mean teacher to solve
the distribution-level label mismatch problem and a pro-
posal self-assignment method to deal with the instance-level
label mismatch problem. Also, it is beneficial to explore
more high-quality pseudo labels. Thus, we further equip
the proposed LabelMatch with a reliable pseudo label min-
ing strategy to improve performance.

3.2. Preliminary: Mean Teacher Framework

Our approach follows the regimen of mean teacher,
which contains a teacher model for pseudo label gener-
ation and a student model to improve the teacher model
by updating knowledge. Both labeled and unlabeled data
jointly constitute the batch of data. In each iteration, the
teacher model first generates pseudo labels on the weakly-
augmented unlabeled data, which are served as supervi-
sion signals for the corresponding strongly-augmented ver-
sion. Subsequently, the student model is trained on the la-
beled data and the strongly-augmented unlabeled data with
pseudo labels. In this way, the final training objective con-
sists of a supervised loss and an unsupervised loss:

L =Z&m(ﬁﬂﬁ)+£T&g($éyyé)7 1)

L, = Z Leis (mgv y?) + Ersg (33'?7 y?), 2)

where L. is the classification loss, L, is the box re-
gression loss, and y;* is the pseudo label annotated by the
teacher model. The overall loss is defined as:

Etotul - ﬁl + >\£u7 (3)

where ) is a weight to balance the unsupervised loss, which
is set 2.0 by default in this paper. During self-training, the
teacher gradually updates its weights from the student via
an exponential moving average (EMA) strategy.

3.3. LabelMatch

We claim that the main obstacle to hinder the per-
formance of mean teacher framework lies in the label
mismatch problem. The proposed LabelMatch frame-
work adopts the same mean teacher scheme, but devel-
ops a re-distribution mean teacher, which utilizes adap-
tive label distribution-aware confidence thresholds (ACT)
to achieve unbiased pseudo labels. Moreover, a proposal
self-assignment method and a reliable pseudo label mining
strategy are introduced to rectify self-training.

Re-distribution Mean Teacher. In semi-supervised learn-
ing, the labeled data and the unlabeled data are from the
same data distribution. Intuitively, we can obtain adaptive
thresholds by minimizing the discrepancy of class distribu-
tions between the labeled and the unlabeled data, which can

be formulated as follows:
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where D 1, represents the Kullback-Leibler divergence be-
tween two distributions, n! denotes the box number of
the i-th class in the labeled data, C is the entire fore-
ground class number, P/ is a list of prediction scores of
the i-th class in the j-th unlabeled image, f-f means the
foreground-foreground class distribution, and f-b means
the foreground-background ratio. Note that all the predic-
tions in the unlabeled data are post-processed by NMS. ¢, is
the optimized variant, aka the confidence threshold to filter
pseudo boxes for the c-th category, determined as:

N,
te = P.sort U Nu 5
2k 2L )

where P5°™ is a list of prediction scores of the c-th class,
which are sorted by descending. For efficient implemen-
tation, only a subset of unlabeled data are selected to esti-
mate the distribution for thresholds determination. While
the model is consecutively optimized during training, the
previous thresholds are however imprecise for pseudo label-
ing, failing to be consistent with the truth class distribution.
We thus simply update these thresholds every K iterations
to dynamically adjust to the current teacher model. Such
that, the thresholds are category-specific and adaptively up-
to-date, termed as adaptive label-distribution-aware confi-
dence thresholds (ACT), which we identify as the critical
step to solve the distribution-level mismatch problem.

Proposal Self-Assignment. It is worth noting that the qual-
ity of pseudo labels cannot be guaranteed, especially at the
early beginning of self-training. Inspired by the noise label
learning [4, | 1], we divide pseudo labels into reliable ones
and uncertain ones according to the confidence score. De-
noting «% as the pre-defined proportion of reliable pseudo
labels, the confidence thresholds ¢, to filter reliable pseudo
labels for the c-th category can be written as:

Nu

tZ:PCsort 7 lC
[a% - n N

1, (6)

Pseudo labels with confidence higher than ¢ are regarded
as hard labels for student model optimization in a super-
vised manner. In contrast, the remaining uncertain ones are
treated as soft labels for soft learning.

14384



Obviously, the uncertain pseudo labels potentially lead
to low localization accuracy. To avoid poor box regression,
Unbiased-Teacher removes the box regression loss for the
unlabeled data, yet resulting in ambiguity in label assign-
ment as shown in Fig. 1. For example, supposed that the
proposals with an IoU overlap higher than 0.5 are optimized
to the same uncertain pseudo labels, they will tend to be the
same in classification score but different in localization af-
ter being refined by ROIHead. These refined proposals be-
have indistinguishably for the NMS post-processing, which
confuses NMS to suppress redundant boxes randomly. We
refer to this situation as an instance-level label mismatch
problem, lacking attention in the previous SSOD works.
To this end, we present a novel proposal self-assignment
method for proposal re-calibration. Specifically, we utilize
the proposals matched to the uncertain pseudo labels gener-
ated by the student to extract the corresponding features in
the teacher, and then feed these features into the ROIHead
of the teacher to achieve the refined boxes. Different from
the IoU based label assignment, each proposal in the student
uses the corresponding soft labels refined by the ROIHead
of the teacher model for self-training, and finally, varying
from each other in classification score to avoid NMS con-
fusion. In this way, we optimize the student model with the
uncertain pseudo labels via a soft classification loss:

np C
[fcls = Z Z _PE,C log p?,c’ (7)

1=1 c=1

where n,, is the number of the corresponding proposals
matched to the uncertain pseudo labels, C' is the class num-
ber, p; . is the probability of the c-th class in the i-th pro-
posal from the student model, and pﬁ’c denotes the corre-
sponding soft label from the teacher model matched to p; ..

Incorporating the re-distribution mean teacher and the
proposal self-assignment for pseudo labeling, the unsuper-
vised loss in Eq. (2) can be reformulated as:

Lu:Z Ecls(l'?u yz”)"“CTEQ (wf, y;'“)'i‘ﬁcls (1'77 yfu), (8)

where y;'" and y}'* denote the reliable pseudo labels and the
uncertain pseudo labels, respectively.

Reliable Pseudo Label Mining. To benefit from the con-
tinuously evolved teacher model and encourage the cycle
positive feedback during self-training, we present a reliable
pseudo label mining strategy to convert the high-quality un-
certain pseudo labels into reliable ones. First, it is known
that a set of adjacent boxes will be suppressed into one
box after NMS. In this paper, we claim that these adjacent
boxes before NMS can be exploited to evaluate the quality
of the corresponding pseudo label after NMS. In this way,
we present two evaluation metrics in this paper, i.e., mean
score and mean IoU, which are the average classification
scores and IoU of this set of adjacent boxes matched to the
corresponding bounding box after NMS. Note that We use
the predictions from the teacher to compute mean score and
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Figure 3. 5k images are selected to estimate the quality of pseudo
labels. (a) the correlation between the IoU with ground truth and
mean score. (b) the correlation between the IoU with ground truth
and mean loU. The orange points represent the predictions with
the mean score larger than 0.8 and mean IoU larger than 0.8

mean loU, and the IoU scores are determined by the IoU be-
tween the suppressed boxes and the selected box in NMS.
We claim that the pseudo labels with higher quality usually
correspond to higher mean scores and higher mean IoU. The
empirical study in Fig. 3 gives a demonstration of our hy-
pothesis. In this way, the uncertain pseudo labels with mean
scores larger than T, and mean IoU larger than T}, will
be transferred to reliable pseudo labels.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on the MS-COCO [20]
and PASCAL-VOC [7] datasets. There are three settings
following the existing works [22,31]: (1) COCO-standard:
1%, 5%, 10% images of train2017 set are sampled as
the labeled training data and the remaining ones as the
unlabeled data. (2) COCO-additional: we use the entire
train2017 set as the labeled data and the additional
COCO02017-unlabeled set as the unlabeled data. (3)
VOC: we use VOCO7 trainval set as the labeled data
and the VOC12 trainval set as the unlabeled data. The
validation sets in the COCO setting and VOC setting are
COCO val2017 and VOCO7 test set, respectively.

Network. For a fair comparison, we use Faster-RCNN [28]
with FPN [ 18] and ResNet-50 backbone [12] as the detector.
Our framework can be easily extended to other detectors.

Implementation Details. We implement our method with
MMDetection [3]. For data augmentation, we apply random
horizontal flipping and multi-scale for weak augmentation.
Based on this augmentation, we then add random color jit-
tering, grayscale, gaussian blurring and cutout patches for
strong augmentation, which is similar to [22]. The Tscore
and T;,, in RPLM are set to 0.8 by default. More training
and implementation details are introduced in the Appendix.

4.2. Results

COCO-standard. We evaluate the proposed method on
COCO-standard (Tab. 1). Our method consistently outper-
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Threshold 1% 5% 10%
Supervised [22] - 9.05£0.16 18.47 £ 0.22 23.86 + 0.81
STAC [31] 0.9 13.97 4 0.35 (+4.92) 24.38 £0.12 (+5.91) 28.64 + 0.21 (+4.78)
ISMT [38] 0.9 18.88 + 0.74 (+9.83) 26.37 £ 0.24 (+7.90) 30.53 £ 0.52 (+6.67)
Instant Teaching [40] 0.9 18.05 4+ 0.15 (4+9.00) 26.75 £ 0.05 (+8.28) 30.40 =+ 0.05 (+6.54)
Unbiased Teacher [22] 0.7 20.75 4+ 0.12 (+11.70) 28.27 £ 0.11 (4+9.80) 31.50 £ 0.10 (+7.64)
Soft Teacher [37] 0.9 20.46 + 0.39 (+11.41) 30.74 £ 0.08 (+12.27) 34.04 + 0.14 (+10.18)
LabelMatch (Ours) ACT 25.81 + 0.28 (+16.76) 32.70 £ 0.18 (+14.23) 35.49 £ 0.17 (+11.63)

Table 1. Experimental results on COCO-standard (A Pso.95). All the results are the average of all 5 folds.

Iterations AP50;95
STAC [31] 540k 39.5 =22 392
Unbiased Teacher [22] 270k 402 11413
Soft Teacher [37] 370k 40.9 2% 445
LabelMatch (Ours) 540k 40.3 2% 453

Table 2. Experimental results on COCO-additional.

APs APsp.95
Supervised [22] 72.63 42.13
STAC [31] 7745 (+4.82)  44.64 (+2.51)
ISMT [38] 77.23 (+4.60) 46.23 (+4.10)
Instant Teaching [40]  79.20 (+6.57)  50.00 (+7.87)
Unbiased Teacher [22]  77.37 (+4.74) 48.69 (+6.56)
LabelMatch (Ours) 85.48 (+12.85) 55.11 (+12.98)

Table 3. Experimental results on VOC.

forms the previous state-of-the-arts with different percent-
ages of labeled data. It is worth mentioning that the pro-
posed method achieves 25.81 mAP on 1% labeled data,
which is even higher than the supervised baseline trained
on 10% labeled data.

COCO-additional. We verify whether the model trained
on 100% COCO data can be further improved by using
additional unlabeled COCO data. As shown in Tab. 2,
our method boosts the supervised baseline with +5.0 mAP,
while the existing SOTA improvement is +3.6 mAP.

VOC. We evaluate the proposed method on PASCAL-VOC.
As is shown in Tab. 3, our method achieves 85.48 mAP
on AP, which outperforms previous state-of-the-arts by
+6.28 absolute mAP improvement.

4.3. Ablation Studies

In ablation studies, we conduct experiments in the set-
ting of 1% COCO-standard (one of 5 folds), without RPLM
strategy if not specified. The training iterations are reduced
to 40k for all of the experiments. More implementation de-
tails and ablation studies can be found in the Appendix.

The quality of pseudo labels. The quality of pseudo la-

bels can be reflected in three aspects: 1) the accuracy
of pseudo labels; 2) foreground-background distribution;
3) class distribution (foreground-foreground distribution).
We compare the proposed method against the single con-
fidence threshold based mean teacher framework. Label-
Match shows superior advancement, which we attribute to
the following aspects:

* More accurate pseudo labels. As is shown in Fig. 4a, the
accuracy of pseudo labels decreases when using thresh-
0ld=0.7 and threshold=0.8. In contrast, the accuracy in-
creases in LabelMatch. Although the accuracy achieves
the best in threshold=0.9, the number (recall) of fore-
grounds is much less than the ground truth.

* Unbiased foregrounds-background distribution. As is
shown in Fig. 4b, the number of pseudo labels in our
method is nearly the same as the ground truth, while the
number in the single confidence threshold based method
is much lower, especially when threshold=0.9.

* Consistent class distribution. Fig. 4c demonstrates that
LabelMatch guarantees both the foreground-background
distribution and the class distribution to be nearly con-
sistent with the ground truth. The situation is totally dif-
ferent when using the single confidence threshold, which
brings large gaps with ground truth in many categories.
To show the quality of pseudo labels more intuitively,

we give the quantitative and qualitative demonstrations in
Tab. 4 and Fig. 5, respectively. From Tab. 4, we observe
obvious gains in AP on top20 tail and head categories by
leveraging LabelMatch compared with the single and fixed
threshold. As shown in Fig. 5, there are many false positives
with threshold=0.7 and many false negatives with thresh-
0ld=0.9, which are removed by leveraging LabelMatch.
These experimental results indicate the effectiveness of La-
belMatch to re-distribute the pseudo label distribution, pre-
venting self-training from collapsing to dominant classes.
More qualitative results are shown in the Appendix.

The necessity of ACT adaptation. We randomly select a
subset of unlabeled data to determine ACT for every K it-
erations in our implementation. As mentioned in Sec. 3.3,
the proposed ACT are updated to the evolved teacher dur-
ing the training phase, avoiding a false bias caused by the
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thr=0.9 0.0 0.0 53 379 22 176 28 484 534 468 448 378 31.7 12 168 33.1 124 237 268 266 | 235
LabelMatch | 4.6 0.0 165 375 46 349 95 499 504 492 474 450 344 85 17.7 393 132 21.0 293 323 ‘ 27.3
2L = [3)
g .f-‘) o0 = E 3
g o o ¥ 2 - £ « 2 5 g 3 g g
i 5 2 ¢ % s £ 5§ B :E z E T 2% 5 &z : £ § ¢%
a B S k) £ 3 S| & k) = 8 k) E = £ 3 £ B E 8 mean
thr=0.7 391 305 92 2.1 203 240 125 194 222 43 161 144 35 200 7.7 318 89 3.1 274 38 16.0
thr=0.8 39.0 318 103 21 258 263 141 202 256 41 181 136 86 20.0 114 321 83 39 28.0 438 174
thr=0.9 320 266 7.1 1.0 136 199 149 17.8 23.0 1.1 149 8.1 127 154 103 242 6.6 1.8 245 25 139
LabelMatch ‘ 388 319 11.7 19 256 26.1 146 208 292 48 179 132 148 21.2 13.6 39.0 9.1 49 274 6.1 18.6

Table 4. Quantitative results on top20 tail categories (upper) and top20 head categories (lower) (A Pso.95).

Threshol Threshold=0.9 LabelMatch
Figure 5. Qualitative comparisons between the single confidence
threshold and our proposed method. Red rectangles highlight the
false negatives, and yellow rectangles highlight the false positives.

The score threshold for visualization is 0.6.

outdated predictions. Fig. 6a proves the necessity of ACT
adaptation, where the performance is pretty bad without
adaptation (K = 4-00). In our experiments, we simply use
K = 1000 and a subset of unlabeled data (10,000) to re-
fresh the thresholds.

Effect of reliable ratio «. In the training phase, we split

the candidate pseudo labels into reliable pseudo labels and
uncertain pseudo labels by a% according to the confidence
scores. Here, we analyze the influence of different ratios.
As shown in Fig. 6b, if we directly set all the candidate
pseudo labels as uncertain pseudo labels (v = 0), the per-
formance is worse than splitting some pseudo labels to reli-
able, which is mainly caused by the lack of box regression
optimization for the unlabeled data. However, setting too
many pseudo labels as reliable pseudo labels is also harmful
due to the noisy boxes. We use o = 20 for all experiments.

Proposal self-assignment. We compare different label as-
signment strategies for uncertain pseudo labels: 1) Ignore
assignment; 2) IoU based label assignment; 3) Proposal
self-assignment. Here the ignore assignment means that
the uncertain pseudo labels are directly set as ignore la-
bels. Fig. 6¢c shows the superiority of the proposal self-
assignment strategy over other label assignments. For the
ignore assignment, there exists an imbalance between fore-
ground and background, and background dominates the ob-
ject detection training, which makes the ignored objects
tend to be regarded as background after training, imped-
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Figure 6. Ablation study about: (a) the updating interval of ACT. (b) the effect of reliable ratio . (c) different label assignment strategies.

ToU-based

proposal

before NMS after NMS
Figure 7. Visualization of the predictions before and after NMS
post-processing. IoU based: the model is trained based on IoU
based label assignment; proposal: the model is trained based on
proposal self-assignment

ing performance improvement. For IoU based label assign-
ment, it will produce many ambiguous boxes after training
due to the instance mismatch as illustrated in Fig. 7.

Effect of RPLM. To verify the effectiveness of RPLM, we
estimate it in the setting of COCO-standard. As depicted
in Fig. 8a, RPLM slightly boosts the performance, but re-
mitting the sensitivity of the reliable ratio o and showing
an obvious improvement even o dropping to zero (Fig. 8b).
This implies that, with the favor of RPLM, we can easily
adjust o to make stable performance improvement without
expert techniques.

5. Conclusion and Future Work

In this paper, we first diagnose the existing SSOD frame-
works experimentally and figure out the common limitation,
namely label mismatch problem, including two different
but complementary granularities, i.e., distribution-level and
instance-level. To solve the above problems, we propose the
LabelMatch framework. For distribution-level mismatch,
LabelMatch develops a re-distribution mean teacher to de-
rive adaptive label-distribution-aware confidence thresholds

—— A 1.03 == w/o RPLM
341 = wio RELM £ 24.75| mmm w/RPLM 24.6124.63
== w/RPLM 1.025 :
24.50
1.012
2 v 2425
g 1008 2
230 £24.00
B 0998 <

20

5% 10% 10
reliable ratio a (%)

percentage of labeled data

(@) (b)
Figure 8. Ablation study about RPLM. (a) RPLM in different per-
centages of labeled data. (A means the number of mining pseudo
labels per image.) (b) RPLM in different reliable ratio a.

by narrowing the class distribution discrepancy between
labeled and unlabeled data, and then generating unbiased
pseudo labels. For instance-level mismatch, LabelMatch
adopts a proposal self-assignment method, injecting the
proposals generated by the student into the teacher model
to supervise proposals correction. Furthermore, a reliable
pseudo label mining strategy is introduced to convert high-
quality uncertain pseudo labels to reliable ones, facilitat-
ing the cycle of positive feedback during self-training. Ex-
tensive experimental results verify the efficacy of the pro-
posed LabelMatch, which establishes a new state-of-the-art
on both PASCAL-VOC and MS-COCO datasets.
Limitations. While we have shown the superiority of La-
belMatch, there is still a non-negligible problem that the
labeled and unlabeled data are assumed to follow the same
distribution. Hence, LabelMatch relies on the class distri-
bution prior, which is inaccessible in some scenarios, e.g.,
unsupervised domain adaptive object detection. It is ben-
eficial to study the label mismatch problems between two
different distributions and, intuitively, advance the Label-
Match to more complex situations without class distribution
prior, which is an interesting future work.
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